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Gene Regulation Networks 
Biological regulation 

via proteins and metabolites 
Projected regulatory network <=> 

<=> 

Reconstruction of static networks? 
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Dynamic Reconstruction 

Different network topologies   →   different time series 

Model large networks efficiently →  simplified descriptions 

                                                       (processes + numerics) 
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QS of V. fischeri 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxB

LuxA
LuxB

LuxA
LuxR
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Boolean Networks 

Densities of the species  

Progress in time 

Network of dependencies 

<=> discrete propagation steps 

<=> discrete states:  on/off,  1/0 

<=> condition tables 

Simplified mathematical description of the dependencies: 

"Blackboard explanations" often formulated as conditional transitions 

• "If LuxI is present, then AI will be produced…" 

• "If there is AI and there's no LuxR:AI bound to the genome, then 

LuxR will be expressed and complexes can form…" 

• "If LuxR:AI is bound to the genome, then LuxI is expressed…" 
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Boolean Networks II 
State of the system: described by vector of discrete values 

Si = {0, 1, 1, 0, 0, 1, …} 

Si = {x1(i),  x2(i),  x3(i), …} 

fixed number of species with finite number of states each 

Propagation: 

→ finite number of system states 

→ periodic trajectories 

with fi given by condition tables 

→ all states leading to an attractor = basin of attraction 

Si+1 = {x1(i+1),  x2(i+1),  x3(i+1),  …} 

x1(i+1) = f1(x1(i), x2(i), x3(i), …) 

→ periodic sequence of states = attractor 
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A Small Example 

State vector  S = {A, B, C} → 8 possible states 

Conditional evolution: 

A is on if C is on           A activates B            C is on if (B is on && A is off) 

Ai+1 Ci 

0 0 

1 1 

Bi+1 Ai 

0 0 

1 1 

Ci+1 Ai Bi 

0 0 0 

1 0 1 

0 1 0 

0 1 1 

assume that 

inhibition through A 

is stronger than 

activation via B 

Start from {A, B, C} = {1, 0, 0} 

periodic orbit of length 3 

# Si A B C 

0 S0 1 0 0 

1 S1 0 1 0 

2 S2 0 0 1 

3 S3 = S0 1 0 0 
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Test the Other States 

Test the other states Ai+1 Ci 

0 0 

1 1 

Bi+1 Ai 

0 0 

1 1 

Ci+1 Ai Bi 

0 0 0 

1 0 1 

0 1 0 

0 1 1 

# A B C 

0 1 1 1 

1 1 1 0 

2 0 1 0 

3 0 0 1 

4 1 0 0 

5 0 1 0 

# A B C 

0 1 0 1 

1 1 1 0 

2 0 1 0 

# A B C 

0 0 1 1 

1 1 0 1 

Same attractor as before: 

100 → 010 → 001 → 100 

also reached from: 

110, 111, 101, 011 

→  Either all off or stable oscillations 

# A B C 

0 0 0 0 

1 0 0 0 
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A Knock-out Mutant 

Ai+1 Ci 

0 0 

1 1 

Bi+1 Ai 

0 0 

1 1 

Ci+1 Bi 

0 0 

1 1 

# A B C 

0 1 0 0 

1 0 1 0 

2 0 0 1 

3 1 0 0 

Attractors: 

# A B C 

0 1 1 0 

1 0 1 1 

2 1 0 1 

3 1 1 0 

# A B C 

0 1 1 1 

1 1 1 1 

# A B C 

0 0 0 0 

1 0 0 0 no feedback 

→ no stabilization, network just "rotates" 
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LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxB

LuxA
LuxB

LuxA
LuxR

Boolean Network of QS 

Minimum set of species: 

LuxR,  AI, LuxR:AI, LuxR:AI:genome, 

LuxI 

Here:  Light signal (LuxAB) α LuxI 

Condition tables:  

LuxI LuxR:AI:Genome 

0 0 

1 1 

LuxR:AI:Genome LuxR:AI 

0 0 

1 1 
How does LuxI depend 

on LuxR:AI:Genome? 

describe the state of a species in the next 

step given the current states of all relevant 

species.  

How does 

LuxR:AI:Genome depend 

on LuxR:AI? 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR
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Condition Tables for QS II 

LuxR LuxR AI LuxR:AI:Genome 

1 0 0 0 

1 1 0 0 

1 0 1 0 

1 1 1 0 

0 0 0 1 

1 1 0 1 

0 0 1 1 

0 1 1 1 

LuxR:AI LuxR AI LuxR:AI:Genome 

0 0 0 0 

0 1 0 0 

1 0 1 0 

1 1 1 0 

0 0 0 1 

0 1 0 1 

0 0 1 1 

1 1 1 1 

LuxR:AI LuxR AI LuxR:AI:Genome 

0 x 0 x 

1 1 1 x 

1 0 1 0 

0 0 1 1 

→ 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR

Note:  no dissociation 

           (LuxR:AI:Genome → LuxR:AI + Genome) 

only degradation of AI 

           LuxR:AI:Genome → LuxR + Genome 
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Condition tables III 

AI LuxR AI LuxI 

0 0 0 0 

0 1 0 0 

1 0 1 0 

0 1 1 0 

1 0 0 1 

1 1 0 1 

1 0 1 1 

1 1 1 1 

AI LuxR AI LuxI 

1 x x 1 

0 x 0 0 

1 0 1 0 

0 1 1 0 

→ 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR



Bioinformatics 3 – WS 12/13 V 8  –  13 

Scanning for Attractors 
States of V. fischeri QS system mapped onto integers 

{LuxR (LR),  LuxR:AI (RA),  AI,  LuxR:AI:Genome (RAG),  LuxI (LI)}  

=  {1,  2,  4,  8,  16}  

For each attractor: 

• periodic orbit  and its length (period) 

• basin of attraction  and  its relative size  (32 states in total) 

Attractor 1: orbit:  1 → period 1 

states:  0, 1 → size 2,    2/32 = 6.25 % 

start from state 0: #   LR  RA  AI  RAG LI - state 

0   .   .   .   .   .  -   0 

1   X   .   .   .   .  -   1 

2   X   .   .   .   .  -   1 

 

<= attractor 

→ how likely will the system end in each of the attractors? 
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Scanning for Attractors II 

Attractor 2: orbit:  3, 9, 17, 5 → period 4 

states:   2, 3, 5, 8, 9, 16, 17 → size 7,    21.9 % 

start from state 8: #   LR  RA  AI  RAG LI  - state 

0    .      .     .       X    .   -   8 

1    .      .     .        .    X  -   16 

2    X     .     X      .     .   -   5 

3    X     X    .       .     .   -   3 

4    X      .    .       X    .   -   9 

5    X      .    .       .     X  -   17 

6    X      .   X       .     .   -   5 

attractor 

averaged occupancies in this periodic orbit:  

LR 

4/4 = 1 

RA 

1/4 = 0.25 

AI 

1/4 = 0.25 

RAG 

1/4 = 0.25 

LI 

1/4 = 0.25 
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Attractors III 

Attractor 3: 

#   LR  RA  AI  RAG LI – state0    

       .    X    X      .     .   -   61    

       .    X    X     X     .  -  142   

       .    .     X     X    X  -  283    

       .    .     X     .     X  -  20 

period 4,  basin of 16 states →  50 % 

Attractor 4: 

#   LR  RA  AI  RAG LI - state0    

      X    X    X      .     .  -   71    

      X    X     .      X    .  -  112    

      X     .     .      X   X  -  253    

      X     .     X     .    X  -  21 

period 4,  basin of 4 states →  12.5 % 

Attractor 5: 
#   LR  RA  AI  RAG LI - state0    

      X    .     X     X     .  -  131    

       .   X     .             X  -  18 

period 2,  basin of 3 states →  9.4 % 
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Classifying the Attractors 

Attractor period basin size <LuxR> <LuxR:AI> <AI> <LuxR:AI:Gen> <LuxI> 

1 1 6.25 % (2) 1 0 0 0 0 

2 4 21.9% (7) 1 0.25 0.25 0.25 0.25 

3 4 50 % (16) 0 0.5 1 0.5 0.5 

4 4 12.5 % (4)  1 0.5 0.5 0.5 0.5 

5 2 9.4% (3) 0.5 0.5 0.5 0.5 0.5 

Three regimes: 

dark: LuxI = 0 bright: LuxI = 0.5 intermediate: LuxI = 0.25 

free LuxR, no AI free LuxR + little AI 
little free LuxR (0.24) + 

much AI (0.85) 

→ Interpret the system's behavior from the properties of the attractors 
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The Feed-Forward-Loop 

Y X 

0 0 

1 1 

External signal determines state of X 

→ response Z for short and long signals X 

Y X 

1 0 

0 1 

Z X Y 

0 0 0 

0 0 1 

0 1 0 

1 1 1 

Z X Y 

0 0 0 

0 0 1 

1 1 0 

0 1 1 

X Y Z 

0 0 0 

1 0 0 

0 1 0 

0 0 0 

1 0 0 

1 1 0 

1 1 1 

0 1 1 

0 0 1 

0 0 0 

X Y Z 

0 1 0 

1 1 0 

0 0 0 

0 1 0 

1 1 0 

1 0 0 

1 0 1 

0 0 1 

0 1 1 

0 1 0 

condition tables: 

R
e
s
p
o

n
s
e
 t

o
 s

ig
n
a

l 
X

(t
) 

Short 

Signal 

 

Long 

signal 

Signal propagation 

Left column: external signal 
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The A. thaliana Flowering Network 

images from wikimedia 

Model organism in genomics: 

• small, convenient to grow 

• completely sequenced (2000): 125 Mbp 

• easily mutated 
also see:  Arabidopsis Information Resource (TAIR)@ 

www.arabidopsis.org/ 

http://www.arabidopsis.org
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J. theor Biol.  193 (1998) 307 
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The ABC Model 
Coen, Meyerowitz (1991):  

 three different activities A, B, and C, active in two adjacent whorls,  

 mutual inhibition of A and C 

  → combinations determine fate of the tissue 

carpel stamen petal sepal 

Related genes: 

A: 

APETALA1 (AP1) 

B: 

APETALA3 (AP3), 

PISTILATA (PI) 

C: 

AGAMOUS (AG) 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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ABC Mutants 

se = sepals, 

pe = petals, 

st = stamens, 

ca = carpels, 

se* = se, pe, pe 

If any of the three 

functions (activities) is 

missing,  

the flowers have different 

tissue combinations. 
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The Network Model 
11 genes (including the four ABC genes) 

inequalities denote the 

relative weights of the 

interactions Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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Model Implementation 

Here:  Boolean model with weighted interactions  

Propagate state vector x = {x1, x2, … , x11} by: 

Heavyside step function: 

Weights wij and threshold θi are not known exactly 

→ choose integers for simplicity 

→ positive for activation, negative for inhibition 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 



Bioinformatics 3 – WS 12/13 V 8  –  24 

The Numbers 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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Synchronous vs.  Asynchronous 
Synchronous propagation (Kauffman (1969)):   

→ update all species simultaneously 

       → biological problem:  do all genes respond at exactly the same time? 

Asynchronous propagation (Thomas (1991)):   

→ update one species after the other in chosen order 

       → order of update may influence dynamic gene activation patterns 

Semi-synchronic propagation (Mendoza (1998)):   

→ split genes in groups: 

   → synchronous within group,  one group after the other 

       → base order of groups upon experimental data (it's still a "choice") 

EMF1, TFL1 LUG, UFO, BFU LFY, AP1, CAL → → AG, AP3, PI → → SUP 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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Some Example Patterns 

Exhaustive search: start from all 212 = 4096 possible initial states, 

     run for t = 200 steps 

      → six stationary patterns (attractors of size 1) 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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The Attractors 

From gene activation patterns in the attractors: 

→ identify the four floral tissue types of the ABC model 

→ one attractor with floral inhibitors EMF1, TFL1  

     (characteristic for cells that are not part of the flowers) 

→ one yet unidentified state 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

A B C 
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Possible Pathways 

Note: the model does not 

include temporal and spatial 

information required to 

predict where and when 

which genes are activated 

or repressed ("signals") 

→ these pathways are a  

     "proposal" only 

Mendoza et al, Bioinformatics  15 (1999) 593 
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Evolution of Networks 
A few years later:  additional genes and predicted interactions (- - -) 

Espinosa-Soto, Padilla-Longoria,  Alvarez-

Buylla, The Plant Cell 16 (2004) 2923 

1998 
2004 

Mendoza,  Alvarez-Buylla,  

J. theor Biol.  193 (1998) 

307 
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Predictions for Petunia 

Espinosa-Soto, Padilla-Longoria,  Alvarez-

Buylla, The Plant Cell 16 (2004) 2923 

From A. thaliana 

predict/understand  

green petals mutant 

phenotype for petunia. 
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What is it Worth? 

"You get what you pay for" 

Generally: → quality of the results depends on the quality of the model 

→ quality of the model depends on the quality of the assumptions 

Assumptions for the Boolean network description: 

• only discrete density levels 

• discretized propagation steps 

• conditional yes–no causality 

(• subset of the species considered → reduced system state space) 

→ dynamic balances lost,  

      reduced to oscillations 

→ timing of concurrent paths? 

→ no continuous processes 
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Petri-Nets 

Bipartite graph of 

• places 

• transitions 

• directed weighted arcs 

two types of 

nodes } 

Metabolic reaction: 

place 
= 

metabolite 

transition 
= 

enzyme 

weighted arc 
= 

stoichiometries 
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Petri Nets:  More Accurate 
Places:  have a capacity (1 … ∞) 

→ max. number of tokens   (default: ∞) 

Arcs:  have costs (1 … ∞) 

→ number of tokens that are consumed/produced  (default: 1) 

Transitions:  can fire, when the conditions are fulfilled 

→ enough tokens on the in-places:       ≥ costs for in-arcs 

→ enough remaining capacity on the out-places:  ≥ costs for out-arcs 

Marking  =  state of the network  =  numbers of tokes on the places 
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Multiple Possibilities 

When multiple transitions may fire: 

• all are equal 

 → choose one randomly 

• if priorities are defined 

 → transition with highest priority fires 
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Platform Independent Petri Net Editor 

http://pipe2.sourceforge.net/ 

http://pipe2.sourceforge.net
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"Token Game" 
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Token Spread 

Run P1 P2 

 1 10 10 

 2 15 5 

 3 11 9 

 4 9 11 

 5 13 7 

 6 7 13 

 7 7 13 

 8 5 15 

 9 9 11 

 10 8 12 

<N> 9.4 10.6 

 σ 2.8 2.8 

for comparison:   

expected from Poisson distribution 

σ = λ1/2 ≈  3.2 

λ =  10 

Token Game  =  stochastic simulation 
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Inhibition 
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Time Consuming Transitions 

Until now:  every transition was instantaneous 

SPN (Stochastic Petri Net): 

 Each transitions takes some time – exponentially distributed waiting times 

GSPN (Generalized Stochastic Petri Net): 

 Time-consuming and instantaneous transitions are mixed 

DSPN (Deterministic Stochastic Petri Net): 

 Waiting times are fixed or exponentially distributed 

General Petri nets:  all types of transitions may occur 

=> 

=> survival times distributed exponentially 
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Analysis 

"Token Game" simulations 

→ phenomenological:  what happens, does the model work? 

→ stationary states?  (we're stuck…) 

→ periodic orbits? 

→ relative probabilities of certain states? 

"State space analysis" 

→ average number of tokens,  distributions, throughputs 

→ reachability of markings (states) 

     →  liveliness 

     → deadlocks, traps, siphons 
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Petri Nets for Gene Regulation 
To encode the dependencies of gene regulation we need: 

  activation,  inhibition,  logical and,  logical or 

 • transcription factors are not consumed → read arcs 

 • encode on/off states → capacity constraints on the places 

g1 = g2 or g3 

g1 = g2 and g3 

g2 activates g1 

g2 inhibits g1 
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Introduce complementary places:  tokens on g1 plus on g1 = 1 

→ capacity constraints fulfilled automatically (when initial markings are okay) 

→ no inhibitory arcs required 

42 

Boolean Regulatory Petri Nets 

g1 g2 

g1 g2 
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Reverse Engineering Networks 

Problem:  "Find the network that explains the biological processes!" 

                  → usually too ambitious 

Experiments:  co-expression data 

                  → co-regulation of different genes (correlation or direct interaction?) 

                  → time-series of individual genes 

Strategies: "Find all networks that are compatible with the experiments" 

→ combinatorial explosion,  usually too many candidates 

      → does not work… 

"Find one network that is compatible with the experiments" 

→ solvable task, but how good is this network? 

        → does not work… 

"Find some networks that are compatible with the experiments" 

→ algorithms exist,  need heuristics (experience) to assess coverage 

     → does work… 
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Flowering in Arabidopsis 

Chaouiya et al., LNCS 3099 (2004) 137 

Minimal model of flower 

morphogenesis in  

A. thaliana 

→ only "red" genes 

Identify steady states of different parts of the flower 

→ find dead markings 
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Drosophila Cell Cycle 

Chaouiya et al., LNCS 3099 (2004) 137 

Minimal regulation network for the 

first cell cycles during  

D. melanogaster embryonic 

development 

(MPF = Mitosis Promoting Factor) 

Asynchronous graph of all possible states  

(and transitions) — MFWS 

Does the model reproduce oscillations? 

→ prove that the system is deadlock-free  

     (evaluate conditions that any of the transitions cannot fire any more) 

Note on a mutation:  when MPF inhibits Fizzy → dead markings → no stable oscillations 
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Summary 
Today: simplified modelling of gene regulation networks 

• Boolean Networks 

  genes are on/off,  propagation via condition tables 

 → direct implementation of experimentally found dependencies 

    → no real-time information 

        → steady states (attractors) — network reconstruction — mutations 

Next lecture:  

• network reconstruction 

• metabolic networks,  static and dynamic 

• Petri nets 

  places, transitions, and arcs (plus capacities) 

 → more general,  more analysis tools,  but more complex 

   → can include real-time dynamics (via time-consuming transitions) 


