In the first half of this lecture section, we use the theory of network flows to give
constructive proofs of Menger's theorem.

These proofs lead directly to algorithms for determining the edge-connectivity and
vertex-connectivity of a graph.

The strategy to prove Menger's theorems is based on properties of certain
networks whose arcs all have unit capacity.

These 0-1 networks are constructed from the original graph.
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Lemma 12.3.1. Let N be an s-f network such that
outdegree(s) > indegree(s),
indegree(t) > outdegree (t), and
outdegree(v) = indegree(v) for all other vertices v.
Then, there exists a directed s-t path in network N.

Proof. Let W be a longest directed trail (trail = walk without repeated edges; path = trail
without repeated vertices) in network N that starts at source s, and let z be its terminal
vertex.

If vertex z were not the sink ¢, then there would be an arc not in trail W that is directed from
Z (since indegree(z) = outdegree(z) ).

But this would contradict the maximality of trail W.

Thus, W s a directed trail from source s to sink .

If W has a repeated vertex, then a part of W determines a directed cycle, which can be
deleted from W to obtain a shorter directed s-t trail.

This deletion step can be repeated until no repeated vertices remain, at which point, the
resulting directed trail is an s-t path. o
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Proposition 12.3.2. Let N be an s-t network such that

outdegree(s) — indegree(s) = m = indegree(t) — outdegree (1),
and outdegree(v) = indegree(v) for all vertices v = s,t.
Then, there exist m disjoint directed s-t path in network N.

Proof. If m = 1, then there exists an open eulerian directed trail T from
source S to sink t by Theorem 6.1.3.

Review: An eulerian trail in a graph is a trail that visits every edge of that graph exactly once.

Theorem 6.1.3. A connected digraph D has an open eulerian trail from vertex x to vertex y if and only if
indegree(x) + 1 = outdegree(x), indegree(y) = outdegree(y) + 1, and all vertices except x and y have equal
indegree and outdegree.

Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph
have an even degree.

Theorem 1.5.2. Every open x-y walk W is either an x-y path or can be reduced to an x-y path.

Therefore, trail T is either an s-t directed path or can be reduced to an s-t path.

Bioinformatics Ill
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By way of induction, assume that the assertion is true for m = k, for some k = 1,
and consider a network N for which the condition holds for m = k +1.
There does exist at least one directed s-t path P by Lemma 12.3.1.

If the arcs of path P are deleted from network N, then the resulting network N - P
satisfies the condition of the proposition for m = k.

By the induction hypothesis, there exist k arc-disjoint directed s-f paths in network
N - P. These k paths together with path P form a collection of k + 1 arc-disjoint
directed s-t paths in network N. o
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Definition A 0-1 network is a capacitated network whose arc capacities
are either O or 1.

Proposition 12.3.3. Let N be an s-t network such that cap(e) = 1 for every arc e.
Then the value of a maximum flow in network N equals the maximum number of
arc-disjoint directed s-t paths in N.

Proof: Let f* be a maximum flow in network N, and let r be the maximum number of
arc-disjoint directed s-t paths in N.

Consider the network N* obtained by deleting from N all arcs e for which f*(e) = 0.
Then f*(e) = 1 for all arcs e in network N*.

It follows from the definition that for every vertex v in network N7,

E I (e)= ‘OW(V) = Outdegree(v)

e0ut (v )

and f* (e)= ‘]n(v) = ina’egree(v)

eEln v)

Bioinformatics Ill
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Thus by the definition of val(f*) and by the conservation-of-flow property,
outdegree(s) — indegree (s) = val(f*) = indegree(t) — outdegree(t)

and outdegree(v) = indegree(v), for all vertices v = s,t.

By Proposition 12.3.2., there are val(f*) arc-disjoint s-t paths in network N*, and

hence, also in N, which implies that val(f*) <.

To obtain the reverse inequality, let {P,,P,, ..., P,} be the largest collection of arc-

disjoint directed s-t paths in N, and consider the function f: E,, — R* defined by

1, if some path P, uses arc e
-

0, otherwise

Then fis a feasible flow in network N, with val(f) =r.
It follows that val(f*) = r. o
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13. Lecture WS 2014/15 6



Review from §5.3
Let s and ¢ be distinct vertices in a graph G. An s-t separating edge setin Gis a
set of edges whose removal destroys all s-t paths in G.

Thus, an s-t separating edge set in G is an edge subset of E that contains at least
one edge of every s-t path in G.

Definition: Let s and ¢ be distinct vertices in a digraph D.
An s-t separating arc set in D is a set of arcs whose removal destroys all directed
s-t paths in D.

Thus, an s-t separating arc set in D is an arc subset of E that contains at least one
arc of every directed s-t path in digraph D.

Remark: For the degenerate case in which the original graph or digraph has no
s-t paths, the empty set is regarded as an s-t separating set.

Bioinformatics Ill
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Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e.
Then the capacity of a minimum s-t cut in network N equals the minimum number of
arcs in an s-f separating arc setin N.

Proof: Let K*=(V,,V, ) be a minimum s-t cut in network N, and let q be the
minimum number of arcs in an s-t separating arc setin N.
Since K*is an s-t cut, it is also an s-f separating arc set. Thus cap(K*) = q.

To obtain the reverse inequality, let S be an s-f separating arc set in network N
containing q arcs, and let R be the set of all vertices in N that are reachable from
source s by a directed path that contains no arc from set S.

Then, by the definitions of arc set S and vertex set R, t € R, which means that
(R, Vy-R)is an s-t cut.

Moreover, ( R, V), - R) C S. Therefore

Bioinformatics Ill
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cap(K *)s cap<R, V. - R> since K * 1s a minimum s — ¢ cut

= ‘< RV, - R>‘ since all capacities are |
N since (R,V, -R)C S
=q

which completes the proof. o
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Theorem 12.3.5 [Arc form of Menger‘s theorem]

Let s and t be distinct vertices in a digraph D. Then the maximum number of arc-
disjoint directed s-f paths in D is equal to the minimum number of arcs in an s-t
separating set of D.

Proof: Let N be the s-t network obtained by/assigning a unit capacity to each arc of
digraph D. Then the result follows from Propositions 12.3.3. and 12.3.4., together
with the max-flow min-cut theorem. o

Theorem 12.2.4 [Max-Flow Min-Cut] For a given network, the value of a maximum flow is equal to the
capacity of a minimum cut.

Proposition 12.3.3. L et-Nbe an s-f network-such that cap(e) = 1 for every arc e. Then the value of a
maximum flow in network N equals the maximum number-of-arc-disjoint directed s-t paths in N.

Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e. Then the capacity of a
minimum s-t cut in network N equals the minimum number of arcs in an s-f separating arc set in N.
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A torch is directed at an open door
and shines into a dark room ...

What area is lighted ?

Instead of marking all lighted points
individually,
it would be sufficient to characterize

the ,extreme rays" that go through the
- corners of the door.
The lighted area is the area between

the extreme rays = linear
combinations of the extreme rays.

13. Lecture WS 2014/15 Bioinformatics Ill
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Stoichiometric matrix - Flux Balance Analysis

Stoichiometric matrix S:

m x n matrix with stochiometries of o_L,@ @A ©— @

the n reactions as columns and
participations of m metabolites as
rows.

The stochiometric matrix is an

important part of the in silico model.

With the matrix, the methods of
extreme pathway and elementary
mode analyses can be used to
generate a unique set of pathways
P1, P2, and P3 that allow to
express all steady-state fluxes as
linear combinations of P1 — P3.
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introduced into metabolic analysis by the lab of Bernard Palsson

(Dept. of Bioengineering, UC San Diego). The publications of this lab

are available at http://gcrg.ucsd.edu/publications/index.html ! b,

The extreme pathway
technique is based '
on the stoichiometric ~—5 (@) ——(G) =—=()

rd
Ug

" ] 2
matrix representation \

of metabolic networks.

@ -~
System boundary *

All external fluxes are

defined as pointing outwards.
Mass balance constraints i
b’ Internal flux constraints
s
-1 0 0 0 - i
. 0 1 0 05 0 ; 20, j=1..6
1 -1 1 0 o0 0 -1 0o O 0
0 1 -1 -1 1 -1 g 0 o 1o
0 ¢ 0 1 10 0 o0 -l }j 0 Exchange flux constraints
L0 6o 0 o0 1 0 0 0 -1 b‘ 0,
Schilling, Letscher, Palsson, t: ~0S b S4eo, j=1,..,4
(S-v=0) 25
J. theor Biol. 203, 229 (2000) b
13. Lecture WS 2014715 (04 ]

13



Idea — extreme pathways

Shaded area: Shaded area: EitherS - x>0
x20 x;20Ax,20 (S acts as rotation matrix)

or find optimal vectors
# change coordinate system
from x,, x,to ry, 1.

Duality of two matrices Shaded area:
SandR. ry20ar,20

Edwards & Palsson PNAS 97, 5528 (2000)
13. Lecture WS 2014/15 Bioinformatics Il
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The algorithm to determine the set of extreme pathways for a reaction network
follows the pinciples of algorithms for finding the extremal rays/ generating
vectors of convex polyhedral cones.

Combine n x n identity matrix (1) with the transpose of the stoichiometric
matrix ST. | serves for bookkeeping.

TO —
-1 0 0 0 0 0 -1 0 0
1 -1 1 0 0 o0 o -1 0 | 0 0 | —1
0 1 -1 -1 1 -1 o © 0 i l 0 0 —1 0
0 1 -1 0 0 o -1 ©
0 0 0o 0o 0 1 o0 0 0 -1 [ 1 -1 0 0 0

T =

Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)
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Examine constraints on each of the exchange fluxes as given by

o =b;<f
If the exchange flux is constrained to be positive — do nothing.
If the exchange flux is constrained to be negative — multiply the
corresponding row of the initial matrix by -1.
If the exchange flux is unconstrained — move the entire row to a temporary
matrix T®), This completes the first tableau T©.

T and T®) for the example reaction system are shown on the previous slide.
Each element of these matrices will be designated 7.

Starting with i = 1 and T(® = T(-1) the next tableau is generated in the following
way:

Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)
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(1) Identify all metabolites that do not have an unconstrained exchange flux
associated with them.

The total number of such metabolites is denoted by wu.

The example system contains only one such metabolite, namely C (u = 1).

What is the main idea? L.
- We want to find balanced extreme pathways
that don‘t change the concentrations of
metabolites when flux flows through

(input fluxes are channelled to products not to Syombomndesy D=
accumulation of intermediates).

- The stochiometrix matrix describes the coupling of each reaction to the
concentration of metabolites X.

- Now we need to balance combinations of reactions that leave concentrations
unchanged. Pathways applied to metabolites should not change their
concentrations — the matrix entries

need to be brought to 0. Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)

- e
® =

g g

@//
Tl

13. Lecture WS 2014/15 Bioinformatics Ill
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(2) Begin forming the new matrix T® by copying

all rows from T( -1 which already contain a zero in

the column of ST that corresponds to the first

metabolite identified in step 1, denoted by index C.

(Here 3rd column of ST.) A BC D E

T = 1 -1 1 of O

Schilling, Letscher, Palsson, J. theor. Biol. 203, 229 (2000)

13. Lecture WS 2014/15 Bioinformatics Ill
18



(3) Of the remaining rows in T(-1) add together

all possible combinations of rows which contain

values of the opposite sign in column C, such that

the addition produces a zero in this column.

TO) =

T =

Schilling, et al.
JTB 203, 229

13. Lecture WS 2014/15

1 -1 1 0 0
1 o 11 1 0 0

1 0 1 [ -1 0 0

1 0 0f -1 1 0

1 0 of 1 -1 0

1 0 0f -1 0 1

1 0 0 0 0 o] -1 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 o -1 0 1 0
0 1 0 0 0 1 o -1 0 0 1
0 0 1 0 1 0 0 1 0o -1 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0o -1 1
3 8 9 10 M

Bioin?ormatiZs 1|
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(4) For all rows added to T() in steps 2 and 3 check that no row exists that is a
non-negative combination of any other rows in T .

One method for this works as follows:
let A(i) = set of column indices j for which the elements of row j = 0.

For the example above Then check to determine if there exists
A(1) ={2,3,4,5,6,9,10,11} another row (h) for which A(i) is a
A(2)={1,4,56,7,8,9,10,11} subset of A(h).

A@3) ={1,3,5,6,7,9,11}

A4)={1,3,4,5,7,9,10} If A(i) C A(h), i =h

A(5) ={1,2,4,6,7,9,11} where

A(6) ={1,2,3,6,7,8,9,10,11} A@)={j:T,;=0,1=<j=(n+tm)}
A(7)={1,2,3,4,7,8,9} then row i must be eliminated from T®
Schilling et al.

JTB 203, 229
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(5) With the formation of T() complete steps 2 — 4 for all of the metabolites that do
not have an unconstrained exchange flux operating on the metabolite,
incrementing i by one up to u. The final tableau will be T,

Note that the number of rows in T will be equal to k, the number of extreme
pathways.

Schilling et al.

JTB 203, 229
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(6) Next we append T to the bottom of Tt. (In the example here u = 1.)
This results in the following tableau:

T(E) =

Schilling et al.
JTB 203, 229

erereresreranalranenensarananfanansnsanaranasdananrananenansdransanananensardrannanansasanafensaransnnaranensaransanananfarararansaransdenraransaranany

B R S e T T e PP PETP P T P EEPELPE- P ERPEEPPERP LY

T T T T T T T T T PP PP PP PP S TP PRI PEPRPRPPEPRPRN

S T L LT E PR P TP TR T FEETPETPER I

13. Lecture WS 2014/15 Bioinformatics Ill

22



(7) Starting in the n+7 column (or the first non-zero column on the right side),
if T, ,,+7) = O then add the corresponding non-zero row from T(®)to row i so as to
produce 0 in the n+7-th column.

This is done by simply multiplying the corresponding row in T®) by T, (n+1) @nd
adding this row to row /.

Repeat this procedure for each of the rows in the upper portion of the tableau so
as to create zeros in the entire upper portion of the (n+17) column.

When finished, remove the row in T(®) corresponding to the exchange flux for the
metabolite just balanced.

Schilling et al.
JTB 203, 229
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(8) Follow the same procedure as in step (7) for each of the columns on the right
side of the tableau containing non-zero entries.

(In our example we need to perform step (7) for every column except the middle
column of the right side which correponds to metabolite C.)

The final tableau T(na) will contain the transpose of the matrix P containing the
extreme pathways in place of the original identity matrix.

Schilling et al.

JTB 203, 229
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T(final) —

PT =

Schilling et al.
JTB 203, 229
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2 pathways pg and p; are not shown in the bottom fig.

because all exchange fluxes with the exterior are 0.

Such pathways have no net overall effect on the
functional capabilities of the network.

They belong to the cycling of reactions v,/vs and v,/vs.

\
Uy

b,

System boundary

4
Us

Ug

\\

-
® =

Exireme
pathways

vV, V, V3 V, V5 Vg b, b, by b,
11 o| o| of of ol 14| 1| o] o P
ol 1| 1| ol o| o| o] of of o P-
ol 1| ol 1| o| o] o 1| 1| o P3
of 1] of o of 1| of 1| oOf 1 P2
ol ol 1| ol 1| of of 1| 1| o P4
ol ol ol 1| 1| ol of o] o] o Ps
ol ol ol ol 1| 1| of of 1| 1 Ps
Schilling et al.

JTB 203, 229
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In the matrix P of extreme pathways, each column is an EP and each row

corresponds to a reaction in the network.

The numerical value of the i,j-th element corresponds to the relative flux level

through the /-th reaction in the j-th EP.

Reaction Network
bs
_______________________________________________ Stoichiometric Matrix Pathway Matrix
'
byp : EP, EP, EP,
5 i Vi Vs vy vy vs v by by by 73 2 v,
—p 24 Ly 2B 2 c —Y% 5 g *" 1 0 0 0 0 0 +1 0 o0\4 1o1| w
: 41 -2 -2 0 0 0 0 0 0B 01 0| v,
! 0 +1. 0 0 -1 -1 0 0o 0|C 01 1| v
v cof | s
g v; 0 : S=[0 0 1 -1+1 0 0 0 0|D P=|0 0 1| v
v, : 0 0 0 +1 0 +1 0 -1 0|E 1 00| v
- 0 +1 +1 0 0 0 0 0 -1|bp 22 2 b,
i 0 0 -1 +1 -1 0 0 0 0)cof 11 1| b,
byp D ! 111 b,
™ |
= % =i S, S EPy
o o )
' : ' A
:»ZA—FZBJC—PB*: - 2A—> 2B »C v B ey *zA—»znﬁc » B e
H ® & v ] MX‘ S G k“
%Y v v 4
bp D byp D bp ‘D

A

Papin, Price, Palsson,
Genome Res. 12, 1889 (2002)
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After normalizing P to a matrix with entries 0 or 1,
the symmetric Pathway Length Matrix P ,, can be calculated:

P, =P -P

where the values along the diagonal correspond to the length of the EPs.

Pathway Length
2 2 2) BEER Comments:
1 0 1 1 0 1 1) The lengths of EP,, EP,,and
EP; are 6, 6, and 7, respectively,
00170 0 1.0 EP EP.EP, the highlighted diagonal elements
0 11 0 1 1 . (e 4 EP, of the final matrix.
e LA ‘ e=r0 9 | l ol 6 5 |Ep, 2) EP, and EP; have a shared
1 00 100 7)EP, length of 5 (indicated by the
2 2 2 1 1 1 circle). As seen in the schematics
111 111 above, they share reactions v, v,
b, b, and b,
(111 111 2

The off-diagonal terms of P, are the number of reactions that a pair of extreme
pathways have in common.



One can also compute a reaction participation matrix Py, from P:

P, =P-P’

AN
Properties of pathway matrix

where the diagonal correspond to the number of pathways in which the given

reaction participates.

—_ - N e © OO = N

—— N O O = o= O N

~
g

— e N D e e D

Reaction Participation

— et et et O O O e

— e D D et e O e

Pe P

@.F

<

NN

- o = .=

<
N

N - == N

<

—— O

@—-—-N—N@S‘
©@O--H-~0~

@0O--~-v@=

C

1) The number of extreme pathways
in which each reaction participates is
indicated in the diagonal elements,
as highlighted in the final matrix.
These can then be expressed as a
percentage of the total number of
extreme pathways. For example,
reaction v, has a participation value
of 3. Since there are 3 extreme
pathways, this can be expressed as
100% reaction participation.

Comments:

2) The off diagonal terms can
indicate correlated groups of
reactions. Reactions v, b,, b, and
b; participate in 3 pathways. They
also have a shared participation of 3,
meaning they act as a correlated
group (indicated by circles).




EP Analysis of H. pylori and H. influenza

Table 1. Number of Reactions Involved in the Production

Amino acid synthesis in Heliobacter pylori vs. of the Indicated Target Product

H. pylori Essential Utilized
Heliobacter influenza studied by EP analysis e e o | meew
Tryptophan 32 105
Tyrosine 28 101
Cysteine 25 102
Table 4. Summary of the Statistical Analyses of Extreme Pathway Lengths Glycine 22 97
Lysine 22 102
4. ovior o LT Serine 16 91
. pylor Threonine 14 96
Target product Number of EPs  average  maximum  minimum  coefficient of variation Asparagine 13 9
Aspanagine 340 44 54 28 15% AplCEr Lk o
Aspartic Acid 491 43 52 24 14% Glutamic Add 7 91
Cysteine 1022 59 71 45 10% Clutamics % 91
Glutamine 315 41 53 23 18% - - .
Glutamic Acid 493 41 53 25 17% Equimolar Amino Acids 85 140
Glycine 377 51 60 38 10% E. coli Ratio Amino Acids 85 140
il 1] e = i s H. influenzae Essential Utilized
Serine 355 45 54 3 12% Target product reactions reactions
Threonine 469 48 60 31 14% e
Tryptophan 1958 64 73 51 6% Histidine 51 112
Tyrosine 1008 58 68 44 7% Tryptophan 4 108
Equimalar Amino Acids 6032 106 12 99 2% Phenylalanine 36 108
E. coli Ratio Amino Acids 5553 106 n2 99 2% Lyr?}:!ne. 32 } 82
ethionine
Pathway length Isoleucine 3] 108
H. infiuenzae Lysine 3] 108
Target product Number of EPs  average  maximum  minimum  coefficient of variation Glycine 29 82
Alani 1739 36 49 18 10% Threonine 2 1o
anine ]
Asparagine 445 39 52 29 12% ?:ﬁfg mne gg gg
Glutamine 690 7 46 28 1% P ride 2 97
Glycine 456 29 48 35 7% a m:n'fm . . 21 102
Histidine 1507 65 74 61 3% Proli 18 103
Isoleucine 1480 47 61 37 9% ez
Leucine 3884 42 55 3] 10% Valine 17 102
Lysine 1168 47 61 37 9% Alanine 12 99
Methionine 1343 48 63 40 8%
Phenylalanine 1758 51 64 43 7% See Fig. 3 for the indicated network inputs and outputs. Essential
';;_0.""9 2258 ;g :; §g :éx reactions refers to the number of reactions thatwere used in every
ine extreme pathway (region | in Fig. 4). Utilized reactions refers to
Threonine 1318 42 35 32 10% the number of reactions that were used at least once in the set of
Tryptophan 3540 58 69 49 6% extreme pathways for the production of the associated product
s L = o o i (region Il in Fig. 4). The individual amino acids are sorted in de-
e scending order according to the number of essential reactions.
- T e ) - Equimolar amino acids refers to the set of amino acids in
The coefficient of variation is the standard deviation normalized to the average (expressed as a percent). Equimolar equimolar ratios. £ colfratio amino acids refers to the set of amino
amino acids refers to the set of amino acids in equimolar ratios. £. colf ratioamino acids refers to the set of amino adds acids in ratios analogous to those seen in £. colf biomass.

in ratios analogous to those seen in £ colf biomass. EPs, extreme pathways.

Papin, Price, Palsson, Genome Res. 12, 1889 (2002)

13. Lecture WS 2014/15 Bioinformatics Ill
30



Calculation of EPs for increasingly large networks is computationally intensive and
results in the generation of large data sets.

Even for integrated genome-scale models for microbes under simple conditions,
EP analysis can generate thousands or even millions of vectors!

It turned out that the number of reactions that participate in EPs that produce a

particular product is usually poorly correlated to the product yield and the molecular
complexity of the product.

Possible way out?

Matrix diagonalisation — eigenvectors: only possible for quadratic n x n matrices
with rank n.

Papin, Price, Palsson, Genome Res. 12, 1889 (2002)
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Suppose M is an m x n matrix with real or complex entries.
Then there exists a factorization of the form
M=U2ZXV*" where
U : m x m unitary matrix, (U*U = UU* = 1)
2 . is an m x n matrix with nonnegative numbers on the diagonal and zeros off

the diagonal,
V* . the transpose of V, is an n x n unitary matrix of real or complex numbers.

Such a factorization is called a singular-value decomposition of M.

U describes the rows of M with respect to the base vectors associated with the
singular values.

V describes the columns of M with respect to the base vectors associated with the
singular values. 2 contains the singular values.

One commonly insists that the values 2;; be ordered in non-increasing fashion.
Then, the diagonal matrix Z is uniquely determined by M (but not U and V).

13. Lecture WS 2014/15 Bioinformatics Ill
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For a given EP matrix P &} "™, SVD decomposes P into 3 matrices

o0\ .
P=U \Y
0 0

where U &X' " : orthonormal matrix of the left singular vectors,
V &> an analogous orthonormal matrix of the right singular vectors,
X et :a diagonal matrix containing the singular values o, , arranged in
descending order where ris the rank of P.

The first r columns of U and V, referred to as the left and right singular vectors, or
modes, are unique and form the orthonormal basis for the column space and row
space of P.

The singular values are the square roots of the eigenvalues of PTP.

The magnitudes of the singular values in X indicate the relative contribution of the
singular vectors in U and V in reconstructing P.

E.g. the second singular value contributes less to the construction of P than

the first singular value etc.
Price et al. Biophys J 84, 794 (2003)
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The first mode (as the other modes) corresponds to a valid biochemical pathway
through the network. A

Convex cone defined by extreme pathways

A symmetric cone with the 1t principal mode

and the relationship with the 1% principal through its center.
mode.
. . . 1st mode
The first mode will point
into the portions of the
cone with highest density B
An asymmetric cone with the 1 principal mode
Of E PS . pulled towards the space with a higher density of

extreme pathways.

The 2" and 3rd modes characterize the C The 2" mode represents the direction of
directions of principal variance in the plane second most variance. Consequently, “soft
orthogonal to the 1%t principal mode. edges” can influence where the 2" mode
points.
34 mod
EPz i 2nd mode
2nd mode 3 mode D

Price et al. Biophys J 84, 794 (2003)
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Cumulative fractional
contributions for the

SVD of the EP matrices of
H. influenza and H. pylori.

This plot represents the

contribution of the first
n modes to the overall

description of the system.

Ca. 20 modes allow
describing most of the
metabolic activity in the
Network.

Price et al. Biophys J 84, 794 (2003)
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100
_____________________________________________________________________ Scrit
90 |
—~
X
= 80 ,
g H. influenzae H. pylori
= No. of EPs _Rank_Scrit No. of EPs Rank_Scrit
_8 70 k Alanine . 4934 38 23
o Asparagine 3640 32 22 1465 43 18
-E Aspartic Acid 3885 32 22 1616 43 18
o 60 L Cysteine — — - 2147 48 18
O Glutamine 3885 34 23 1440 43 18
E Glutamic Acid --- - - 1618 42 18
c 50 - Glycine 3651 30 22 1502 44 18
o Histidine 4702 49 22
“6 Isoleucine 4675 47 22
E 40 | Leucine 7079 38 23
[T Lysine 4363 47 22 1736 44 18
) Methionine 4538 43 22 - --- --
= 30 F Phenylalanine 4953 35 22
"a . : Proline 5819 42 24 1992 45 18
= /[0 :H. influenzae Serine 3885 32 22 1480 43 18
E 20 / i Threonine 4513 35 22 1594 43 18
5 . ‘H. py/or/ Tryptophan 6735 34 22 3083 53 18
O Tyrosine 4953 35 22 2133 49 18
10 Valine 4934 39 23 —
Average 4686 378 223 1817 45 18
St. Dev 998 57 0.6 453 3.2 0
0 ! ! L ! 1 1 ! !
0 5 10 15 20 25 30 35 40

Mode Number (n)

Cumulative fractional contribution : sum of the first n fractional
singular values. This value represents the contribution of the first n
modes to the overall description of the system. The rank of the
respective extreme pathway matrix is shown for nonessential amino
acids. S_;;: number of singular values that account for 95% of the
variance in the matrices. Entries with “- - -” correspond to essential
amino acids.
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Extreme Pathway Analysis is a standard technique for analysis of metabolic
networks.

Number of EPs can become extremely large — hard to interpret.

EP is an excellent basis for studying systematic effects of reaction cut sets.

SVD could facilitate analysis of EPs. Has not been widely used sofar.

It will be very important to consider the interplay of metabolic and regulatory
networks.
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