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Submit your solutions on paper, hand-written or printed at the beginning of the lecture or in
building E2.1, Room 3.02. Alternatively you may send an email with a single PDF attachment.
If possible, please include source code listings. Additionally hand in all source code via mail to
thorsten.will@bioinformatik.uni-saarland.de.

2 More On Networks, Forces, and Force Directed Layouts
We continue to evolve our classes from the first assignment. The assignment of this week first deals
with the construction of scale-free networks, then we will discuss energies and forces to finally be
able to layout networks.

Exercise 2.1: The Scale-Free Network (35 pts)
First, (a) construct a scale-free network according to the Barabási-Albert model. Then (b) examine
the degree distribution of such networks and determine some characteristics in comparison to
random networks. Finally, in (c) try to fit the degree distribution to a theoretical distribution.

(a) Implement the algorithm given in the lecture to set up a scale-free network according to the
Barabási-Albert model. Start from the first three connected nodes and add each new node
with a given number of links. Connect the new links with increasing preference to nodes that
have higher degrees. This ScaleFreeNetwork-class should again use the abstract network
class that you wrote in the first assignment.
To obtain a much faster implementation and full points, think of a method to map the
probabilities to connect to nodes somehow instead of computing them from scratch in each
iteration.

(b) Determine the degree distributions for scale-free networks of 10 000 and 100 000 nodes
(each with two new links per iteration), respectively, and plot them with double logarithmic
axes. A new pre-implemented method in Tools.py will help you with that. What are the
differences?
Next, compare one of the distributions to the degree distribution of an equally sized random
network (play around with the plot-scaling). What are the major differences?

(c) The degree distribution of a scale-free network follows a power law, which has the form

P (k) ∼ k−γ .

To simplify the exercise, we assume P (k) = Ck−γ , with C being a fixed normalization
constant to obtain a proper distribution. Try to fit this theoretical distribution to the
degree distribution of a random network using the Kolmogorov-Smirnov distance. Follow
this guideline:

• Implement Tools.getScaleFreeDistributionHistogram(gamma, k) which returns
such a simple power law distribution (histogram[i ] = math.pow(i, −gamma) and normal-
ization afterwards).
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• Implement the KS distance in Tools.simpleKSdist(histogram_a, histogram_b):
The KS distance of two distributions is the maximal distance between their respective
cumulative distributions Fi:

D = sup
x
|F1(x)− F2(x)|

Thus, first build cumulative distributions from the normalized histograms, then find
the position where the distributions deviate the most and return this distance.
• Use the KS distance to determine a γ (between 1 and 3, 0.1 steps sufficient) that fits

best to the degree distribution of a scale-free network with 10 000 nodes and two new
links per iteration. Compare the empirical distribution of the network to the theoretical
distribution with optimal γ in a double-log. plot. Comment on the quality of your fit,
reason why it may fail and how it could be vastly improved.

Exercise 2.2: Energy and forces (20 pts)

(a) Configuration of minimal energy:
Determine the equilibrium distance between two equally charged mass points which are
connected by a spring. At the equilibrium distance the total force vanishes. Verify that
instead of calculating the forces explicitly, it is equivalent to determine the configuration of
minimal energy.

Hints:

• The force equals the negative gradient of the energy, i.e., the force is a measure for how
much the energy changes with an infinitesimal displacement:

−→
F (−→r ) = −∇E(−→r ), with the gradient operator ∇ :=

 d/dx
d/dy
d/dz


In a single dimension, this reduces to ∇ = d/dr, i.e. the simple derivative with respect
to the distance r. The gradient of a function can consequently be understood as a
multidimensional slope.
• The interaction energy between two charges q1 and q2 is given as:

Ec(r) =
1

4π · ε0ε
q1q2
r

For the connecting spring use the harmonic potential:

Eh(r) =
kr2

2

• To show the equivalence of vanishing force and minimal energy remember how the
minimum of a function is defined. Also note that the distance between two particles is
a one-dimensional measure.

(b) Force field from a spherically symmetric potential:
Calculate the force fields

−→
F (−→r ) = −∇E(−→r ) for both the Coulomb interaction Ec and the

harmonic potential Eh in cartesian coordinates.

Hints:

• Write ∇ and the resulting force field
−→
F (−→r ) in component form to get one equation for

x, y, and z, each. This is the form that you need to implement the layout algorithm in
the next exercise.



• Note that:

r =
√
x2 + y2 + z2,

−→
F (−→r ) =

 Fx(x)
Fy(y)
Fz(z)


Exercise 2.3: Force directed layout of graphs (45 pts)
Implement a layout algorithm algorithm for your networks in the Layout-class by using energy
functions that mimic the repulsive and attractive behavior as in the previous exercise. Subse-
quently, read networks from files and visualize the final layouts and the energy trajectories.

(a) Between all nodes, use a repulsive degree dependent Coulomb type potential, defined as:

Ec(rij) =
ki · kj
rij

Additionally, for interacting nodes, use a degree independent harmonic attractive potential:

Eh(rij) =
r2ij
2

The parameter rij is the distance between two nodes i and j. Because we layout in 2D, the
squared distance is defined as:

r2ij = (xi − xj)2 + (yi − yj)2

The interaction between two nodes i, j is defined as:

W [i][j] =

{
1, if edge i→ j exists
0, else

The basic approach (function layout(iterations)) can be outlined as:

(1) Calculate the pairwise forces between all nodes and sum them up for each of the nodes:

−→
F ij =

−→
F c(
−→r ij) +W [i][j] ·

−→
F h(−→r ij)

Thus, the total force on node i is Fi =
∑
j Fij . Note that the forces between two nodes

are symmetric, i.e., Fij = −Fij .
(2) Update the position of each node from the forces as:

∆ri = α · Fi

A reasonable value is α = 0.03. Do not forget to reset all the forces after this step.

(3) Calculate the total energy, which is the sum of all individual interaction energies:

Etot =
∑
j>i

Ec(rij) +W [i][j] · Eh(rij)

The energy of each iteration is stored and returned, the positions are altered in the
Node-objects.

The alternative function SAlayout(iterations) additionally adds a random force, a ”ther-
mal contribution”, to the total force on each node in each iteration which should decrease
(implement!) in every step. This optimization principle is called simulated annealing. Why
is it worthwhile in practice?



Hint:

• To store energy and positions the Node-class is extended “on-the-fly” (see source code).
This will magically add those attributes to your Node-objects .

(b) Implement GenericNetwork, a network class that imports networks from files.

(c) Use the new classes to layout the test files “star.txt”, “square.txt”, “star++.txt” and
“dog.txt”, which are part of the supplement. Do 1000 iterations with both implementations
of the algorithm, report the final energies and plot the nicer layout. For one of the net-
works, also compare the energies per step for the basic and the simulated annealing method.
Tools.py contains new methods that you can use for plotting. You may need to restrict to
certain ranges of the axes to see the important differences.

Have fun!
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