
Bioinformatics 3 

V 2 – Clusters, 
Dijkstra, and Graph 

Layout 
Fri, Oct 19, 2012 



Bioinformatics 3 – WS 12/13 V 2  –  2 

Graph Basics 
A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges. 

Degree distribution P(k) 

k 0 1 2 3 4 

P(k) 0 3/7 1/7 1/7 2/7 

Random network: 
also called the "Erdös-Renyi model" 
start from all nodes, add links randomly 
P(k) = "Poisson" 

Scale-free network: 
grow with preferential attachment 
P(k) = power law 



Bioinformatics 3 – WS 12/13 V 2  –  3 

Connected Components 
Connected graph  <=>  there is a path between all pairs of nodes 

In large (random) networks:  complete {V} often not connected 
 identify connected subsets {Vi}  with  {V} = U {Vi}  
  connected components (CC) 

#CC = 5 
Nmax  = 15 
Nmin   = 1 



Bioinformatics 3 – WS 12/13 V 2  –  4 

Connectivity of the Neighborhood 
How many of the neighboring vertices are themselves neighbors? 
=> clustering coefficient C(k) 

Number of possible edges between k nodes: 
 
nk   is the actual number of edges between the neighbor nodes. 

Fraction of actual edges  clustering coefficient 

green: k = 2, nk = 1      C = 1 

red:  k = 4, nk = 2    C = 1/3 

Note: clustering coeff. sometimes also defined via fraction of possible triangles 

blue: k = 1, nk = ?    C is not defined 



Bioinformatics 3 – WS 12/13 V 2  –  5 

Cluster Coefficient of a Graph 
Data:  Ci for each node i     N values 

Statistics: 

average at fixed k  

 

k 

C
i, 

C
(k

), 
<C

> 
average over all nodes  

 

Note: it is also possible to 
average the  C(k) 
different value for <C> !!! 
Because no weighting for  
different occupancy of k’s. 



Bioinformatics 3 – WS 12/13 V 2  –  6 

C(k) for a Random Network 

Probability to have exactly m edges between the k neighbors 

Cluster coefficient when m edges exist between k neighbors 

Average C(k) for degree k: 

  C(k) is independent of k 
     <=> same local connectivity throughout the network 



Bioinformatics 3 – WS 12/13 V 2  –  7 

The Percolation Threshold 
Connected component  =  all vertices that are connected by a path 

Very few edges 
 only CCs  
of size 2 

Lots of edges 
 graph is one CC 

Percolation 
transition at 
λ = 2 

Identify: 
Ncc = number of connected  
         components (clusters) 
Nmax = size of the largest  
           cluster 

For λ > 2:    
giant  
component 
exists average degree λ 



Bioinformatics 3 – WS 12/13 V 2  –  8 

"percolation" 

Percolation Transition 
Example:  regular square lattice,  N = 25 nodes,  Lmax = 40 links between 
         next neighbors 

L = 3 
λ = 0.24 

 
Ncc = 22 
Nmax = 2 

L = 11 
λ = 0.88 

 
Ncc = 14 
Nmax = 4 

L = 22 
λ = 1.76 

 
Ncc = 3 

Nmax = 15 

L = 24 
λ = 1.92 

 
Ncc = 1 

Nmax = 25 

percolation = "spanning structure" emerges (long range connectivity) 
    for an infinite square lattice:  percolation transition at λ = 2 
here:  finite size effect  <=>  fewer possible links at the boundaries 



Bioinformatics 3 – WS 12/13 V 2  –  9 

Clusters in scale free graphs 
Scale-free network  <=>  no intrinsic scale 
  same properties at any k-level 
        same local connectivity 
           C(k) = const. 

k 

C
i, 

C
(k

), 
<C

> 

"Real" biological data 
 missing links 
      multiple clusters 

Is the metabolic 
network of a cell 
fully connected? 



Bioinformatics 3 – WS 12/13 V 2  –  10 

Algorithms on Graphs 
How to represent a graph in the computer? 

1. Adjacency list 
=> list of neighbors for each node 

1: 
2: 
3: 
4: 
5: 
6: 
7: 

(3) 
(3) 
(1, 2, 4, 5) 
(3, 5, 6) 
(3, 4, 6, 7) 
(4, 5) 
(5) 

Note: for weighted graphs store pairs of (neighbor label, edge weight) 

+ minimal memory requirement 
+ vertices can easily be added or removed 

– requires O(λ) time to determine  
   whether a certain edge exists 



Bioinformatics 3 – WS 12/13 V 2  –  11 

Graph Representation II 
2. Adjacency matrix 
 N x N matrix with entries Muv 
     Muv = weight when edge between u and v exists,  
              0 otherwise 

1 2 3 4 5 6 7 
1 – 0 1 0 0 0 0 
2 0 – 1 0 0 0 0 
3 1 1 – 1 1 0 0 
4 0 0 1 – 1 1 0 
5 0 0 1 1 – 1 1 
6 0 0 0 1 1 – 0 
7 0 0 0 0 1 0 – 

 symmetric for undirected graphs 

+ fast O(1) lookup of edges 
– large memory requirements 
– adding or removing nodes is expensive  

Note: very convenient in programming 
languages that support sparse multi-
dimensional arrays 
=> Perl 



Bioinformatics 3 – WS 12/13 V 2  –  12 

Graph Representation III 
3. Incidence matrix 
 N x M matrix with entries Mnm 
     Mnm = weight when edge m ends at node n 
               0 otherwise 

e1 e2 e3 e4 e5 e6 e7 
1 1 
2 1 
3 1 1 1 1 
4 1 1 
5 1 1 1 
6 1 1 
7 1 

e1 

e2 

e3 

e4 

e5 

e6 

e7 

  for a plain graph there are  
     two entries per column 
 
 directed graph:  
     indicate direction via sign (in/out) 

The incidence matrix is a special 
form of the stoichiometric matrix 
of reaction networks. 



Bioinformatics 3 – WS 12/13 V 2  –  13 

The Shortest Path Problem 

Edsger Dijkstra 
(1930-2002): 

Problem: 
Find the shortest path from a given vertex  
to the other vertices of the graph (Dijkstra 1959). 

We need (input): • weighted graph G(V, E) 
• start (source) vertex s in G 

We get (output): • shortest distances d[v] between s and v 
• shortest paths from s to v 

Idea: Always proceed with 
the closest node 
   greedy algorithm 

Real world application: 
   GPS navigation devices 



Bioinformatics 3 – WS 12/13 V 2  –  14 

Dijkstra Algorithm 0 
Initialization:  for all nodes v in G: 

    d[v] = oo 
    pred[v] = nil 

d[s] = 0  distance from source to source = 0 

distance and path to all 
other nodes is still 
unknown 

node 1 2 3 4 5 6 7 

d 0 oo oo oo oo oo oo 

pred – – – – – – – 

In the example:  s = 1 

   d[v]   = length of path from s to v 
pred[v] = predecessor node on the shortest path 



Bioinformatics 3 – WS 12/13 V 2  –  15 

Dijkstra I 

Iteration:  Q = V 
while Q is not empty: 
   u = node with minimal d 

   if d[u] = oo: 
      break 

   delete u from Q 

   for each neighbor v of u: 
      d_temp = d[u] + d(u,v) 

      if d_temp < d[v]: 
         d[v] = d_temp 
         pred[v] = u 

return pred[]C 

Save {V} into working copy Q 

choose node closest to s 
exit if all remaining 
nodes are inaccessible 

calculate distance to u's 
neighbors 

if new path is shorter 
=> update 



Bioinformatics 3 – WS 12/13 V 2  –  16 

Dijkstra-Example 
1) Q = (1, 2, 3, 4, 5, 6, 7) 

2) Q = (2, 3, 4, 5, 6, 7) 

3) Q = (2, 3, 5, 6, 7) 

4) Q = (2, 5, 6, 7) 
node 1 2 3 4 5 6 7 

d 0 26 21 12 30 37 42 
pred – 3 4 1 4 4 2 

node 1 2 3 4 5 6 7 
d 0 26 21 12 30 37 oo 

pred – 3 4 1 4 4 – 

node 1 2 3 4 5 6 7 
d 0 oo 21 12 30 37 oo 

pred – – 4 1 4 4 – 

node 1 2 3 4 5 6 7 
d 0 oo 23 12 oo oo oo 

pred – – 1 1 – – – 
Q = V 
while Q is not empty: 
   u = node with minimal d 

   if d[u] = oo: 
      break 

   delete u from Q 

   for each neighbor v of u: 
      d_temp = d[u] + d(u,v) 

      if d_temp < d[v]: 
         d[v] = d_temp 
         pred[v] = u 

return pred[]C 



Bioinformatics 3 – WS 12/13 V 2  –  17 

Example contd. 
Q = (2, 5, 6, 7) 4) 

Q = (6, 7) 

Q = (7) Final result: 

d(1, 7) = 42 path = (1, 4, 3, 2, 7) 

Q = (5, 6, 7) 5) 

d(1, 6) = 37 path = (1, 4, 6)  or (1,4,5,6) 

node 1 2 3 4 5 6 7 
d 0 26 21 12 30 37 42 

pred – 3 4 1 4 4 2 

node 1 2 3 4 5 6 7 
d 0 26 21 12 30 37 42 

pred – 3 4 1 4 4 2 

node 1 2 3 4 5 6 7 
d 0 26 21 12 30 37 42 

pred – 3 4 1 4 4 2 



Bioinformatics 3 – WS 12/13 V 2  –  18 

Beyond Dijkstra 

Graphs with positive and negative weights 
 Bellman-Ford-algorithm 

If there is a heuristic to estimate weights:   
 improve efficiency of Dijkstra 
      A*-algorithm 

Dijkstra works for directed and undirected graphs with 
  non-negative weights. 

Straight-forward implementation:  O(N2) 



Bioinformatics 3 – WS 12/13 V 2  –  19 

Graph Layout 
Task: visualize various interaction data: 
e.g. protein interaction data (undirected):  
  nodes – proteins 
  edges – interactions 
metabolic pathways (directed) 
  nodes – substances 
  edges – reactions 
regulatory networks (directed):  
  nodes – transcription factors + regulated proteins 
  edges – regulatory interaction 
co-localization (undirected) 
  nodes – proteins 
  edges – co-localization information 
homology (undirected/directed) 
  nodes – proteins 
  edges – sequence similarity (BLAST score) 



Bioinformatics 3 – WS 12/13 V 2  –  20 

Graph Layout Algorithms 
Graphs encapsulate relationship between objects 
 drawing gives visual impression of these relations 

Good Graph Layout:  aesthetic 
• minimal edge crossing 
• highlight symmetry (when present in the data) 
• even spacing between the nodes 

Many approaches in literature (and in software tools),  
most useful ones usually NP-complete (exponential runtime) 

Most popular for straight-edge-drawing: 
 force-directed:  spring model or spring-electrical model 
 embedding algorithms like H3 or LGL 



Bioinformatics 3 – WS 12/13 V 2  –  21 

Force-Directed Layout 

Peter Eades (1984):  graph layout heuristic 
 
 "Spring Embedder'' algorithm.  
 
•  edges   springs  
   vertices   rings that connect the springs  
 
•  Layout by dynamic relaxation 
 
  lowest-energy conformation 
 
 "Force Directed'' algorithm 

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html 



Bioinformatics 3 – WS 12/13 V 2  –  22 

Energy and Force 
Height

Distance

Downhill force

Distance

Energy increases when 
you go up the hill 

Energy: describes the 
altitude of the landscape 

You need more force 
for a steeper ascent 

Force: describes the 
change of the altitude, 
points downwards. 



Bioinformatics 3 – WS 12/13 V 2  –  23 

Spring Embedder Layout 
Springs regulate the mutual distance between the nodes 
• too close  repulsive force 
• too far  attractive force 

Spring embedder algorithm: 
• add springs for all edges 
• add loose springs to all non-adjacent vertex pairs 

Total energy of the system: 

xi, xj = position vectors for nodes i and j 
lij     = rest length of the spring between i and j 
R    = spring constant (stiffness) 

Problem: lij have to be determined a priori, e.g., from network distance 



Bioinformatics 3 – WS 12/13 V 2  –  24 

Spring Model Layout 
Task:  find configuration of minimal energy 

In 2D/3D:  force = negative gradient of the energy 

 Iteratively move nodes "downhill" along the gradient of the energy 
     displace nodes proportional to the force acting on them 

Problems: 
• local minima 
• a priori knowledge of all spring lengths 
  works best for regular grids 



Bioinformatics 3 – WS 12/13 V 2  –  25 

The Spring-Electrical-Model 
More general model than spring embedder model:  use two types of forces 
 
1) attractive harmonic force between connected nodes (springs) 
 

2) repulsive Coulomb-like force between all nodes 
    "all nodes have like charges"   repulsion 

one uses usually the same  
spring constant k for all edges 

either Qij = Q  or, e.g., Qij = ki kj  

Repulsion pulls all nodes apart,  springs keep connected nodes together 
 workhorse method for small to medium sized graphs 

 Do-it-yourself in Assignment 2 <= 



Bioinformatics 3 – WS 12/13 V 2  –  26 

Spring-Electrical Example 

http://www.it.usyd.edu.au/~aquigley/3dfade/ 



Bioinformatics 3 – WS 12/13 V 2  –  27 

Force-Directed Layout:  Summary 
Analogy to a physical system 
=> force directed layout methods tend to meet various aesthetic standards: 

Side-effect: vertices at the periphery tend to be closer to each other 
than those in the center… 

• efficient space filling,  
• uniform edge length (with equal weights and repulsions) 
• symmetry 
• smooth animation of the layout process (visual continuity) 

Force directed graph layout  the "work horse" of layout algorithms.  

Not so nice: the initial random placement of nodes and even very small 
changes of layout parameters will lead to different representations. 
(no unique solution) 



Bioinformatics 3 – WS 12/13 V 2  –  28 

Runtime Scaling 
Force directed layout: 

loop until convergence: 

   calculate forces: 
      L springs 
      N(N­1)/2 charge pairs 

   move vertices 

   output positions 

O(N2)!!! 

Several possible 
arrangements!!! 
(local minima) 

 force directed layout suitable for small to medium graphs (≤ O(1000) nodes?) 

Speed up layout by: 
• multi-level techniques to overcome local minima 
• clustering (octree) methods for distant  
groups of nodes   O(N log N) 



Bioinformatics 3 – WS 12/13 V 2  –  29 

H3 Algorithm 

Tamara Munzner (1996-1998): H3 algorithm  
  interactively visualize large data sets of 100.000 nodes. 

Two problems of force directed layout: 
• runtime scaling 
• 2D space for drawing the graph 

Spanning tree: connected acyclic subgraph that contains all the vertices of the 
original graph, but does not have to include all the links 

 find a minimum-weight spanning tree through a graph with weighted edges,  
     where domain-specific information is used to compute the weights 

• focusses on quasi-hierarchical graphs  
  use a spanning tree as the backbone of a layout algorithm 

• graph layout in exponential space (projected on 2D for interactive viewing) 



Bioinformatics 3 – WS 12/13 V 2  –  30 

Spanning Tree 

Idea:  remove links until graph has tree structure, keep all nodes connected 
 spanning tree 

Some algorithms work only/better on trees 

Minimal spanning tree = spanning tree with the least total weight of the edges 

Greedy Kruskal-Algorithm: 
 iteratively choose unused edge  
     with least weight, 
     if it does not lead to a circle! 

greedy <=> base choice on current state, 
                  (locally optimal choice) 



Bioinformatics 3 – WS 12/13 V 2  –  31 

Kruskal - Example 

Minimum spanning tree 
weight = 66 

Proof that there is no spanning tree 
with a lower weight? 



Bioinformatics 3 – WS 12/13 V 2  –  33 

Spanning Tree for a web site 

PhD thesis Tamara Munzner, chapter 3 

Constructing a spanning tree  
for a quasi-hierarchical web site. 
  
Top Left: The hyperlink structure of a  
simple hypothetical site, as it would be  
reported by a web spider starting at the  
top page. Nodes represent web pages,  
and links represent hyperlinks. Although the graph structure itself is determined by hyperlinks, additional information 
about hierarchical directory structure of the site’s files is encoded in the URLs.  
Top Row: We build up the graph incrementally, one link at a time.  
Middle Row: We continue adding nodes without moving any of the old ones around.  
Bottom Row: When the animal/wombat.html page is added, the label matching test shows that animal is a more 
appropriate parent than /TOC.html, so the node moves and the link between animal/wombat.html and /TOC.html 
becomes a non-tree link. In the final stage, note that bird/emu.html does not move when the bird is added, even 
though the labels match, because there is no hyperlink between them. 



Bioinformatics 3 – WS 12/13 V 2  –  34 

Cone Layout 
Place the nodes according to their hierarchy 
starting from the root node 
 direction indicates lineage 

For arbitrary graphs 
 how to get weights? 
 which node is the root? 



Bioinformatics 3 – WS 12/13 V 2  –  35 

Exponential Room 

PhD thesis Tamara Munzner, chapter 3 

In Euklidian space:  circumference of a circle grows linear: 
U = 2πr 

In hyperbolic space: 
U = 2π sinh r 

 exponentially growing space 
     on the circle 

For (cone) graph layout 
 there is enough room  
     for yet another level 

Also: mappings of the  
complete hyperbolic space 
 finite volume of Euklidian space 



Bioinformatics 3 – WS 12/13 V 2  –  36 

Models of hyperbolic space 

PhD thesis Tamara Munzner, chapter 3 



Bioinformatics 3 – WS 12/13 V 2  –  37 

Visualization with H3 

PhD thesis Tamara Munzner, chapter 3 



Bioinformatics 3 – WS 12/13 V 2  –  38 

Visualization with H3 

PhD thesis Tamara Munzner, chapter 3 



Bioinformatics 3 – WS 12/13 V 2  –  39 

GIFs don't work here… 

http://www.caida.org/tools/visualization/walrus/gallery1/ 

H3:  + layout based on MST   fast 
       + layout in hyperbolic space   enough room 
       – how to get the MST for biological graphs???? 

http://www.caida.org/tools/visualization/walrus/gallery1/


Bioinformatics 3 – WS 12/13 V 2  –  40 

Summary 

What you learned today: 

Next lecture: 

 Local connectivity:  clustering 

 shortest path: Dijkstra algorithm 

 graph layout:  force-directed and embedding schemes 

 biological data to build networks from 

 spanning tree: Kruskal algorithm 


