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V13 Graph connectivity – Metabolic networks 
In the first half of this lecture section, we use the theory of network flows to give 
constructive proofs of Menger‘s theorem. 

These proofs lead directly to algorithms for determining the edge-connectivity and 
vertex-connectivity of a graph. 

The strategy to prove Menger‘s theorems is based on properties of certain 
networks whose arcs all have unit capacity. 

These 0-1 networks are constructed from the original graph.  
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Determining the connectivity of a graph 
Lemma 12.3.1. Let N be an s-t network such that  
 outdegree(s) > indegree(s), 
 indegree(t) > outdegree (t), and 
 outdegree(v) = indegree(v) for all other vertices v. 
Then, there exists a directed s-t path in network N. 

Proof. Let W be a longest directed trail (trail = walk without repeated edges; path = trail 
without repeated vertices) in network N that starts at source s, and let z be its terminal 
vertex. 
If vertex z were not the sink t, then there would be an arc not in trail W that is directed from 
z (since indegree(z) = outdegree(z) ). 
But this would contradict the maximality of trail W. 
Thus, W is a directed trail from source s to sink t. 
If W has a repeated vertex, then a part of W determines a directed cycle, which can be 
deleted from W to obtain a shorter directed s-t trail. 
This deletion step can be repeated until no repeated vertices remain, at which point, the 
resulting directed trail is an s-t path. □ 
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Determining the connectivity of a graph 
Proposition 12.3.2. Let N be an s-t network such that  
 outdegree(s) – indegree(s) = m = indegree(t) – outdegree (t), 
and  outdegree(v) = indegree(v) for all vertices v ≠ s,t. 
Then, there exist m disjoint directed s-t path in network N. 

Proof. If m = 1, then there exists an open eulerian directed trail T from  
source s to sink t by Theorem 6.1.3. 

Review: An eulerian trail in a graph is a trail that visits every edge of that graph exactly once. 

Theorem 6.1.3. A connected digraph D has an open eulerian trail from vertex x to vertex y if and only if 
indegree(x) + 1 = outdegree(x), indegree(y) = outdegree(y) + 1, and all vertices except x and y have equal 
indegree and outdegree. 
Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph 
have an even degree. 

Theorem 1.5.2. Every open x-y walk W is either an x-y path or can be reduced to an x-y path. 

Therefore, trail T is either an s-t directed path or can be reduced to an s-t path. 
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Determining the connectivity of a graph 
By way of induction, assume that the assertion is true for m = k, for some k ≥ 1, 
and consider a network N for which the condition holds for m = k +1. 
There does exist at least one directed s-t path P by Lemma 12.3.1. 

If the arcs of path P are deleted from network N, then the resulting network N - P 
satisfies the condition of the proposition for m = k. 

By the induction hypothesis, there exist k arc-disjoint directed s-t paths in network  
N - P. These k paths together with path P form a collection of k + 1 arc-disjoint 
directed s-t paths in network N. □ 
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Basic properties of 0-1 networks 
Definition A 0-1 network is a capacitated network whose arc capacities  
are either 0 or 1. 

and 

Proposition 12.3.3. Let N be an s-t network such that cap(e) = 1 for every arc e. 
Then the value of a maximum flow in network N equals the maximum number of 
arc-disjoint directed s-t paths in N. 

Proof: Let f* be a maximum flow in network N, and let r be the maximum number of 
arc-disjoint directed s-t paths in N. 
Consider the network N* obtained by deleting from N all arcs e for which f*(e) = 0. 
Then f*(e) = 1 for all arcs e in network N*. 
It follows from the definition that for every vertex v in network N*, 
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Basic properties of 0-1 networks 
Thus by the definition of val(f*) and by the conservation-of-flow property, 

 outdegree(s) – indegree (s) = val(f*) = indegree(t) – outdegree(t) 
and outdegree(v) = indegree(v), for all vertices v ≠ s,t. 

Then f is a feasible flow in network N, with val(f) = r. 
It follows that val(f*) ≥ r. □ 

By Proposition 12.3.2., there are val(f*) arc-disjoint s-t paths in network N*, and 
hence, also in N, which implies that val(f*) ≤ r. 

To obtain the reverse inequality, let {P1,P2, ..., Pr} be the largest collection of arc-
disjoint directed s-t paths in N, and consider the function f: EN → R+ defined by  
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Separating Sets and Cuts 
Review from §5.3 
Let s and t be distinct vertices in a graph G. An s-t separating edge set in G is a 
set of edges whose removal destroys all s-t paths in G. 

Thus, an s-t separating edge set in G is an edge subset of EG that contains at least 
one edge of every s-t path in G. 

Definition: Let s and t be distinct vertices in a digraph D. 
An s-t separating arc set in D is a set of arcs whose removal destroys all directed 
s-t paths in D. 

Thus, an s-t separating arc set in D is an arc subset of ED that contains at least one 
arc of every directed s-t path in digraph D. 

Remark: For the degenerate case in which the original graph or digraph has no  
s-t paths, the empty set is regarded as an s-t separating set. 
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Separating Sets and Cuts 
Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e. 
Then the capacity of a minimum s-t cut in network N equals the minimum number of 
arcs in an s-t separating arc set in N. 

Proof: Let K* = 〈Vs ,Vt 〉 be a minimum s-t cut in network N, and let q be the 
minimum number of arcs in an s-t separating arc set in N. 
Since K* is an s-t cut, it is also an s-t separating arc set. Thus cap(K*) ≥ q. 

To obtain the reverse inequality, let S be an s-t separating arc set in network N 
containing q arcs, and let R be the set of all vertices in N that are reachable from 
source s by a directed path that contains no arc from set S. 

Then, by the definitions of arc set S and vertex set R, t ∉ R, which means that 
〈 R, VN - R 〉 is an s-t cut.  

Moreover, 〈 R, VN - R 〉 ⊆ S. Therefore 
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Separating Sets and Cuts 

which completes the proof. □ 
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Proof: Let N be the s-t network obtained by assigning a unit capacity to each arc of 
digraph D. Then the result follows from Propositions 12.3.3. and 12.3.4., together 
with the max-flow min-cut theorem. □ 

Arc and Edge Versions of Menger’s Theorem Revisited 
Theorem 12.3.5 [Arc form of Menger‘s theorem] 
Let s and t be distinct vertices in a digraph D. Then the maximum number of arc-
disjoint directed s-t paths in D is equal to the minimum number of arcs in an s-t 
separating set of D. 

Theorem 12.2.4 [Max-Flow Min-Cut] For a given network, the value of a maximum flow is equal to the 
capacity of a minimum cut. 

Proposition 12.3.3. Let N be an s-t network such that cap(e) = 1 for every arc e. Then the value of a 
maximum flow in network N equals the maximum number of arc-disjoint directed s-t paths in N. 

Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e. Then the capacity of a 
minimum s-t cut in network N equals the minimum number of arcs in an s-t separating arc set in N. 

13. Lecture WS 2014/15 



Bioinformatics III 
11 

Idea – extreme pathways 

A torch is directed at an open door 
and shines into a dark room ... 

What area is lighted ? 

Instead of marking all lighted points 
individually,  
it would be sufficient to characterize 
the „extreme rays“ that go through the 
corners of the door. 

The lighted area is the area between 
the extreme rays = linear 
combinations of the extreme rays. 
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Stoichiometric matrix - Flux Balance Analysis 
Stoichiometric matrix S:  
m × n matrix with stochiometries of 
the n reactions as columns and 
participations of m metabolites as 
rows.  

The stochiometric matrix is an 
important part of the in silico model. 
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Papin et al. TIBS 28, 250 (2003)  

With the matrix, the methods of 
extreme pathway and elementary 
mode analyses can be used to 
generate a unique set of pathways 
P1, P2, and P3 that allow to 
express all steady-state fluxes as 
linear combinations of P1 – P3. 
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 Extreme Pathways 
introduced into metabolic analysis by the lab of Bernard Palsson  
(Dept. of Bioengineering, UC San Diego). The publications of this lab  

are available at http://gcrg.ucsd.edu/publications/index.html 

The extreme pathway 
technique is based 
on the stoichiometric 
matrix representation 
of metabolic networks. 

All external fluxes are 
defined as pointing outwards. 

Schilling, Letscher, Palsson, 
J. theor. Biol. 203, 229 (2000) 
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Idea – extreme pathways 

Edwards & Palsson PNAS 97, 5528 (2000)  

Either S . x ≥ 0  
(S acts as rotation matrix) 

Shaded area: 
x ≥ 0 

Shaded area: 
x1 ≥ 0 ∧ x2 ≥ 0  

S 

Shaded area: 
r1 ≥ 0 ∧ r2 ≥ 0  

Duality of two matrices 
S and R. 

or find optimal vectors  
 change coordinate system 
from x1, x2 to r1, r2.  
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Extreme Pathways – algorithm - setup 

The algorithm to determine the set of extreme pathways for a reaction network 
follows the pinciples of algorithms for finding the extremal rays/ generating 
vectors of convex polyhedral cones. 

Combine n × n identity matrix (I) with the transpose of the stoichiometric 
matrix ST. I serves for bookkeeping. 

Schilling, Letscher, Palsson, 
J. theor. Biol. 203, 229 (2000) 

S 

I ST 
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separate internal and external fluxes 
Examine constraints on each of the exchange fluxes as given by 
 αj ≤ bj ≤ βj 

If the exchange flux is constrained to be positive → do nothing. 
If the exchange flux is constrained to be negative → multiply the 
corresponding row of the initial matrix by -1. 
If the exchange flux is unconstrained → move the entire row to a temporary 
matrix T(E). This completes the first tableau T(0).  

T(0) and T(E) for the example reaction system are shown on the previous slide. 

Each element of these matrices will be designated Tij. 

Starting with i = 1 and T(0) = T(i-1) the next tableau is generated in the following 
way: 

Schilling, Letscher, Palsson, 
J. theor. Biol. 203, 229 (2000) 
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idea of algorithm 
(1) Identify all metabolites that do not have an unconstrained exchange flux 
associated with them.  
The total number of such metabolites is denoted by µ. 
The example system contains only one such metabolite, namely C (µ = 1). 

Schilling, Letscher, Palsson,  
J. theor. Biol. 203, 229 (2000) 

What is the main idea? 
- We want to find balanced extreme pathways  
that don‘t change the concentrations of  
metabolites when flux flows through 
(input fluxes are channelled to products not to 
accumulation of intermediates). 
- The stochiometrix matrix describes the coupling of each reaction to the 
concentration of metabolites X. 
- Now we need to balance combinations of reactions that leave concentrations 
unchanged. Pathways applied to metabolites should not change their 
concentrations → the matrix entries 
need to be brought to 0. 
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keep pathways that do not change  
concentrations of internal metabolites 

(2) Begin forming the new matrix T(i) by copying 
all rows from T(i – 1) which already contain a zero in   
the column of ST that corresponds to the first  
metabolite identified in step 1, denoted by index C. 
(Here 3rd column of ST.) 

Schilling, Letscher, Palsson, J. theor. Biol. 203, 229 (2000) 

1 -1 1 0 0 0 

1 0 -1 1 0 0 

1 0 1 -1 0 0 

1 0 0 -1 1 0 

1 0 0 1 -1 0 

1   0 0 -1 0 1 

1 -1 1 0 0 0 

T(0) = 

T(1) = 

+ 

A     B   C     D    E 
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balance combinations of other pathways 
(3) Of the remaining rows in  T(i-1) add together 
all possible combinations of rows which contain 
values of the opposite sign in column C, such that 
the addition produces a zero in this column. 

Schilling, et al. 
JTB 203, 229 

1 -1 1 0 0 0 

1 0 -1 1 0 0 

1 0 1 -1 0 0 

1 0 0 -1 1 0 

1 0 0 1 -1 0 

1 0 0 -1 0 1 

T(0) = 

T(1) = 

1 0 0 0 0 0 -1 1 0 0 0 

0 1 1 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 -1 0 1 0 

0 1 0 0 0 1 0 -1 0 0 1 

0 0 1 0 1 0 0 1 0 -1 0 

0 0 0 1 1 0 0 0 0 0 0 

0 0 0 0 1 1 0 0 0 -1 1 
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remove “non-orthogonal” pathways 

(4) For all rows added to T(i) in steps 2 and 3 check that no row exists that is a 
non-negative combination of any other rows in T(i) . 

One method for this works as follows: 
let A(i) = set of column indices j for which the elements of row i = 0. 

For the example above   Then check to determine if there exists 
A(1) = {2,3,4,5,6,9,10,11}   another row (h) for which A(i) is a  
A(2) = {1,4,5,6,7,8,9,10,11}  subset of A(h). 
A(3) = {1,3,5,6,7,9,11} 
A(4) = {1,3,4,5,7,9,10}  If A(i) ⊆ A(h), i ≠ h 
A(5) = {1,2,4,6,7,9,11}  where 
A(6) = {1,2,3,6,7,8,9,10,11}  A(i) = { j : Ti,j = 0, 1 ≤ j ≤ (n+m) } 
A(7) = {1,2,3,4,7,8,9}  then row i must be eliminated from T(i) 

Schilling et al. 
JTB 203, 229 
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repeat steps for all internal metabolites 

(5) With the formation of T(i) complete steps 2 – 4 for all of the metabolites that do 
not have an unconstrained exchange flux operating on the metabolite, 
incrementing i by one up to µ. The final tableau will be T(µ). 

Note that the number of rows in T(µ) will be equal to k, the number of extreme 
pathways. 

Schilling et al. 
JTB 203, 229 
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balance external fluxes 

(6) Next we append T(E) to the bottom of T(µ). (In the example here µ = 1.) 
This results in the following tableau: 

Schilling et al. 
JTB 203, 229 

T(1/E) = 

1 -1 1 0 0 0 

1 1 0 0 0 0 0 

1 1 0 -1 0 1 0 

1 1 0 -1 0 1 0 

1 1 0 1 0 -1 0 

1 1 0 0 0 0 0 

1 1 0 0 0 -1 1 

1 -1 0 0 0 0 

1 0 -1 0 0 0 

1 0 0 0 -1 0 

1 0 0 0 0 -1 
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balance external fluxes 

(7) Starting in the n+1 column (or the first non-zero column on the right side),  
if Ti,(n+1) ≠ 0 then add the corresponding non-zero row from T(E) to row i so as to 
produce 0 in the n+1-th column. 
This is done by simply multiplying the corresponding row in T(E) by Ti,(n+1) and 
adding this row to row i . 

Repeat this procedure for each of the rows in the upper portion of the tableau so 
as to create zeros in the entire upper portion of the (n+1) column. 

When finished, remove the row in T(E) corresponding to the exchange flux for the 
metabolite just balanced. 

Schilling et al. 
JTB 203, 229 
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balance external fluxes 

(8) Follow the same procedure as in step (7) for each of the columns on the right 
side of the tableau containing non-zero entries.  

(In our example we need to perform step (7) for every column except the middle 
column of the right side which correponds to metabolite C.) 

The final tableau T(final) will contain the transpose of the matrix P containing the 
extreme pathways in place of the original identity matrix. 

Schilling et al. 
JTB 203, 229 
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pathway matrix 

 T(final) = 

 PT = 

Schilling et al. 
JTB 203, 229 

1 -1 1 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 1 -1 1 0 0 0 0 0 0 

1 1 -1 1 0 0 0 0 0 0 

1 1 1 -1 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 1 -1 1 0 0 0 0 0 0 

1 0 0 0 0 0 -1 1 0 0 

0 1 1 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 -1 1 0 

0 1 0 0 0 1 0 -1 0 1 

0 0 1 0 1 0 0 1 -1 0 

0 0 0 1 1 0 0 0 0 0 

0 0 0 0 1 1 0 0 -1 1 

v1    v2   v3   v4    v5   v6    b1   b2    b3   b4 

p1     
p7    
p3   
p2    
p4    
p6     
p5 
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Extreme Pathways for model system 

  

  

Schilling et al. 
JTB 203, 229 

1 0 0 0 0 0 -1 1 0 0 

0 1 1 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 -1 1 0 

0 1 0 0 0 1 0 -1 0 1 

0 0 1 0 1 0 0 1 -1 0 

0 0 0 1 1 0 0 0 0 0 

0 0 0 0 1 1 0 0 -1 1 

v1    v2   v3   v4    v5   v6    b1   b2    b3   b4 

p1     
p7    
p3   
p2    
p4    
p6     
p5 

2 pathways p6 and p7  are not shown in the bottom fig.  
because all exchange fluxes with the exterior are 0. 
Such pathways have no net overall effect on the  
functional capabilities of the network. 
They belong to the cycling of reactions v4/v5 and v2/v3. 
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How reactions appear in pathway matrix 

In the matrix P of extreme pathways, each column is an EP and each row 
corresponds to a reaction in the network. 
The numerical value of the i,j-th element corresponds to the relative flux level 
through the i-th reaction in the j-th EP. 

Papin, Price, Palsson,  
Genome Res. 12, 1889 (2002) 
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Papin, Price, Palsson, Genome Res. 12, 1889 (2002) 

After normalizing P to a matrix with entries 0 or 1,  
the symmetric Pathway Length Matrix PLM can be calculated: 

where the values along the diagonal correspond to the length of the EPs. 

Properties of pathway matrix 

The off-diagonal terms of PLM are the number of reactions that a pair of extreme 
pathways have in common. 
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Papin, Price, Palsson, Genome Res. 12, 1889 (2002) 

One can also compute a reaction participation matrix PPM from P: 

where the diagonal correspond to the number of pathways in which the given 
reaction participates. 

Properties of pathway matrix 
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EP Analysis of H. pylori and H. influenza 

Amino acid synthesis in Heliobacter pylori vs. 
Heliobacter influenza studied by EP analysis. 

Papin, Price, Palsson, Genome Res. 12, 1889 (2002) 
13. Lecture WS 2014/15 
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Extreme Pathway Analysis 
Calculation of EPs for increasingly large networks is computationally intensive and 
results in the generation of large data sets. 

Even for integrated genome-scale models for microbes under simple conditions,  
EP analysis can generate thousands or even millions of vectors! 

Papin, Price, Palsson, Genome Res. 12, 1889 (2002) 

It turned out that the number of reactions that participate in EPs that produce a 
particular product is usually poorly correlated to the product yield and the molecular 
complexity of the product. 

Possible way out? 

Matrix diagonalisation – eigenvectors: only possible for quadratic n × n  matrices 
with rank n. 
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Quasi-diagonalisation of pathway matrix by SVD 
Suppose M is an m × n matrix with real or complex entries.  
Then there exists a factorization of the form 
          M = U Σ V*   where  
           U : m × m unitary matrix, (U*U = UU* = I) 
           Σ : is an m × n matrix with nonnegative numbers on the diagonal and zeros off 
the diagonal,  
           V* : the transpose of V, is an n × n unitary matrix of real or complex numbers.  
Such a factorization is called a singular-value decomposition of M. 

U describes the rows of M with respect to the base vectors associated with the 
singular values. 

V describes the columns of M with respect to the base vectors associated with the 
singular values. Σ contains the singular values. 

One commonly insists that the values Σi,i be ordered in non-increasing fashion.  
Then, the diagonal matrix Σ is uniquely determined by M (but not U and V). 
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Single Value Decomposition of EP matrices 
For a given EP matrix P ∈ℜ n×p, SVD decomposes P into 3 matrices 

Price et al. Biophys J 84, 794 (2003) 

where U ∈ℜ n×n : orthonormal matrix of the left singular vectors,  
           V ∈ℜp×p  : an analogous orthonormal matrix of the right singular vectors,   
           Σ ∈ℜr×r   :a diagonal matrix containing the singular values σi=1..r arranged in  
                          descending order where r is the rank of P. 

The first r columns of U and V, referred to as the left and right singular vectors, or 
modes, are unique and form the orthonormal basis for the column space and row 
space of P. 
The singular values are the square roots of the eigenvalues of  PTP.  
The magnitudes of the singular values in Σ indicate the relative contribution of the 
singular vectors in  U and V in reconstructing P.  
E.g. the second singular value contributes less to the construction of P than  
the first singular value etc.  
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Single Value Decomposition of EP: Interpretation 

Price et al. Biophys J 84, 794 (2003) 

The first mode (as the other modes) corresponds to a valid biochemical pathway 
through the network.  

The first mode will point 
into the portions of the 
cone with highest density 
of EPs. 
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SVD applied for Heliobacter systems 

Price et al. Biophys J 84, 794 (2003) 

Cumulative fractional 
contributions for the  
SVD of the EP matrices of  
H. influenza and H. pylori. 

This plot represents the 
contribution of the first 
n modes to the overall 
description of the system. 

Ca. 20 modes allow  
describing most of the 
metabolic activity in the 
Network. 

Cumulative fractional contribution : sum of the first n fractional 
singular values. This value represents the contribution of the first n 
modes to the overall description of the system. The rank of the 
respective extreme pathway matrix is shown for nonessential amino 
acids. Scrit: number of singular values that account for 95% of the 
variance in the matrices. Entries with ‘‘- - -’’ correspond to essential 
amino acids. 
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Summary – Extreme Pathways 
Extreme Pathway Analysis is a standard technique for analysis of metabolic 
networks. 

Number of EPs can become extremely large – hard to interpret. 

EP is an excellent basis for studying systematic effects of reaction cut sets. 

SVD could facilitate analysis of EPs. Has not been widely used sofar. 

It will be very important to consider the interplay of metabolic and regulatory 
networks. 
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