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Differential Equations

Energy and Force

o Energy increases when

t / s ~ you go up the hill
? E(z) = mgh(z)

Energy: describes the
altituce of the landscape

B You need more force

for a steeper ascent
/t\‘_ o F(z) = -2
/ Force: describes the

change of the altitude,
pointing downwards

Bowrformanics 3 WS 11713 = Tihamer Goyer vi-
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Force-Directed Graph Layout

Move the edges according
to local information
(=forces) over the global
energy landscape towards
the steady state
(=minimum)

For a chemical system:
=> evolution of fluxes/
concentrations from
actual (non-equlibrium)
concentrations

Also: reactions to perturbations
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Mass Action Kinetics

Most simple dynamic system: inorganic chemistry

*
Consider reaction A + B <=>AB / 7\ a
<=>

Interesting quantities: Q
(changes of) densities of A, B, and AB

number of particles Ny d
density = Al=-2. —[Al(z
4 unit volume Al vV’ dl‘[ @)
| mol = | Mol/Liter = 6.022 x 102x (0.1 m)3 =0.6 nm

Association: probability that A finds and reacts with B

=> changes proportional to densities of A and of B How to put that

Dissociation: probability for AB to break up into formulas?
=> changes proportional to density of AB
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Mass Action |l

Again: A+ B<=>AB

Obijective: mathematical description for the changes of
[A], [B], and [AB]

Consider [A]:

Gain from dissociation AB =>A + B Loss from association A + B => AB
d
—I|A| =Gy — L
ar Al = Ca—La

AB falls apart A has to find B

=> Ga depends only on [AB] => La depends on [A] and [B]

G =k, |AB] Ly =ks[A] [B]
phenomenological i[A] = k,[AB] — ks [A] [B]
proportionality constant dt '
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A +B<=>AB
d
For [A]: from above we had E[A] = k,|AB] — k¢ [A] [B]

Mass Action !!!

d d

. —I|B| = —I[A
For [B]: for symmetry reasons dt[ ] At ]

For [AB]: exchange gain and loss E[AB] ~ 4t

d d

with [A](to), [B](t0), and [AB](to) => complete description of the system

Bioinformatics 3 —WS 12/13

time course = initial conditions + dynamics

V2li

(A] = ks |A]|B] — k- |AB]

- 6



A Second Example

Slightly more complex: A+ 2B <=>AB;

Association: * one A and two B have to come together
* one AB> requires two B

Ly = ke [A][B][B] = Kk [A][B]’ Ly = 2k [A][B)*

Dissociation: one AB2 decays into one A and two B

Gx = k,[AB))] Gz = 2k, [AB))]

Put everything together

%[A] =k [ABy] — ks[A][B]?

d d d

~[B]l =2=
dt[ | dt dt
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Some Rules of Thumb

A + 2B <=> AB; "A is produced when AB; falls apart or
is consumed when AB; is built from one A and two B"

Sign matters: Gains with "+", losses with "—

Logical conditions: "...from A and B"
and e "X" or — "+"
Stoichiometries: one factor for each educt (=> [B]?)

prefactors survive

Mass conservation: terms with "=" have to show up with "+", too

1] =k [AB;] — ky[A] (B

4
d

d d d
B=21A]  [AB) =24
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A Worked Example

Lotka-Volterra population model

RI: A+ X =>2X prey X lives on A
R2: X+Y =>2Y predatorY lives on prey X
R3: Y => B predatorY dies stoichiometric
matrix S
Rates for the reactions Changes of the metabolites
‘& =k AX RI R2 R3
d(j': SRR d
2 _
— =k XY x [COIED|C )
y
By /
dt — R3 B/ / |
x /)
=> change of X: prl +k1AX — kXY + 0
V2l - 9
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Setting up the Equations

4R dR, /dt _11 _01 8
With 9=~ = | dRy/dt and S=| o 1 _

dR;/dt 2 0 1
A
d, d|X dX; dR;
. —_— = — =D — - = S;
we get: th dt | Y /S dtR\ or dt ; T dt
amounts processed speeds of the
per reaction reactions
Plug in to get:

dA  dR; dX dR; dR
=T = AX 22 L_ 22 _ —
dt dt 7 + 7 7 k1AX — ko XY
dB dR3 dY dR dR
dt dt 7 + 7 g ko XY — k3Y
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How Does It Look Like?

Lotka—Volterra: assume A = const, B ignored

=> cyclic lation changes
y |d)p(opu io g o- Ay
— =k1AX — k2 XY >
1 -
dY
— = ko XY — k3Y
7t 2 3
ki =k = ks =0.3 0 r |
0 50 100
time
Steady State: when do the populations not change?
d_de_Y=0 _ YzlﬂA leﬁ Steady state =
dt dt ko ko fluxes balanced
With ki =k =k3 =0.3 and A= | => X=Y=
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From rates to differences

Reaction: A+B— AB

dA
Rate equation: ——=—k-A-B=f(A(t),B(t))

1 \

derivative of A(t) = some function

Taylor expansion:

dA 2 d?A t* dkA

A(t)=~A(0)+ t-—(0) + O
A(0)+1- £ (A(0),B(0)) + O(t?)

Q
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From rates to differences I

Linear approximation to (true) A(t):
A(t) ~A(0)+ t- %(0) + o
~A(0)+1- £ (A(0),B(0)) + O(t’

[ \

initial condition increment error
t —0-
e (A0 s L% s
dt 2 dt?

Use linear approximation for small time step At:

dA
A(t+Ar) = A(t) + At- E(t) "forward Euler" algorithm

Bioinformatics 3 —WS 12/13
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“Forward Euler” algorithm

General form:  Xi(t +4t) = Xi(t) + At- f(X;(1)) + O(As)
. At?/2.X" .
relative error: e=—"x = At | st order algorithm

relative error decreases with |st power of step size At

b x@ b X @
F—F—F—t%— % S
At t At/2 !
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Example: chained reactions

Reaction: A—B—~0C kap =0.1, kgc=0.07

Time evolution: :
Relative error vs. At

att = 10:

. 0.17
; S

£ 5

% 2 0.017
2 8

C —_

S £ 0.0011
S

0.1 04 1 4
time step At

runtime & (At)”!
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Example Code: Forward Euler

& O 6 o BspCode_ Euler.py A =>B => C
Awi® 3
B« 0.0 >
# fate cons . Iterate:
iy dA
, A(t+At) = A(t) + At - —(t)
-:' -ﬂ'.‘-.- dt
o o1 wt
Aowdt s (1) Important:
B ow Ot * (R - OB2)
' 2
first calculate all derivatives,
b e then update densities!
A, B,
n »
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The “correct” time step!

A=—B=—C

Approximation works for:

5 dA
5 IAAl — ‘NE = |—kAB-A-At| <L A
; )
o
¢ = At K
max (k)
C
0.50"
0.00 . = Here:  kag=0.1, kpc=0.07
0 10 20 30 40 )
time == A<O01 =10
Note I: Note 2:
read “«” as “a few percent” for A+B=—AB

consider A K (Inax(kA,kB))_l
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From Test Tubes to Cells

Rate equations <=> description via densities

indistinguishable particles

density =
volume element

=> density is a contiuum measure,
independent of the volume element

"half of the volume => half of the particles'

When density gets very low
=> each particle matters

Examples:
~10 Lac repressors per cell, chemotaxis,
transcription from a single gene, ...
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Density Fluctuations

1.67 N=100 omme——m556

N = 10000 o oo 556
6

4

2

0
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Spread: Poisson Distribution

Probability that k events occur (event = "a particle is present"):

_M _
pk—He k=0,12,...
Average: (k) = Z kpe="»~ Variance: ©° = Z pi (k— (k>)2 =A
c=vA
Relati derrory X_° _1
€lative spreada (error). —-— = 5T = —=
i € ® VA
Avg. number of particles per unit volume 100 1000 | Mol ’
relative uncertainty 10% 3% le-12 ’

=> Fluctuations negligible for "chemical” test tube situations
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Reactions in the Particle View

Consider association:

A+B => AB

d[AB]
dt

Continuous rate equation:

A
o

= k[A][B]

Number of new AB in volumeV during At:

ANyp

reaction rate kag =>

Bioinformatics 3 —WS 12/13

dlAB) ,
dWN
kan —2 2By At
AB V V

kag At
"’", Ny Np
Pyp Njy Np

reaction probability Pas
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Units!

Consider: A
A+B => AB >% AR
B

Change in the number of AB: Association probability:
kap At
ANsp = Psp Na Np P = Al:/
dAB

Units: continuous = = kap A B

dAB| Mol Mol [

[ dt ] " s Al =Bl = =~ <=> ksl = gors

stochastic
[Nag] = [Na] = [Ng] =1 <=>  [Pag] =1
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Direct Implementation
A+B => AB

‘ eanNne o Stochastic AB. py
anNnA o Comtinuous AB pry
| . b N and
. 4 ~ ranae '.b
be e te . )
mheal e 1 L - ‘i
SR ¥ " e « 3.0 .
etume * 1000 » TRE T “4
4 R - .2
. _
. L - s 2
Py < v e We et
g < ? il .
L . -
LR .
f~ ' .- T
B i~ '
e
. ’ -
A= 82l e
L N S TeeR
N » M alme - . i Lame As Loome, Ly RS I
. - sltiniaeg )
. L >N -~ 2
- N 0 M ~ . . . orerg
/- 2 " .'.,-.,QIGI
o Laledntng ) > 12 wangeih)
S ~ 2T "2l A "} ronrandos rondoel )
fir <o)
i . S et
L N s 59
: - 2% A - M
§ = 2%
. .
LR L . -
v B - « N, v, 8, ', N 'R .
orimk €, o Alvalume, "\t BAoluse, “\tY, MO AOLUNe

Note: both versions are didactic implementations
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Example: Chained Reactions

Rates: dA

dt

Time course from continuous rate equations (benchmark):

Bioinformatics 3 —WS 12/13

—k1A

A=>B=>C
dB
= —kA—kB
dt 1 2

Na, Ng, Nc [Nao]

1.00

o
a
2

T

10

time

20

30

ki =k2=0.3 (units?)

dC
dt

k, B
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Stochastic Implementation

A=>B=>C Ao = 1000 particles initially
t=7
1.00 400
A 3007 8
<\( 0.507 9
o : § 2007
«a o
< £ 1007
0.00 ' 0 T | |
0 10 20 30 000 025 050 0.75 1.00
time
ki =k2=10.3 Values at t = 7 (1000 tries)

=> Stochastic version exhibits fluctuations
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Less Particles => Larger Fluctuations

Ao = 100
1.00 1.00
: :
L{O.SO‘ L{O.SO‘
o o
< <
0.00 0.00 T '
0 10 20 30 10 20 30
time time
1.00 1.00
< <
L 0.507 L 0.507
o o
< <
0.00 0.00 '
0 10 20 30 10 20 30
time time
Bioinformatics 3 —WS 12/13 V21
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Even Less Particles

1.00
50 [ ) ..-.
V0.501 & &
o o=
< -
0.00 |
0 10 20 30
time
1.00 T.00 =
< < |7
O 0.507 O 0.507 > s
) od o
< < A -
0.00- 0.00 e
0 10 20 30
time time
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Spread vs. Particle Number

Poisson:
relative fluctuations << 1/VN

Repeat calculation 1000 times
and record values att = 7.

Fit distributions with Gaussian
(Normal distribution)

(x— <x >)2]

g(x) = exp [— /A,

<A>=0.13, wa=045
<B>=0.26, ws =0.55
<C>=0.61, wc=045

Bioinformatics 3 —WS 12/13
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Ao = 30
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V2l - 28




Stochastic Propagation

Naive implementation: Problems?
For evel"y 't'i.mestep: + very Slmple
events = 0 + di il : fth
For every possible pair of A, B: Irect implementation of the
get random number r e [0, 1) underlying process
1f r < Pas:
events++
: 2
AB += events — runtime O(N°)
A, B —= events — first order approximation
— one trajectory at a time

=> how to do better???

S AN

Determine complete
probability distribution propagation
=> Master equation => Gillespie algorithm

More efficient
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A Fast Algorithm )
\ :

340 Cenel T. Gllespe
Exact Stochastic Simulation of Coupled Chemical Reactions

Danlel T, Gitesple*
Aesoartn Department, News' Waapons Comter, T (ate. Callomls RASSSE Recewed May 12 977

ASication conty amainted by e Nawa' Weapors Cerver

There are two formalisms for mathematically describing the time behavior of & spatially bomogenecus chemical
syster: The deterministic approach regards the time evolution as a continuous, wholly predictable process
which is governed by & set of coupled, ordinary differential suations (the “reaction-cate equations™); the stochastic
spprooch regards the time evolution as a kind of random-walk process which is governed by a single dif-
ferential-difference equatica (the “master equation”). Falely simple kinetic theory arguments show that the
stochastic formulation of chessical Rinetics bas a frmer physical basis than the deterministic formulation, but
unfoetunately the stochastic master equation is often mathesatically intractable. There is, however, a way
Lo make exact numerical calculstions within the framework of the stochastic formulation without having to
deal with the master egquation directly. [t is a relatively simple digital computer algorithm which uses 2 rigorously
derived Maste Carlo procedure o numerically simelate 1he time evolution of the given chemical system. Like
the master equation, this “stochastic simulation algorithm™ correctly accounts for the inheremt fluctuations
axd correlations that are secessardy gnceed in the determinitic foemulaticn. In addition, welike most procedures
for sumencally solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal
tiome increments df by finite time steps At The feasibiicy and utility of the senulation aigocithon ace demcestrated
b;:pplyiuhtomml well-known model chemical mystems, including the Lotks model, the Brusselator, and
the Oregosator.

D. Gillespie, J. Phys. Chem. 81 (1977) 23402361
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Gillespie — Step O

Decay reation: A=>20

Probability for one reaction in (t, t+At) with A(t) molecules = A(t) k At

Naive Algorithm: b - e
For every timestep:
get random number r ¢ [0, 1)
1f r < A¥k*dt:
A =A-1
It works, but:  A*k*dt << | for accuracy

=> many many steps where nothings happens

=> adaptive stepsize method?
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Gillespie — Step |

Idea: Figure out when the next reaction will take place!

(In between the discrete events nothing happens anyway ... :-)

Suppose A(t) molecules in the system at time t

f(A(t), s) = probability that with A(t) molecules the next reaction takes place in
(tt+s, t+s+ds) with ds =>0

g(A(t), s) = probability that with A(t) molecules no reaction occurs in (t, t+s)

Then: f(A(t),s)ds = g(A(t),s) A(t +s)kds
No reaction during (t, t+s):

f(A(t),s)ds = g(A(t),s) A(t)kds

probability for reaction in (t+s, t+s+ds)
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Probability for (No Reaction)

Now we need g(A(t), s)

Extend g(A(t), s) a bit:
g(A(t),s+ds) = g(A(t),s) [1—A(t+s)kds]

Again A(t+s) = A(t) and resorting:
9(A(%),s +ds) — g(A(t),s) _ dg(A(t),s) _

Ii =
dslglo ds ds

—A(t)k g((A(2), s)

With g(A,0) = | ("no reaction during no time")

=> Distribution of waiting times between discrete reaction events:
8(A(t),s) = exp[—A(t)ks]

1
Life time = average waiting time: S0 = m

Bioinformatics 3 —WS 12/13 V21
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Exponentially Distributed Random Numbers

Exponential probability distribution:

g(A(1),s) = exp[—A(r)ks] [

Vo

r€[0,1]

Solve r = exp[—A(t)ks|] fors:

L oLy v .
1 1 1 1 0 t
—_ _ life time
= ap "l an

Simple Gillespie algorithm:

A = AQ
While(A > 0):
get random number r g [0, 1)

t =1t + s(r)
A = A-1

Bioinformatics 3 —WS 12/13
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Gillespie vs. Naive Algorithm

Naive: Gillespie:

"What is the probability
that an event will occur
during the next At?"

"How long will it take
until the next event?"

=> small fixed timesteps => variable timesteps

=> | st order approximation => exact

30 30
® Gillespie
* naive

- analytic

® Gillespie
* naive
- analytic
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Gillespie — Complete

For an arbitrary number of reactions (events):

i=1..,N

(i) determine probabilities for the individual reactions: «;
total probability oo =2 «;
s
s = —In|—
Qo r

(i) get time s until next event in any of the reactions:

j—1 J
(iii) Choose the next reaction j from: Z o < Q2 < Zo‘i
i=1 i=1
L o1 | 0.2 | o3 | 04 | 05 | 06 ]
1 1 1 1 1 1 1
0 o1 O1+002 o1 +02+03 a1+...+04 * A1+...+05 (047
(iv) update time and particle numbers
Bioinformatics 3 —WS 12/13 V21

- 36



An Example with Two Species

ki k2 k3 k4

Reactions: A+A => O A+B => O 0 => A © =>B
dA dB

Continuous rate equations: .~ = ks — 2A%k; — ABk, 7 ks — ABk
kz — kq4 k4
' : Ag = By, = —
Stationary state: s 2k s = A

with ki = 1073 s ko= 1025 k3= 1.2s" ke=1s""

=> As =10, Bss=10

Chemical master equation:

d n,m
pdt’ =ki(n+2)(n+1)ppyom — kin(n — 1) ppm

+ k2(n 4+ 1)(m + 1) pnt1,m+1 — k2nm pnm
+ k3 Pn—1m — k3 Pn,m + k4 Pnm—1 — k4pn,m
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Gillespie Algorithm

(a4) Generate two random numbers r, r, uniformly distributed in (0,1).

(b4) Compute the propensity functions of each reaction by a; = A(t)(A(t) —1)k,,
oy = A(t)B(t)k,, as = k3 and oy = k;. Compute oy = a; + ap + ag + a4.

(c4) Compute the time when the next chemical reaction takes place as ¢+ 7 where

= aioln [rll] . (2.29)

(d4) Compute the number of molecules at time ¢ + r by

A(t) -2 ifOSrg <0)/0°;
_ JA(t) -1 ifa;/ay €r; < (a; +a3)/ae;
A +v)= Alt)+1  if(ay + 0;)/30 < :2 < (‘;l + f-:: + ay)/ag; (230)
Alt) f{lay +az+m)/an<rp<l;
B(‘) i‘051'3<0|/002
_ ) B(t)~1 ifay /oy € ry < (0 4 az) /oy
BUATI="Bl) (e +aslfoe Sra< (o +a+a)fag 23D
B(t)+1 f (ay +az+as)/aysry <l

Erban, Chapman, Maini, arXiv:0704.1908v2 [q-bio.SC]

Then continue with step (nd) for time ¢t & 1.
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Stochastic Simulation

ki ka ks ka4

A+A => 0 A+B => O O => A O =>B
—  (a) (b)
O
G 25 . 25 . l L
2 » = *s0lution of ODEs | = = *solution of ODEs ! .
< \ 1 iy
o . ol
~ 2 | , 3 Mo
> | n i1 | .
8 315 "_ f ';,I Al “.l | 215 J ) ;‘ I"?
s g o, . | : 2 | !
S 56 iﬁ ’ LUy 1 2; it '
~ 0 .....0-....‘I io.o.-d'ox ?...I‘Il 0 f'. ..l.....l. LY LI de Veaatn
C.>). 2 ' l.lco’ﬂ!l . 11 (’l 2 ' l’ f(l xl | k1tan g ' i "'i.ﬂ?“ ' r " |, . ' !
> s , T REEE r I S ,-L#n[l:_: e Al
= 5{ | '; 1 2 Shpxl" % Uy i e
é : . {1 E.O ‘
‘c C : , _
2 3 20 40 50 80 100 % 20 40 0 8 100
g“ tme [sec) time [sec)
£
o FiG. 2.3. Five realizations of SSA (a4)-(df). Number of molecules of chemical species A
6 (left panel) and B (right panel) are plotted as functions of time as solid kines, Different colours
I correspond to different realizations. The solution of (8.3.9)—(2.84) is given by the dashed line. We
_‘é’ use A(0)=0, B(0) =0, ky = 1073 sec™!, ky = 1072 sec™?, ky = 1.2 sec™! and kg = 1 sec™ !,
L
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Distribution of Stationary States

ki k2 k3 ks
A+A => 0O A+B => 0O DO => A O => B
ki =103 s ko= 102s"! ks =125 ka=1 s

Continuous model: From long—time Gillespie runs:

A= 10 B =10 < <A> =96 <B>= 122

\ !

Fi1c. 24, (a) Stationary distribution ¢(n, m) obdoimed by lomg time simsulation of (af) (d4) for
ky = 10 Ysec b, ky =10 Tsec ), ky= 1. 2500 " and ky = 1sec . (b) Stationary distridution of
A oblained by (£.55)

I
> () (b)
8 :
"
o o
< 3
o o 008
N~ 3
o ~ -
£ 20 -
= s ¥ 008
X £ L
< — ¢
I3 ® 15 -
g}
c g 10 %
> € T
c
g 5
0
= 0 16 20 8 N 2 4 06 8 1012 14 16 18 20 22 2¢
N mumbor of A moleculins rumbae of A molecyion
O
c
S
el
1S
LL

Bioinformatics 3 —WS 12/13 V21 — 40



Stochastic vs. Continuous

For many simple systems:
stochastic solution looks like noisy deterministic solution

Some more examples, where stochastic description
gives qualitatively different results

* swapping between two stationary states
* noise-induced oszillations
* Lotka-Volterra with small populations

* sensitivity in signalling
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Two Stationary States

k]_ k3
Reactions: 2A — 3A, P — A F. Schibgl, Z. Physik 253 (1972) 147-162
k2 k4
dA
Rate equation: 7 kA® — A’ + ks — kA
With: ki =0.18 min~! ko = 2.5 x 107* min™! ks = 2200 min~' ks = 37.5 min~!
Stationary states: Asi = 100, As2 =400 (stable) Au =220 (unstable)

=> Depending on initial conditions (A(0) <> 220),
the deterministic system goes into Asi or As2 (and stays there).
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Two States — Stochastic

Fic. 5.1. Simulation of (5.1). One realization of SSA (a5)-(d5) for the system of chemical
reactions (5.1) (blue line) and the solution of the deterministic ODE (5.2) (red hine). (a) The
number of molecules of A as a function of time over the first two minutes of simulation. (b) Time
evolution over 100 minutles.

< :

o) — OGS D

& 5001 — derermests 500 '

ﬂ" |

E __‘_400' 2“00: !
: |

.Z l { ‘
2 300, 300, ,

5 8B 3 Wil
= émo §2oo ' ' ~ i
I [ RN, ¢ L |

- 100/ % 100 m

é A ' L

S % 05 " 15 2 % 20 0 & 80 100
= sme Jminj tme [mn)

O

c

(o]

0

(-

L

=> Fluctuations can drive the system from one stable state into another
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Self-Induced Stochastic Resonance

System 2A+B =>3A 0 <> A o =B
Compare the time evolution \ s /
from initial state (A, B) = (10, 10) | | ESirmarn e
in deterministic and stochastic g 10’ B 55 6§
simulations. g
E
=> deterministic simulation % »
converges to and stays at fixed é *

point (A, B) = (10, |.1e4)

[}

=> periodic oscillations in R . .
o time [min)
the stochastic model
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Summary

Today:

* Mass action kinetics
=> solving (integrating) differential equations for time-dependent behavior
=> Forward-Euler: extrapolation, time steps

* Stochastic Description
=> why stochastic?
=> Gillespie algorithm
=> different dynamic behavior
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