Bioinformatics 3 V9 – Dynamic **Regulation:** Petri & Boolean Networks

Mon, Nov 12, 2011

Gene Regulation Networks

Biological regulation Projected regulatory network <=> via proteins and metabolites metabolite 2 metabolite 1 gene 2 gene protein 2 <=> complex 3-4 protein 4 protein 1 protein 3 gene gene 3 gene 4 gene gene 3

Dynamic Reconstruction

Different network topologies \rightarrow different time series

Model large networks efficiently → simplified descriptions (processes + numerics)

QS of V. fischeri

Boolean Networks

"Blackboard explanations" often formulated as conditional transitions

- "If LuxI is present, then AI will be produced..."
- "If there is AI and there's no LuxR:AI bound to the genome, then LuxR will be expressed and complexes can form..."
- "If LuxR:AI is bound to the genome, then LuxI is expressed..."

Simplified mathematical description of the dependencies:

- Densities of the species <=> discrete states: on/off, 1/0
- Network of dependencies <=> condition tables
- Progress in time

- - <=> discrete propagation steps

Boolean Networks II

State of the system: described by vector of discrete values

 $S_i = \{0, 1, 1, 0, 0, 1, \ldots\}$

 $S_i = \{x_1(i), x_2(i), x_3(i), \ldots\}$

fixed number of species with finite number of states each

- \rightarrow finite number of system states
- \rightarrow periodic trajectories

→ periodic sequence of states = attractor

 \rightarrow all states leading to an attractor = **basin of attraction**

Propagation:

$$S_{i+1} = \{x_1(i+1), x_2(i+1), x_3(i+1), ...\}$$

 $x_1(i+1) = f_1(x_1(i), x_2(i), x_3(i), ...)$ with f_i given by condition tables

A Small Example

State vector $S = \{A, B, C\} \rightarrow 8$ possible states

Conditional evolution:

A is on if C is on $A_{i+1} = C_i$ 0 = 0

1

A activates B

 Bi+1
 Ai

 0
 0

 1
 1

Start from $\{A, B, C\} = \{1, 0, 0\}$

1

inhibition through A is stronger than activation via B

assume that

periodic orbit of length 3

C is on if (B is on && A is off)

C _{i+1}	Ai	Bi
0	0	0
1	0	1
0	1	0
0	1	1

B

Test the Other States

 \rightarrow Either all off or stable oscillations

A Knock-out Mutant

Attractors:

no feedback

 \rightarrow no stabilization, network just "rotates"

Boolean Network of QS

Minimum set of species:

LuxR, AI, LuxR:AI, LuxR:AI:genome, LuxI Here: Light signal (LuxAB) α LuxI

Condition tables: describe the state of a species in the next step given the current states of all relevant species.

Luxl	LuxR:AI:Genome	LuxR:AI:Genome	LuxR:AI
0 0		0	0
1	1	1	1
How does LuxI depend		How does	
on LuxR:AI:Genome?		LuxR:AI:Genome d	epend
		on LuxR:AI?	

Condition Tables for QS II

	AI			Lux	R	LuxF	२	AI	LuxR:AI:Genome
		•		1		0		0	0
LuxR	LuxR			1		1		0	0
		Lux		1		0		1	0
	LuxR			1		1		1	0
	luxR	luxIC	DABE	0		0		0	1
				1		1		0	1
				0		0		1	1
				0		1		1	1
LuxR:AI	LuxR	AI	LuxR:AI:Genome			I			
0	0	0	0	Lu	ıxR	:AI L	uxR	AI	LuxR:AI:Genome
0	1	0	0		0			0	
1	0	1	0 -	\rightarrow	0		X	0	X
1	1	1	0		1		1	1	X
0	0	0	1		1		0	1	0
0	1	0	1		0		0	1	1
0	0	1	1	I	Note	e: no di	ssocia	ation	
1	1	1	1			(Lux	R:AI:C	Senom	$he \rightarrow LuxR:AI + Genome)$
-	1 -	-	-	(only	degrad LuxF	lation R:AI:G	of Al enome	$e \rightarrow LuxR + Genome$

Condition tables III

AI	LuxR	AI	LuxI
0	0	0	0
0	1	0	0
1	0	1	0
0	1	1	0
1	0	0	1
1	1	0	1
1	0	1	1
1	1	1	1

AI	LuxR	AI	LuxI
1	x	Х	1
0	x	0	0
1	0	1	0
0	1	1	0

Scanning for Attractors

States of V. fischeri QS system mapped onto integers

{LuxR (LR), LuxR:AI (RA), AI, LuxR:AI:Genome (RAG), LuxI (LI)} = $\{1, 2, 4, 8, 16\}$

For each attractor:

- periodic orbit and its length (period)
- basin of attraction and its relative size (32 states in total) \rightarrow how likely will the system end in each of the attractors?

Scanning for Attractors II

averaged occupancies in this periodic orbit:

LR	RA	AI	RAG	LI
4/4 = 1	1/4 = 0.25	1/4 = 0.25	1/4 = 0.25	1/4 = 0.25

Attractors III

Attractor 3: period 4, basin of 16 states \rightarrow 50 %

LR RA AI RAG LI – state0 . X X . . - 61 . X X X . - 142 . . X X X - 283 . . X . X - 20

Attractor 4: period 4, basin of 4 states \rightarrow 12.5 %

LR RA AI RAG LI - state0 X X X . . - 71 X X . X . - 112 X . . X X - 253 X . X . X - 21

Attractor 5: period 2, basin of 3 states \rightarrow 9.4 %

LR RA AI RAG LI - state0 X . X X . - 131 . X . X - 18

Classifying the Attractors

 \rightarrow Interpret the system's behavior from the properties of the attractors

Attractor	period	basin size	<luxr></luxr>	<luxr:ai></luxr:ai>	<al></al>	<luxr:ai:gen></luxr:ai:gen>	<luxl></luxl>
1	1	6.25 % (2)	1	0	0	0	0
2	4	21.9% (7)	1	0.25	0.25	0.25	0.25
3	4	50 % (16)	0	0.5	1	0.5	0.5
4	4	12.5 % (4)	1	0.5	0.5	0.5	0.5
5	2	9.4% (3)	0.5	0.5	0.5	0.5	0.5

Three **regimes**:

dark : LuxI = 0	intermediate: LuxI = 0.25	bright : LuxI = 0.5
free LuxR, no Al	free LuxR + little Al	little free LuxR (0.24) + much AI (0.85)

The Feed-Forward-Loop

External signal determines state of X \rightarrow response Z for short and long signals X

Signal propagation

Left column: external signal

	Z	Y	Х
Short	0	0	0
	0	0	1
Signal	0	1	0
	0	0	0
Long	0	0	1
Long	0	1	1
signal	1	1	1
	1	1	0
	1	0	0
	0	0	0
	Z	Y	Х
	0	1	0
	0	1	1
	0	0	\cap
			0
	0	1	0
	0 0	1 1	0 1
	0 0 0	1 1 0	0 1 1
	0 0 0 1	1 1 0 0	0 1 1 1
	0 0 0 1 1	1 1 0 0 0	0 1 1 1 0
	0 0 1 1 1	1 1 0 0 0 1	0 1 1 1 0 0

Response to signal X(t)

- 17

The A. thaliana Flowering Network

Model organism in genomics:

- small, convenient to grow
- completely sequenced (2000): 125 Mbp
- easily mutated

also see: Arabidopsis Information Resource (TAIR)@ www.arabidopsis.org/

images from wikimedia

Dynamics of the Genetic Regulatory Network for Arabidopsis thaliana Flower Morphogenesis

LUIS MENDOZA AND ELENA R. ALVAREZ-BUYLLA*

Lab. de Genética Molecular y Evolución, Instituto de Ecología, UNAM, Ap. Postal 70-275, Coyoacán, D.F. CP04510, Mexico

(Received on 26 September 1997, Accepted in revised form on 3 March 1998)

We present a network model and its dynamic analysis for the regulatory relationships among 11 genes that participate in *Arabidopsis thaliana* flower morphogenesis. The topology of the network and the relative strengths of interactions among these genes were based from published genetic and molecular data, mainly relying on mRNA expression patterns under wild type and mutant backgrounds. The network model is made of binary elements and we used a particular dynamic implementation for the network that we call semi-synchronic. Using this method the network reaches six attractors; four of them correspond to observed patterns of gene expression found in the floral organs of *Arabidopsis* (sepals, petals, stamens and carpels) as predicted by the ABC model of flower morphogenesis. The fifth state corresponds to cells that are not competent to flowering, and the sixth attractor predicted by the model is never found in wild-type plants, but it could be induced experimentally. We discuss the biological implications and the potential use of this network modeling approach to integrate functional data of regulatory genes of plant development.

© 1998 Academic Press

J. theor Biol. 193 (1998) 307

V8 - 19

The ABC Model

Coen, Meyerowitz (1991):

three different activities A, B, and C, active in two adjacent whorls, mutual inhibition of A and C

 \rightarrow combinations determine fate of the tissue

ABC Mutants

If any of the three functions (activities) is missing, the flowers have different tissue combinations.

> se = sepals, pe = petals, st = stamens, ca = carpels, se* = se, pe, pe

The Network Model

11 genes (including the four ABC genes)

inequalities denote the relative weights of the interactions

Model Implementation

Here: Boolean model with weighted interactions

Propagate state vector $\mathbf{x} = \{x_1, x_2, \dots, x_{11}\}$ by:

$$x_i(t+1) = \mathbf{H}\left(\sum_{j=1}^N w_{ij}x_j(t) - \theta_i\right)$$

Heavyside step function:
$$\mathbf{H}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

Weights w_{ij} and threshold θ_i are not known exactly

- \rightarrow choose integers for simplicity
- \rightarrow positive for activation, negative for inhibition

The Numbers

EMF1, TFL1, LFY, AP1, CAL, LUG, UFO, BFU, AG, AP3, PI and SUP.

	_														_
	0	0	0	0	0	0	0	0	0	0	0	0		0	
	1	0	-2	0	0	0	0	0	0	0	0	0		0	
	-2	-1	0	2	1	0	0	0	0	0	0	0		3	
	-1	0	5	0	0	0	0	0	-1	0	0	0		-1	
	0	0	2	0	0	0	0	0	0	0	0	0		1	
	0	0	0	0	0	0	0	0	0	0	0	0		0	
w =	0	0	0	0	0	0	0	0	0	0	0	0	U =	0	
	0	0	0	0	0	0	0	0	0	1	1	0		1	
	0	$^{-2}$	1	$^{-2}$	0	-1	0	0	0	0	0	0		-1	
	0	0	3	0	0	0	2	1	0	0	0	$^{-2}$		0	
	0	0	4	0	0	0	1	1	0	0	0	-1		0	
	0	0	0	0	0	0	0	0	0	0	0	0		0	

Synchronous vs. Asynchronous

Synchronous propagation (Kauffman (1969)):

→ update all species **simultaneously**

 \rightarrow biological problem: do all genes respond at exactly the same time?

Asynchronous propagation (Thomas (1991)):

 \rightarrow update one species after the other in chosen order

 \rightarrow order of update may influence dynamic gene activation patterns

Semi-synchronic propagation (Mendoza (1998)):

 \rightarrow split genes in groups:

 \rightarrow synchronous within group, one group after the other

 \rightarrow base order of groups upon experimental data (it's still a "choice")

 $EMF1, TFL1 \rightarrow LFY, AP1, CAL \rightarrow LUG, UFO, BFU \rightarrow AG, AP3, PI \rightarrow SUP$

Some Example Patterns

t=0 101111110011	t=0 11111100110
t=1 10111110011	t=1 101111100110
t=2 100111110011	t=2 100111100110
t=3 100110000011	t=3 100110010110
t=4 100110000001	t=4 100110010110
t=5 100110000000	t=5 100110010110
t=6 110110000000	t=6 110110010110
t=7 110000000000	t=7 110000010110
t=0 010000000000	t=0 010001011110
t=1 0000000000000	<i>t</i> =1 000001011110
t=2 00010000000	t=2 000001011110
	t=3 000000011110
t=0 000001011100	
<i>t</i> =1 000001011100	t=0 000000100110
t=2 000001011100	t=1 000000100110
t=3 000000000000000000000000000000000000	t=2 000100100110
t=4 000000000000000000000000000000000000	t=3 000100010110

1

Exhaustive search: start from all $2^{12} = 4096$ possible initial states,

run for t = 200 steps

 \rightarrow six stationary patterns (attractors of size 1)

The Attractors

From gene activation patterns in the attractors:

→ identify the **four floral** tissue **types** of the ABC model

- \rightarrow one attractor with floral **inhibitors** EMF1, TFL1
 - (characteristic for cells that are not part of the flowers)

 \rightarrow one yet **unidentified** state

Mendoza, Alvarez-Buylla, J. theor Biol. 193 (1998) 307

V 8 - 27

Possible Pathways

Note: the model does not include temporal and spatial information required to predict where and when which genes are activated or repressed ("signals")

→ these pathways are a "proposal" only

Evolution of Networks

A few years later: additional genes and predicted interactions (- - -)

Predictions for Petunia

From *A. thaliana* predict/understand *green petals* mutant phenotype for petunia.

Espinosa-Soto, Padilla-Longoria, Alvarez-Buylla, *The Plant Cell* **16** (2004) 2923

What is it Worth?

Generally: \rightarrow quality of the **results** depends on the quality of the **model**

 \rightarrow quality of the model depends on the quality of the **assumptions**

Assumptions for the Boolean network description:

- (• subset of the species considered
- only discrete density levels
- conditional yes—no causality
- discretized propagation steps

- \rightarrow reduced system state space)
- → dynamic balances lost, reduced to oscillations
 → no continuous processes
- \rightarrow timing of concurrent paths?

"You get what you pay for"

Petri-Nets

Bipartite graph of

- places
- transitions
- directed weighted arcs
- two types of nodes

enzyme

stoichiometries

Bioinformatics 3 - WS 12/13

metabolite

Petri Nets: More Accurate

Places: have a capacity $(1 \dots \infty)$ \rightarrow max. number of tokens (default: ∞)

```
Arcs: have costs (1 \dots \infty)
```

 \rightarrow number of tokens that are consumed/produced (default: 1)

Transitions: can fire, when the conditions are fulfilled \rightarrow enough tokens on the in-places:

≥ costs for in-arcs≥ costs for out-arcs

Marking = state of the network = numbers of tokes on the places

Multiple Possibilities

When **multiple transitions** may fire:

- all are equal
- \rightarrow choose one randomly
- if priorities are defined
- \rightarrow transition with highest priority fires

Platform Independent Petri Net Editor

"Token Game"

Token Spread

Token Game = stochastic simulation

Run	P1	P2
1	10	10
2	15	5
3	11	9
4	9	11
5	13	7
6	7	13
7	7	13
8	5	15
9	9	11
10	8	12
<n></n>	9.4	10.6
σ	2.8	2.8

for comparison:

expected from Poisson distribution

 $\lambda = 10$ $\sigma = \lambda^{1/2} \approx 3.2$

Inhibition

Time Consuming Transitions

Until now: every transition was instantaneous

SPN (Stochastic Petri Net):

Each transitions takes some time – exponentially distributed waiting times

$$\frac{dN}{dt} = -kN \implies N(t) = N(0) e^{-kt}$$

=> survival times distributed exponentially

GSPN (Generalized Stochastic Petri Net):

Time-consuming and instantaneous transitions are mixed

DSPN (Deterministic Stochastic Petri Net): Waiting times are fixed or exponentially distributed

General Petri nets: all types of transitions may occur

Analysis

"Token Game" simulations

- \rightarrow phenomenological: what happens, does the model work?
- \rightarrow stationary states? (we're stuck...)
- \rightarrow periodic orbits?
- \rightarrow relative probabilities of certain states?

"State space analysis"

- \rightarrow average number of tokens, distributions, throughputs
- \rightarrow reachability of markings (states)
 - \rightarrow liveliness
 - \rightarrow deadlocks, traps, siphons

Petri Nets for Gene Regulation

To encode the dependencies of gene regulation we need: activation, inhibition, logical and, logical or

- transcription factors are not consumed \rightarrow read arcs
- encode on/off states \rightarrow capacity constraints on the places

Boolean Regulatory Petri Nets

Introduce complementary places: tokens on g_1 plus on $\overline{g_1} = 1$ \rightarrow capacity constraints fulfilled automatically (when initial markings are okay) \rightarrow no inhibitory arcs required

Reverse Engineering Networks

Problem: "Find **the** network that explains the biological processes!" \rightarrow usually too ambitious

Experiments: co-expression data

- \rightarrow co-regulation of different genes (correlation or direct interaction?)
- \rightarrow time-series of individual genes

Strategies." Find **all** networks that are compatible with the experiments"

- \rightarrow combinatorial explosion, usually too many candidates
 - \rightarrow does not work...

"Find **one** network that is compatible with the experiments"

 \rightarrow solvable task, but how good is this network?

 \rightarrow does not work...

"Find **some** networks that are compatible with the experiments" → algorithms exist, need heuristics (experience) to assess coverage → does work...

Flowering in Arabidopsis

Minimal model of flower morphogenesis in *A. thaliana* → only "red" genes

Identify steady states of different parts of the flower \rightarrow find **dead** markings

$$\begin{bmatrix} M_d^1(T) = 0 \\ M_d^1(L) = 0 \\ M_d^1(A) = 1 \\ M_d^1(G) = 0 \\ M_d^1(P) = 0 \\ M_d^1(I) = 0 \end{bmatrix} \begin{bmatrix} M_d^2(T) = 0 \\ M_d^2(L) = 0 \\ M_d^2(A) = 1 \\ M_d^2(G) = 0 \\ M_d^2(P) = 1 \\ M_d^2(I) = 1 \end{bmatrix} \begin{bmatrix} M_d^3(T) = 0 \\ M_d^3(L) = 0 \\ M_d^3(G) = 1 \\ M_d^3(G) = 1 \\ M_d^3(P) = 0 \\ M_d^3(I) = 0 \end{bmatrix} \begin{bmatrix} M_d^4(T) = 0 \\ M_d^4(L) = 0 \\ M_d^4(G) = 1 \\ M_d^4(P) = 1 \\ M_d^4(I) = 1 \end{bmatrix}$$

Sepals

Petals

Carpels

Stamens

Bioinformatics 3 – WS 12/13

Chaouiya et al., LNCS 3099 (2004) 137

Drosophila Cell Cycle

Minimal regulation network for the first cell cycles during *D. melanogaster* embryonic development

(MPF = Mitosis Promoting Factor)

Asynchronous graph of all possible states (and transitions) — MFWS

Does the model reproduce **oscillations**?

 \rightarrow prove that the system is **deadlock-free**

(evaluate conditions that any of the transitions cannot fire any more)

Note on a mutation: when MPF inhibits Fizzy \rightarrow dead markings \rightarrow no stable oscillations

Summary

Today: simplified modelling of gene regulation networks

Boolean Networks

genes are on/off, propagation via condition tables

- \rightarrow direct implementation of experimentally found dependencies
 - \rightarrow no real-time information
 - \rightarrow steady states (attractors) network reconstruction mutations

• Petri nets

places, transitions, and arcs (plus capacities)

- \rightarrow more general, more analysis tools, but more complex
 - \rightarrow can include real-time dynamics (via time-consuming transitions)

Next lecture:

- network reconstruction
- metabolic networks, static and dynamic