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Networks are Scale-
free, aren't they?
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brief communications

Lethality and centrality in protein networks

The most highly connected proteinsinthe cell are the mostimportant forits survival.

Jeong, Mason, Barabasi, Oltvai, Nature 411 (2001) 41
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largest cluster of the yeast proteome (at 2001)
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Partial Sampling

Estimated for yeast:. 6000 proteins, 30000 interactions

Table 1 Topological properties of interactome maps

Ito et al. Uetz et al. Ito-Uetz Li et al. Giot et al. Minimum
- Data set (yeast) (yeast) combined (worm) (fly) value
Total number of nodes 797 1,005 1,417 1,415 4,651 797
Nodes in main 417 (52%) 473 (47%) 970 (68%) 1,260 (89%) 3,038 (65%) 47%
component
Total number 806 948 1,520 2,135 4,787 806
of interactions
Interactions in main h44 558 1,229 2,038 3,715 544
component
R-square 0.843 0.954 0.899 0.885 0.91 0.843
Y -1.82 -2.42 -1.91 -1.59 -2.75 -2.75
<K> 1.96 1.84 2.15 2.98 2.04 1.84
Average clustering 0.2 0.11 0.09 0.09 0.06 0.06
coefficient
Number of network 143 177 160 70 591 70
components
Average component size 5.6 5.7 8.9 20.2 7.9 5.6
Characteristic path length 6.14 7.48 6.55 491 9.43 4.91
Number of baits 455 512 827 502 2,820 455

Maximum
value

4,651
89%

4,787
115

0.954
-1.59
2.98
0.2

591

20.2
9.43
2,820

The linear regression R-square measures the linearity between log(n(k)) and logl(k) 1.e. the fit to 2 power-law distribution. y i1s the exponent of the power law distribution
formula that best fits the observed distribution. <k= is the average number of interactions per protein observed in the network. For the Ito, Li and Giot data sets enly the high

canfidence interactions were considered (core).

Y2H covers only 3...9% of the complete interactome!
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“ffect of sampling on topology predictions ¢
of protein-protein interaction networks

Jing-Dong ] Han'—3, Denis Dupuy'», Nicolas Bertin!, Michael E Cusick! & Marc Vidal!

R S e -
Nature Biotech 23 (2005) 839

Generate networks of various types,
sample sparsely from them
— degree distribution?

|
» Random (ER) — P(k) = Poisson :
« Exponential  — P(k) ~ exp[-K] :
- scale-free — P(k) ~ kY -

™

* P(k) = truncated normal distribution
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Sparsely Sampled ER Network

resulting P(k) for different coverages linearity between P(k) and power law
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— for sparse sampling, even an ER networks "looks" scale-free
(when only P(k) is considered)
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Compare to Uetz et al. Data
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Sampling density affects observed degree distribution
— true underlying network cannot be identified from available data
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Which Network Type?

On the structure of protein-protein interaction
networks

A. Thomas”, R. Canningst, N.A.M. Monk$' and C. Cannings$
"Genetic Epidemniology, 391 Chipeta Way Suite D, Salt Leke City, UT 84108, US.A., 110 Peterborough Drive, Sheffield S10 4)B, UK, and $Centre for
3ioinformatics and Computational Biclogy, @nd Division of Genomic Medicine, University of Sheffield, Royal Hallzmshire Hospital, Sheffield 510 2)F, U.K.

Abstract
We present a simple model for the underlying structure of protein-protein pairwise interaction graphs
that is based on the way in which proteins attach to each other in experiments such as yeast two-hybrid
assays. We show that data on the interactions of human proteins lend support to this model. The frequency
of the number of connections per protein under this model does not follow a power law, in contrast to
the reported behaviour of data from large-scale yeast two-hybrid screens of yeast protein-protein inter-
actions. Sampling sub-graphs from the underlying graphs generated with our model, in a way analogous
to the sampling performed in large-scale yeast two-hybrid searches, gives degree distributions that differ
subtly from the power law and that fit the observed data better than the power law itself. Our results show
that the observation of approximate power law behaviour in a sampled sub-graph does not imply that the
underlying graph follows a power law.

R ————
Biochem. Soc. Trans. 31 (2001) 1491
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Protein Association Network

Proteins interact (bind) via complementary domains
— randomly distribute 2m domains onto n proteins with prob. p
— on avg. A =2mp domains per protein

Typical numbers (yeast). n=6000, m= 1000, A=1...2

Central network sub-structure:
complete bi-partite graphs

Bioinformatics 3 — WS 12/13
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Human Bipartite Graphs

Parts of the human
Interactome from the

Pronet database
(www.myriad-pronet.com)

Thomas et al., Biochem. Soc. Trans. 31 (2001) 1491
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Partial Sampling

P(k) of the modeled interactome: n =6000, m = 1000, A=1, 2

all nodes and vertices

450 proteins with avg 5 neighbors

Log Frequancy

Log Degres

simulated —
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Sparsely sampled protein-domain-interaction network fits very well

— IS this the correct mechanism?
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Network Growth Mechanisms

Given: an observed PPl network — how did it grow (evolve)?

Inferring network mechanisms: The Drosophila {
melanogaster protein interaction network

Manuel Middendorf', Etay Ziv¥, and Chris H. WigginsST

'Department of Physics, *College of Physicians and Surgeons, Department of Applied Physics and Applied Mathematics, and "Center for Computational
Biology and Bioinformatics, Columbia University, New York, NY 10027

Communicated bv Rarrv H. Honia. Columhia Liniversitv. New Yark. NY. Decembher 20. 2004 (received far review Sente

PNAS 102 (2005) 3192

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

ldea: each growth mechanism leads to a typical motif distribution,
even If global measures are equal
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The Fly Network

Y2H PPl network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

Confidence score [0, 1] for

every observed interaction

— use only data with L
p > 0.65 (0.5) f

— remove self-interactions
and isolated nodes

percolation events for p > 0.65

—
(=1
L)

number of vertices
a:)
?
-
—

High confidence network
with 3359 (4625) nodes P v myau s Ny |
and 2795 (4683) edges T - L TR

Al

Use prototype networks & i 8 e m i 8
of same size for training

Middendorf et al, PNAS 102 (2005) 3192
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Network Motives

All non-isomorphic subgraphs that can be generated with a walk of length 8
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Growth Mechanisms

Generate 1000 networks, each, of the following seven types
(Same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity
DMR Duplication with random mutations

RDS Random static networks

RDG Random growing network

_PA Linear preferential attachment network

AGV Aging vertices network

SMW Small world network

Bioinformatics 3 — WS 12/13
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Growth Type 1: DMC

"Duplication — mutation with preserved complementarity”

Evolutionary idea: gene duplication, followed by a partial loss of
function of one of the copies, making the other copy essential

Algorithm:

Start from two connected nodes,
repeat N - 2 times:

* duplicate existing node with all interactions

- for all neighbors: delete with probability qdei X
either link from original node or from copy

Bioinformatics 3 — WS 12/13
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Growth Type 2: DMR

"Duplication with random mutations"”

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

Start from five-vertex cycle,

repeat N - 5 times:
* duplicate existing node with all interactions 5 z };
» for all neighbors: delete with probability qgei

link from copy
» add new links to non-neighbors with i ; Z
probability gnew/n \.

Bioinformatics 3 — WS 12/13
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Growth Types 3-5: RDS, RDG, and LPA

RDS = static random network

Start from N nodes, add L links randomly

RDG = growing random network

Start from small random network, add nodes,
then edges between all existing nodes

LPA = linear preferential attachment

Add new nodes similar to Barabasi-Albert algorithm,
but with preference according to (ki+ a), a=0...5
(BA for a = 0)

For larger a: preference only for larger hubs, no difference for lower Kk
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Growth Types 6-7: AGV and SMW

AGV = aging vertices network

Like growing random network,
but preference decreases with age of the node
— cltation network: more recent publications are cited more likely

SMW = small world networks (Watts, Strogatz, Nature 363 (1998) 202)

Randomly rewire regular ring lattice
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Alternating Decision Tree Classifier

Trained with the motif counts from 1000 networks of each of the seven types
— prototypes are well separated and reliably classified

/SR
UMR: <089

REG: -DAY |
I LA -089
AGY: D37 )
SWW: 08'9 . .
\axr 25/ Prediction accuracy for networks
R rrer N similar to fly network with p = 0.5:
MG -o“ %» o\ /\c R ﬁ o\ / \ ﬁ Prediction
VR R Q%4 LTSS R-00s MR- 'l!.c
| o 032 " f&s?i‘l |' s g | Lnoss '| |' 35“’%31 om0 Truth DMR DMC AGVY LPA SMW RDS RDG
n GV ..‘ , ASN! D03 MGV 005 , "3'-' CC‘] ! :‘G'I. 28C~
\25’% \Z"}’q‘; 3 o"“/ ﬁés ;/ \so K‘E’é 5/ DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6
DMC 00 937 00 00 03 00 00
AGY 00 01 B47 135 12 05 0.0
“_wm S{? s LPA 00 00 103 8.6 00 00 0.1
SMW 00 00 06 00 990 04 0.0
\ RDS 00 00 02 00 0B 990 0.0
m /c:cm\ /\woes m RDG 09 00 00 01 00 00 990
ow 3 OMR 0.4 DMR: 057 CMVR: 2.38
.\ ﬁm-o RDG: 160 | | RUG: C 00
LM a s | oA LPA: .00 | | LPA: 592 l
\ AS\ -0.30 hGY . /. ~005 |
/

0G Gcos'.w
\& 2/ \y \“”/

Part of a trained ADT

Middendorf et al, PNAS 102 (2005) 3192
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Are They Different?

Plroky)
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Example DMR vs. RDG: Similar global parameters,
but different counts of the network motifs
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How Did the Fly Evolve?
\ [

Subgraphs with up to

Eight-step subgraphs seven edges Eight-step subgraphs
(p* = 0.65) (p* = 0.65) (p* = 0.5)

Rank Class Score Class Score Class Score

1 DMC 82+*1.0 DMC 86 *+1.1 DMC 0829
2 DMR -6.8 0.9 DMR —-6.1 = 1.7 DMR -2.1=2.0
3 RDG —-9.5+ 23 RDG -93+1.6 AGV -3.1x22
4 AGV —-10.6 £ 4.2 AGV -11.5 = 4.1 LPA —-10.1 = 3.1
5 LPA —16.5* 34 LPA —-14.3 £ 3.2 SMW —-206 £ 19
6 SMW —-18.9 £ 0.7 SMW -183 +1.9 RDS -223 1.7
7 RDS -19.1 £ 2.3 RDS -19.9+15 RDG —-225 =4.7

Drosophila is consistently (independently of the cut-off in subgraph size) classified as a DMC network, with an
especially strong prediction for a confidence threshold of p* = 0.65.

——l
R ———
— Best overlap with DMC (Duplication-mutation, preserved complementarity)

— Scale-free or random networks are very unlikely
— what about protein-domain-interaction network of Thomas et al?

Middendorf et al, PNAS 102 (2005) 3192
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Motif Count Freguencies

~J
o

S 8 & 8 8
rank score (%)

o

rank score: fraction of test networks
with a higher count than Drosophila
(50% = same count as fly on avg.) N, count

Middendorf et al, PNAS 102 (2005) 3192
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Experimental Errors?

Randomly replace edges in fly network and classify again:

10

A0 il 7

prediction score

161

-20F

_25 | A | | | A )
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fraction of edges replaced

— Classification unchanged for £ 30% incorrect edges
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Suggested Reading

The powerful law of the power law and other myths in network biologyf

Gipsi Lima-Mendez* and Jacques van Helden*

Received 5th May 2009, Accepted 12th August 2009
First published as an Advance Article on the web 2nd October 2009
DOL: 10.1039/b90868 1a

For almost 10 years, topological analysis of different large-scale biological networks (metabolic
reactions, protein interactions, transcriptional regulation) has been highlighting some recurrent
properties: power law distribution of degree, scale-freeness, small world, which have been

proposed to confer functional advantages such as robustness to environmental changes and
tolerance to random mutations. Stochastic generative models inspired different scenarios to
explain the growth of interaction networks during evolution. The power law and the associated

Gipsi Lima-Mendez

properties appeared so ubiquitous in complex networks that they were qualified as “universal
laws™. However, these properties are no longer observed when the data are subjected to statistical
tests: in most cases, the data do not fit the expected theoretical models, and the cases of good
fitting merely result from sampling artefacts or improper data representation. The field of

network biology seems to be founded on a series of myths, i.e. widely believed but false ideas.
The weaknesses of these foundations should however not be considered as a failure for the entire

domain. Network analysis provides a powerful frame for understanding the function and

evolution of biological processes, provided it is brought to an appropriate level of description,

Jacques van Helden

by focussing on smaller functional modules and establishing the link between their topological
properties and their dynamical behaviour.

. T p—

Molecular BioSystems 5 (2009)1482
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Summary

What you learned today: Sampling matters!

— "Scale-free" P(k) by sparse sampling from many network types

Test different hypotheses for

* global features
— depends on unknown parameters and sampling
— No clear statement possible

* local features (motifs)
— are better preserved
— DMC best among tested prototypes

Next lecture:

* Functional annotation of proteins
» Gene regulation networks: how causality spreads
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