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Submit your solutions on paper, hand-written or printed at the beginning of the
lecture or in building E2.1, Room 3.02. Alternatively you may send an email with a
single PDF attachment. If possible, please include source code listings. Additionally
hand in all source code via mail to nazarieh@mpi-inf.mpg.de.

Dynamic Simulations of Networks - Part I

A static analysis of a (metabolic) network can reveal its steady state properties like the most
important flux modes or identify seamingly redundant reactions. However, as life is not always
static, a network can exhibit a different or unexpected behavior, when subjected to time dependent
concentration changes of the metabolites. This is where dynamic network simulations come into
play.

For these dynamic simulations, two major approaches exist: for large densities of the relevant
molecules, the network can be treated by a set of differential equations that describe the time evo-
lution of the densities, while for small densities, where the dynamics are governed by the binding
and unbinding events of individual molecules, stochastic approaches like the Gillespie algorithm
are more appropriate.

This assignment introduces you to the deterministic simulation technique with a simple four-species
network and a larger signaling network, before the next assignment exemplifies the stochastic ap-
proaches.

Exercise 8.1: A simple Reaction Network (25 points)

Hint: This exercise is required for the next assignment.
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Consider the network displayed to the left: two
molecules of A associate to create one C, when it
encounters one molecule of B, then C is converted
into D.

(a) Deterministic Model (10)
A convenient recipe to compile the (sometimes complicated) set of differential equations that
describe a system is to start from the stoichiometric matrix.

(1) Set up the stoichiometrix matrix.

(2) Derive the rates dR1

dt and dR2

dt .

(3) List the rates for the changes of A, B, C and D in terms of the rates of R1 and R2.

(4) List the changes of the metabolites during a time step ∆t.

(b) Deterministic Implementation (10)
With these differences per time step implement a differential equation model of the above
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network using the simple Euler-Forward Integrator.
Use: ∆t = 0.05 s, tfinal = 500,

At=0 = 10 µm−3, Bt=0 = 5 µm−3, Ct=0 = Dt=0 = 0 µm−3,

kR1
= 10 −3 µm−3

s and kR2
= 3 * 10 −3 µm−3

s .

(1) Plot the time traces of A(t), B(t), C(t) and D(t) into a single plot.

(2) Then, run the simulation until t = 200 s and give the final values of the metabolites.

(c) Interpretation (5) Describe the time traces and explain from their behavior the dynamics
of the network.

Exercise 8.2: An intracellular Signaling Network (75 points)

Now, consider the intracellular signaling net-
work displayed to the right.

The system consists of two response pathways,
whereby the signaling through these pathways
is initiated when the metabolite C is activated
by binding of the ligands SA and SB to their
receptors. The activated C (denoted by C?)
activates KA or KB. The activated KB ac-
tivates the phosphatase P, whereby P? en-
hances the deactivation of KB?.

Note, that there is no activation of KA and
KB without C?, but the deactivation of KB?

is also possible without P?. To activate C
there are two different ways, the first one re-
quires SA, the second one SB.
SA, SB, C? and P? are enzymes and not used
in the reactions.
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(a) Preflight (25)
Set up the rate equations of the activated components of the signaling network

d[C?]
dt , d[KA?]

dt , d[KB?]
dt , d[P?]

dt

and the corresponding rates of concentration changes (∆[C?], ∆[KA?], ∆[KB?], ∆[P ?]).
Use Michaelis-Menten kinetics to model the above activation and deactivation reactions.

Hint: rate equations using Michaelis-Menten kinetics look like follows:

E
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d[M ]
dt = kME [E]0[S]

KME+[S] - VM [M ]
KM+[M ]

Additionally, assume that [A] + [A?] = 1.
Label all required reaction constants in the same way as in the above example.



(b) Deterministic Model - Implementation (25)
Implement a differential equation model of the signaling network with the differences per
time step. Run the simulation until t = 90 s with a timestep of ∆t = 0.01 s. Use the rates

kC?SA = kC?SB = 5.0 · 10−2 KC? = KC?SA = KC?SB = 10.0 VC? = 2.5 · 10−2

kKA?C? = 1.5 · 10−4 KKA? = KKA?C? = 5.0 · 10−1 VKA? = 5.0 · 10−5

kKB?C? = 5.0 · 10−2 KKB? = 1.0 · 10−2 VKB? = 1.0 · 10−3

kKB?P? = 4.0 · 10−1 KKB?C? = 5.0 · 10−2 VP? = 6.0 · 10−5

kP?KB? = 7.5 · 10−4 KKB?P? = 2.0 · 10−2

KP? = KP?KB? = 1.0

and let have zero concentrations initially for all activated metabolites.

(c) Deterministic Model - Interpretation (25)

(1) Plot the time traces of the concentrations [C?], [KA?], [KB?], and [P ?] into a single
plot. Create two plots, the first one with [SA]0 = [SB]0 = 0.01 and the second one
with [SA]0 = [SB]0 = 0.99.

(2) Now run the simulation for [SA]0 = 0.01 and [SB]0 = 0.01, 0.02, 0.03, ..., 0.99 and plot
the concentration of C, KA and KB at the end of the simulation run vs. the enzyme
concentration [SB]0 into a single plot.
Also run the simulation for [SB]0 = 0.01 and [SA]0 = 0.01, 0.02, 0.03, ..., 0.99 and plot
the concentration of C, KA and KB at the end of the simulation run vs. the enzyme
concentration [SA]0 into a single plot.
Describe and explain the observed response characteristic.

Have fun!


