Bioinformatics 3

V8 – Gene Regulation

Tue, Nov 15, 2011

Recently in PLoS Comp. Biol.

OPEN O ACCESS Freely available online

PLoS computational biology

Structural Properties of the *Caenorhabditis elegans* Neuronal Network

Lav R. Varshney¹, Beth L. Chen², Eric Paniagua³, David H. Hall⁴, Dmitri B. Chklovskii⁵*

1 Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, **2** Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America, **3** California Institute of Technology, Pasadena, California, United States of America, **4** Albert Einstein College of Medicine, Bronx, New York, United States of America, **5** Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, United States of America

Reconstruction and classification of the worm's neuronal network

PLoS Comput. Biol. 7 (2011) e1001066

"Network" => What can we apply???

Excursion: C. elegans

Small worm: L = I mm, $\emptyset \approx 65 \ \mu m$ lives in the soil, eats bacteria

Consists of 959 cells, 302 nerve cells, all worms are "identical"

Completely sequenced in 1998 (first multicelluar organism)

Very simple handling, transparent

=> One of the **prototype organisms**

Database "everything" about the worm: www.wormbase.org

Adjacency Matrix

Two types of connections between neurons:

- gap junctions
 - => electric contacts => undirected
- chemical synapses
 - => neurotransmitters => directed

Observations:

- three groups of neurons (clustering)
- gap junction entries are symmetric, chemical

synapses not

(directionality)

Some Statistics

TABLE S1

CONNECTED COMPONENTS OF THE GAP JUNCTION NETWORK. NOTE THE SINGLE GIANT COMPONENT AND THE LARGE NUMBER OF DISCONNECTED/ISOLATED NEURONS.

Giant Con	nponent (24	8 neurons)						
ADAL/R	ALNL	AVG	DD01-05	PDA	PVR	RIVL/R	SABVL/R	URYVL/R
ADEL/R	AQR	AVHL/R	DVA	PDB	PVT	RMDDL/R	SDQL/R	VA01-12
ADFL/R	AS01-11	AVJL/R	DVB	PDEL/R	PVWL/R	RMDL/R	SIADL/R	VB01-11
ADLL/R	ASGL/R	AVKL/R	DVC	PHAL/R	RIBL/R	RMDVL/R	SIAVL/R	VC01-05
AFDL/R	ASHL/R	AVL	FLPL/R	PHBL/R	RICL/R	RMED	SIBDL/R	VD01-10,13
AIAL/R	ASIL/R	AVM	IL1DL/R	PHVL/R	RID	RMEL/R	SIBVL/R	
AIBL/R	ASKL/R	AWAL/R	IL1L/R	PLML/R	RIFL/R	RMEV	SMBDL/R	
AIML	AUAL/R	AWBL/R	IL1VL/R	PQR	RIGL/R	RMFL	SMBVL/R	
AINL/R	AVAL/R	BAGL/R	IL2L/R	PVCL/R	RIH	RMGL/R	SMDDL/R	
AIYL/R	AVBL/R	CEPDL/R	LUAL/R	PVM	RIML/R	RMHL/R	SMDVL/R	
AIZL/R	AVDL/R	CEPVL/R	OLLL/R	PVNL	RIPL/R	SAADL/R	URBL/R	
ALA	AVEL/R	DA01-09	OLQDL/R	PVPL/R	RIR	SAAVL/R	URXL/R	
ALML/R	AVFL/R	DB01-07	OLQVL/R	PVQL/R	RIS	SABD	URYDL/R	

First Small Component (2 neurons)

ASJL/R

Second Small Component (3 neurons)

HSNL/R PVNR

Neurons with no gap junctions (26 neurons)

AIMR	ASEL/R	BDUL/R	IL2DL/R	PLNL/R	RIAL/R	URADL/R	VD11-12
ALNR	AWCL/R	DD06	IL2VL/R	PVDL/R	RMFR	URAVL/R	

TABLE S2

(A) NUMBER OF GAP JUNCTION CONTACTS BETWEEN DIFFERENT NEURON CATEGORIES. (B) PERCENT OF GAP JUNCTIONS ON NEURONS OF THE ROW CATEGORY THAT CONNECT TO NEURONS OF THE COLUMN CATEGORY.

Α	Sensory	Inter-	Motor
Sensory	108	119	26
Inter-	119	368	342
Motor	26	342	324

В	Sensory	Inter-	Motor
Sensory	42.7%	47.0%	10.3%
Inter-	14.4%	44.4%	41.3%
Motor	3.8%	49.4%	46.8%

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Information Flow

Network arranged so that information flow is (mostly) top => bottom sensory neurons interneurons motorneurons

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Network Size

Geodesic distance (shortest path) distributions of giant component of...

synapses

network

=> a worm is a small animal :-)

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

gap junctions

Degree Distribution

Plot of the "survival function" of P(k)(I - cumulative P(k))for the (electric) gap junctions

$$P(d) = \sum_{k=d}^{\infty} p(k)$$

Power law for P(k) with $\gamma = 3.14 ~(\approx \pi?)$

In/out degrees of the chemical synapses => fit with γ = 3.17 / 4.22 (but clearly not SF!)

V8 – 8

Some More Statistics

TABLE S3

COMPARISON OF CLUSTERING COEFFICIENT AND CHARACTERISTIC PATH LENGTH OF THE GIANT COMPONENT OF THE C. elegans GAP JUNCTION NETWORK AND SEVERAL OTHER NETWORKS THAT HAVE BEEN CLASSIFIED AS SMALL WORLD NETWORKS. THE CLUSTERING COEFFICIENT OF AN EQUIVALENT ERDÖS-RÉNYI RANDOM NETWORK IS INDICATED IN PARENTHESES. THIS IS CALCULATED USING THE WATTS AND STROGATZ APPROXIMATIONS TO L AND C BY FINDING $C_r \approx \frac{1}{N} \exp(\frac{\ln(N)}{L})$.

Network	N	$C(C_r)$	L
Giant component of gap junction network	248	0.21 (0.014)	4.52
Analog electronic circuit [100]	329	0.34 (0.019)	3.17
Class dependency graph of Java computer language [101]	1376	0.06 (0.002)	6.39
Film Actors [13]	225226	0.79 (0.00013)	3.65
Power Grid [13]	4941	0.080 (0.00032)	18.7

TABLE S4

(A) NUMBER OF CHEMICAL SYNAPSE CONTACTS FROM ROW CATEGORY TO COLUMN CATEGORY. (B) PERCENT OF SYNAPSES IN ROW CATEGORY THAT SYNAPSE TO COLUMN CATEGORY.

Α	Sensory	Inter-	Motor
Sensory	474	1434	353
Inter-	208	1359	929
Motor	30	275	1332

В	Sensory	Inter-	Motor
Sensory	21.0%	63.4%	15.6%
Inter-	8.3%	54.5%	37.2%
Motor	1.8%	16.8%	81.4%

Much higher clustering than ER

Network Motifs

Motif counts of the electric gap junction network relative to random network

=> symmetric structures are overrepresented

=> clearly not a random network

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Motifs II

Similar picture for the chemical synapses: not random

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Network Reconstruction

Experimental data: DNA microarray => expression profiles

Clustering => genes that are **regulated simultaneously** => Cause and action??? Are all genes known???

Three different networks that lead to the same expression profiles => combinatorial explosion of number of compatible networks => static information usually not sufficient

Some formalism may help

=> Bayesian networks (formalized conditional probabilities) but usually too many candidates...

Network Motifes

Network motifs in the transcriptional regulation network of *Escherichia coli*

Shai S. Shen-Orr¹, Ron Milo², Shmoolik Mangan¹ & Uri Alon^{1,2}

Nature Genetics **31** (2002) 64

RegulonDB + their own hand-curated findings

- => break down network into motifs
 - => statistical significance of the motifs?
 - => behavior of the motifs <=> location in the network?

Motif I: Feed-Forward-Loop

- X = general transcription factor
- Y = specific transcription factor
- Z = effector operon(s)

Why not direct regulation without Y?

X and Y **together** regulate Z:

"coherent", if X and Y have the same effect on Z (activation vs. repression), otherwise "incoherent"

85% of the FFL in E coli are coherent

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Shen-Orr et al., Nature Genetics 31 (2002) 64

FFL dynamics

In a coherent FFL: X and Y activate Z

Dynamics:

- input activates X
- X activates Y (delay)
- (X && Y) activates Z

Delay between X and Y => signal must persist longer than delay => reject transient signal, react only to **persistent** signals => fast shutdown

Helps with **decisions** based on **fluctuating signals**

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Shen-Orr et al., Nature Genetics 31 (2002) 64

Motif 2: Single-Input-Module

Set of operons controlled by a single transcription factor

- same sign
- no additional regulation
- control usually autoregulatory (70% vs. 50% overall)

Mainly found in genes that code for **parts** of a protein **complex** or metabolic **pathway**

=> relative stoichiometries

SIM-Dynamics

With different thresholds for each regulated operon:

=> first gene that is activated is the last that is deactivated

=> well defined temporal ordering (e.g. flagella synthesis) + stoichiometries

Motif 3: Dense Overlapping Regulon

Dense layer between groups of transcription factors and operons => much denser than network average (≈ community)

Usually each operon is regulated by a different combination of TFs.

Main "computational" units of the regulation system

Sometimes: same set of TFs for group of operons => "multiple input module"

Motif Statistics

Structure	Appearances in real network	Appearances in randomized network (mean ± s.d.)	<i>P</i> value
Coherent feedforward loop	34	4.4 ± 3	<i>P</i> < 0.001
ncoherent feedforward loop	6	2.5 ± 2	<i>P</i> ~0.03
Operons controlled by SIM (>13 operons)	68	28 ± 7	<i>P</i> < 0.01
Pairs of operons regulated by same two transcription factors	203	57 ± 14	<i>P</i> < 0.001
Nodes that participate in cycles*	0	0.18 ± 0.6	<i>P</i> ~0.8

All motifs are highly **overrepresented** compared to randomized networks

No cycles (X => Y => Z => X), but this is not statistically significant

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Shen-Orr et al., Nature Genetics 31 (2002) 64

Network with Motifs

longest cascades: 5
 (flagella and nitrogen systems)

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Motif-Dynamics

Structure and function of the feed-forward loop network motif

S. Mangan and U. Alon⁺

Departments of Molecular Cell Biology and Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel Edited by Arnold J. Levine, Institute for Advanced Study, Princeton, NJ, and approved August 25, 2003 (received for review June 22, 2003)

PNAS 100 (2003) 11980

Compare dynamics of response Z to stimuli Sx and Sy for FFL (a) vs simple system (b).

Coherent and Incoherent FFLs

(in)coherent: X => Z has (opposite)same sign as X => Y => Z

	Coherent type 1		Coherent type 2		Coherent type 3		Coherent type 4	
Species	Structure	Abundance	Structure	Abundance	Structure	Abundance	Structure	Abundance
E. coli	× ↓ Y	28	X ⊥ Y ↓	2	V V V	4		1
S. cerevisiae	→ z	26	Τz	5	Τz	0	Ζ	0

	Incoher	Incoherent type 1		Incoherent type 2		Incoherent type 3		Incoherent type 4	
Species	Structure	Abundance	Structure	Abundance	Structure	Abundance	Structure	Abundance	
E. coli	× ↓ Y ⊥	5		0	X ↓ Y	1	× × ×	1	
S. cerevisiae	Z	21	ΤZ	3	ΤZ	1	z	0	

Coherent and Incoherent FFLs

(in)coherent: X => Z has (opposite)same sign as X => Y => Z

	Coherent type 1		Coher	Coherent type 2		Coherent type 3		Coherent type 4	
Species	Structure	Abundance	Structure	Abundance	Structure	Abundance	Structure	Abundance	
E. coli	× ↓ Y	28		2	Y ↓ Y Y	4		1	
S. cerevisiae	L► ↓ Z	26	Li ž	5		0	L I	0	
		Incoherent type	1 In	coherent type 2	Incol	nerent type 3	Incohe	rent type 4	
Species	Stru	cture Abund	ance Struct	ure Abundan	ice Structure	e Abundance	Structure	Abundance	
E. coli		x 5 ↓ Y ⊥		0	× ↓ Y	1	× ↓ Y	1	
S caravisiaa		7 21	. 7	2	. 7	1	7	0	

In *E. coli*: 2/3 are activator, 1/3 repressor interactions => relative abundances **not explained** by interaction occurences

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Mangan, Alon, PNAS 100 (2003) 11980

Coherent and Incoherent FFLs

(in)coherent: X => Z has (opposite)same sign as X => Y => Z

In *E. coli*: 2/3 are activator, 1/3 repressor interactions => relative abundances **not explained** by interaction occurences

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Mangan, Alon, PNAS 100 (2003) 11980

Logic Response

t

=> different dynamic responses due to delay X => Y

 $X\,\wedge\,Y$

 $\mathsf{X} \lor \mathsf{Y}$

Dynamics

Model with differential equations:

AND: delayedOR: delayedresponse to Sx-onresponse to Sx-off

=> Handle **fluctuating signals** (on- or off-fluctuations)

Mangan, Alon, PNAS 100 (2003) 11980

Fast Responses

Scenario: we want a fast response of the protein level

- gene regulation on the minutes scale
- protein lifetimes O(h)

At **steady state**: protein production = protein degradation

- => degradation determines $T_{1/2}$ for given stationary protein level
 - => for fast response: faster degradation or negative regulation of production

On the genes: no autoregulation for protein-coding genes => incoherent FFL for

upstream regulation

Bioinformatics 3 – WS 11/12 – Tihamer Geyer

Mangan, Alon, PNAS 100 (2003) 11980

All Behavioral Patterns

Table 1. Structure and function of the coherent FFL types, with AND- and OR- gates at the Z promoter

	Coherent type 1		Coherent type 2		Cohere	ent type 3	Coherent type 4	
Species	Structure	Abundance	Structure	Abundance	Structure	Abundance	Structure	Abundance
E. coli	X V V	28	X Y Y	2	V V V	4		1
S. cerevisiae	- z	26	¬ z	5	Τ _z	0	- z	0
\overline{Z} Logic \rightarrow	AND	OR	AND	OR	AND	OR	AND	OR
Steady-state Z(Sx,Sy) Response delay	$S_x \wedge S_y$	S _x	$\bar{S}_x \wedge S_y$	Σ̄ _x	Σ̄ _x	$\bar{S}_x \wedge \bar{S}_y$	S _x	$S_x \vee \bar{S}_y$
Sx on step Sx off step Inverted out	Delay — No	 Delay No	 Delay Yes	Delay — Yes	 Delay Yes	 Delay Yes	Delay — No	Delay — No

Coherent FFL types and their abundance in transcription databases of *E. coli* and *S. cerevisiae* (6, 11). Z(Sx,Sy): Steady-state Z expression of coherent FFLs for the four combinations of Sx and Sy on and off levels (Λ , v,⁻ represent AND, OR, NOT). Response: Response delay of coherent FFLs to on and off S_x steps in the presence of Sy. —, not delayed. Inverted out means that Z goes off in response to Sx on step.

Species	Incoherent type 1		Incoherent type 2		Incoherent type 3		Incoherent type 4	
	Structure	Abundance	Structure	Abundance	Structure	Abundance	Structure	Abundance
E. coli	X Y L	5		0	X Y Y	1		1
S. cerevisiae	Z	21	Z	3	Z	1	Z	0
Z logic \rightarrow	AND		AND		AND		AND	
Steady-state Z(Sx Sy)	Su A 5u		Ŝκ Δ Ŝι		0		0	
Pulse		ox n oy	5,	, Cy		•		C C
Sx on step	Weak		 Weak		 Strong		Strong	
Sy effect	Destroy		Destroy		Enable		Enable	
Response acceleration								
Sx on step	Accelerate		—		—		Accelerate	
Sx off step	—		Accelerate		Accelerate		_	

Table 2. Structure and function of the incoherent FFL types, with AND-gates at the Z promoter

Incoherent FFL types and their abundance in transcription databases (6, 11). Z(Sx,Sy): Steady-state Z expression of incoherent FFL with no basal level of Y (v, represent AND, NOT). Pulse: Response to steps of Sx, in the presence of Sy, in FFLs with no basal activity, Sy effect on pulse: Enable, no pulse is created when Sy is off; Destroy, Z output is a low pulse when Sy is on, but is high and steady when Sy is off (Fig. 3). Response acceleration: Acceleration of response of and steady-state values of incoherent FFL with basal activity to on and off steps in the presence of Sy. —, not accelerated.

Summary

Today:

- Gene regulation networks have hierarchies:
 => global "cell states" with specific expression levels
- Network motifs: FFLs, SIMs, DORs are overrepresented
 => different functions, different temporal behavior

Next lecture:

Simple dynamic modelling of transcription networks
 => Boolean networks, Petri nets