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V14 Metabolic Networks - Introduction 
There exist different levels of computational methods for  
describing metabolic networks: 

- stoichiometry/kinetics of classical biochemical pathways (glycolysis, TCA cycle, ... 

- stoichiometric modelling (flux balance analysis): theoretical capabilities of an  
integrated cellular process, feasible metabolic flux distributions 

- automatic decomposition of metabolic networks  
(elementary nodes, extreme pathways ...) 

-  kinetic modelling of coupled cellular pathways (E-Cell ...)  
General problem: lack of kinetic information  
on the dynamics and regulation of cellular metabolism 
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KEGG database 

The KEGG PATHWAY 
database (http://www.genome. jp/kegg/

pathway.html) is a collection of 
graphical diagrams (KEGG 
pathway maps) representing 
molecular interaction networks 
in various cellular processes.  
Each reference pathway is 
manually drawn and updated 
with the notation shown left.  

Organism-specific pathways 
(green-colored pathways) are 
computationally generated 
based on the KO assignment 
in individual genomes.  

14. Lecture WS 2014/15 
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Citrate Cycle (TCA cycle) in E.coli 

14. Lecture WS 2014/15 
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Citrate Cycle (TCA cycle) in different organisms 

  Citrate cycle (TCA cycle) - Escherichia coli K-12 MG1655 Citrate cycle (TCA cycle) - Helicobacter pylori 26695   

14. Lecture WS 2014/15 

Green/red: enzyme annotated in this organism 
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EcoCyc Database 
E.coli genome contains 4.7 million DNA bases. 
How can we characterize the functional complement of E.coli and according to 
what criteria can we compare the biochemical networks of two organisms? 

EcoCyc contains the metabolic map of E.coli defined as the set of all known  
pathways, reactions and enzymes of E.coli small-molecule metabolism. 

Analyze  
- the connectivity relationships of the metabolic network 
- its partitioning into pathways 
- enzyme activation and inhibition 
- repetition and multiplicity of elements such as enzymes, reactions, and substrates. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Glycolysis in E.coli 
Blue arrows: biochemical reactions 
clicking on arrow shows responsible enzyme 

+ and - : activation and inhibition of enzymes 

www.ecocyc.org 
14. Lecture WS 2014/15 
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Regulation of Glycolysis in E.coli 
Boxed genes on the left are enzymes of glycolysis 
pathway 

pgi: phosphoglucose isomerase 
pgk: phosphoglycerate kinase 
pfk: 6-phosphofructo kinase ... 

Circled FruR, CRP etc. on the right : transcription 
factors 

Green pointed arrows: activation of transcription;  

Violet blunt arrow : repression;  

Brown circle-ended arrow indicates that the factor can 
activate or repress, depending on circumstances. 

14. Lecture WS 2014/15 
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Pentose Phosphate pathway 
Blue arrows: biochemical reactions 
clicking on arrow shows responsible enzyme 

+ and - : activation and inhibition of enzymes 

14. Lecture WS 2014/15 

www.ecocyc.org 
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Regulation of Pentose Phosphate Pathway 
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TCA cycle 
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Regulation of TCA cycle 
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EcoCyc Analysis of E.coli Metabolism 
In 2000, E.coli genome contained 4391 predicted genes, of which 4288 coded for 
proteins (4503 genes in Dec. 2011, 209 RNAs). 

676 of these genes form 607 enzymes of the E.coli small-molecule metabolism. 

Of those enzymes, 311 are protein complexes, 296 are monomers. 

Organization of protein complexes.  
Distribution of subunit counts for all 
EcoCyc protein complexes.  
The predominance of monomers, 
dimers, and tetramers is obvious  

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Reactions 
EcoCyc describes 905 metabolic reactions that are catalyzed by E. coli.  
(1991 in Dec. 2011) 

Of these reactions, 161 are not involved in small-molecule metabolism, 
e.g. they participate in macromolecule metabolism such as DNA replication and 
tRNA charging. 

Of the remaining 744 reactions, 569 have been assigned to at least one pathway. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 

14. Lecture WS 2014/15 
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Reactions 
The number of reactions (744) and the number of enzymes (607) differ ... 
WHY?? 

(1) there is no one-to-one mapping between enzymes and reactions – 
some enzymes catalyze multiple reactions, and some reactions are catalyzed 
by multiple enzymes. 

(2) for some reactions known to be catalyzed by E.coli, the enzyme has not yet 
been identified. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 

14. Lecture WS 2014/15 
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Compounds 
The 744 reactions of E.coli  small-molecule metabolism involve a total of 791 
different substrates.  

On average, each reaction contains 4.0 substrates, (think of A + B <-> C + D) 

Number of reactions 
containing varying 
numbers of substrates 
(reactants plus 
products).  

Ouzonis, Karp, Genome Res. 10, 568 (2000) 

14. Lecture WS 2014/15 
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Ouzonis, Karp, Genome Res. 10, 568 (2000) 

Each distinct substrate occurs in an average of 2.1 reactions. 

Compounds 

14. Lecture WS 2013/14 
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Pathways 
EcoCyc describes 131 pathways (347 in Dec. 2011): 
 energy metabolism 
 nucleotide and amino acid biosynthesis 
 secondary metabolism 

Pathways vary in length from a  
single reaction step to 16 steps  
with an average of 5.4 steps. 

Length distribution of 
EcoCyc pathways  

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Bioinformatics III 
18 

Pathways 
However, there is no precise 
biological definition of a pathway. 

The partitioning of the metabolic 
network into pathways (including 
the well-known examples of 
biochemical pathways) is 
somehow arbitrary. 

These decisions of course also 
affect the distribution of pathway 
lengths. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Enzyme Modulation 
An enzymatic reaction is a type of EcoCyc object that represents the pairing 
of an enzyme with a reaction catalyzed by that enzyme. 

EcoCyc contains extensive information on the modulation of E.coli enzymes with 
respect to particular reactions:  
- activators and inhibitors of the enzyme,  
- cofactors required by the enzyme 
- alternative substrates that the enzyme will accept. 

Of the 805 enzymatic-reaction objects within EcoCyc, physiologically relevant 
activators are known for 22, physiologically relevant inhibitors are known for 80. 

327 (almost half) require a cofactor or prosthetic group. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 

14. Lecture WS 2014/15 
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Enzyme Modulation 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
14. Lecture WS 2014/15 
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Reactions catalyzed by more than one enzyme 
Diagram showing the number of reactions  
that are catalyzed by one or more enzymes.  
Most reactions are catalyzed by one enzyme,  
some by two, and very few by more than two  
enzymes.  

For 84 reactions, the corresponding enzyme is not yet encoded in EcoCyc. 

What may be the reasons for isozyme redundancy? 

(2) the reaction is easily „invented“; therefore, there is more than one protein family 
that is independently able to perform the catalysis (convergence). 

(1) the enzymes that catalyze the same reaction are paralogs (homologs) and 
have duplicated (or were obtained by horizontal gene transfer), 
acquiring some specificity but retaining the same mechanism (divergence) 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
14. Lecture WS 2014/15 
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Enzymes that catalyze more than one reaction 
Genome predictions usually assign a single enzymatic function. 
However, E.coli is known to contain many multifunctional enzymes. 
Of the 607 E.coli enzymes, 100 are multifunctional, either having the same active 
site and different substrate specificities or different active sites. 

Number of enzymes that catalyze one or  
more reactions. Most enzymes catalyze  
one reaction; some are multifunctional. 

The enzymes that catalyze 7 and 9 reactions are purine nucleoside phosphorylase 
and nucleoside diphosphate kinase. 

The high proportion of multifunctional enzymes implies that the genome projects 
may significantly underpredict multifunctional enzymes! 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
14. Lecture WS 2014/15 
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Reactions participating in more than one pathway 
     

The 99 reactions belonging to multiple  
pathways appear to be the intersection 
points in the complex network of chemical 
processes in the cell. 

E.g. the reaction present in 6 pathways corresponds to the reaction catalyzed by 
malate dehydrogenase, a central enzyme in cellular metabolism. 

Ouzonis, Karp,  
Genome Res. 10, 568 (2000) 

14. Lecture WS 2014/15 
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Large-scale structure: Metabolic networks are scale-free  
Attributes of generic network structures. 
a, Representative structure of the 
network generated by the Erdös–Rényi 
network model. b, The network 
connectivity can be characterized by the 
probability, P(k), that a node has k links. 
For a random network P(k) peaks 
strongly at k =  <k>  and decays 
exponentially for large k (i.e., P(k) ≈  e-k 
for k  >>  <k>  and k <<   <k> ).  
c, In the scale-free network most nodes 
have only a few links, but a few nodes, 
called hubs (dark), have a very large 
number of links.  
d, P(k) for a scale-free network has no 
well-defined peak, and for large k it 
decays as a power-law, P(k) ≈ k-γ, 
appearing as a straight line with slope -  
on a log–log plot.  Jeong et al. Nature 407, 651 (2000) 

14. Lecture WS 2014/15 
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Connectivity distributions P(k) for substrates 
a, Archaeoglobus fulgidus (archae);  
b, E. coli (bacterium);  
c, Caenorhabditis elegans (eukaryote) 
d, The connectivity distribution 
averaged over 43 organisms.  

x-axis: metabolites participating in k 
reactions 
y-axis (P(k)): number/frequency of 
such metabolites 

log–log plot, counts separately the 
incoming (In) and outgoing links (Out) 
for each substrate. kin (kout) 
corresponds to the number of 
reactions in which a substrate 
participates as a product (educt).  Jeong et al. Nature 407, 651 (2000) 

14. Lecture WS 2014/15 
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Properties of metabolic networks 
a, The histogram of the biochemical pathway 
lengths, l, in E. coli.  
b, The average path length (diameter) for each 
of the 43 organisms.  
N : number of metabolites in each organism 

c, d, Average number of incoming links (c) or 
outgoing links (d) per node for each organism.  

e, The effect of substrate removal on the 
metabolic network diameter of E. coli.  

In the top curve (red) the most connected 
substrates are removed first. In the bottom 
curve (green) nodes are removed randomly. M  
= 60 corresponds to  8% of the total number of 
substrates in found in E. coli.  

Jeong et al. Nature 407, 651 (2000) 

14. Lecture WS 2014/15 

b–d, Archaea (magenta), bacteria (green) and 
eukaryotes (blue) are shown.  
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Interpretation of metabolic network connectivity 
Despite significant variations in their individual constituents and pathways,  

the metabolic networks of 43 organisms representing all 3 domains of life  

have the same topological scaling properties and show striking similarities  

to the inherent organization of complex non-biological systems.  

Jeong et al. Nature 407, 651 (2000) 

14. Lecture WS 2014/15 
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Development of the network-based pathway paradigm 

Papin et al. TIBS 28, 250 (2003)  

(a) With advanced biochemical tech-
niques, years of research have led to the 
precise characterization of individual 
reactions. As a result, the complete 
stoichiometries of many metabolic 
reactions have been characterized.  
(b) Most of these reactions have been 
grouped into `traditional pathways' (e.g. 
glycolysis) that do not account for 
cofactors and byproducts in a way that 
lends itself to a mathematical description. 
However, with sequenced and annotated 
genomes, models can be made that 
account for many metabolic reactions in 
an organism.  

(c) Subsequently, network-based, 
mathematically defined pathways 
can be analyzed that account for a 
complete network (black and gray 
arrows correspond to active and 
inactive reactions).  

14. Lecture WS 2014/15 
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Stoichiometric matrix - Flux Balance Analysis 
Stoichiometric matrix S:  
m × n matrix with stochiometries of 
the n reactions as columns and 
participations of m metabolites as 
rows.  

The stochiometric matrix is an 
important part of the in silico model. 

14. Lecture WS 2014/15 

Papin et al. TIBS 28, 250 (2003)  

With the matrix, the methods of 
extreme pathway and elementary 
mode analyses can be used to 
generate a unique set of pathways 
P1, P2, and P3 that allow to 
express all steady-state fluxes as 
linear combinations of P1 – P3. 
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Flux balancing 
Any chemical reaction requires mass conservation. 
Therefore one may analyze metabolic systems  
by requiring mass conservation.  
Only required: knowledge about stoichiometry of metabolic pathways. 

For each metabolite Xi : 

dXi /dt =    Vsynthesized    – Vused  

 + Vtransported_in – Vtransported_out 

14. Lecture WS 2014/15 
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Flux balancing 
Under steady-state conditions, the mass balance constraints in a metabolic 
network can be represented mathematically by the matrix equation: 

S · v = 0 

where the matrix S is the stoichiometric matrix and the vector v represents all 
fluxes in the metabolic network, including the internal fluxes, transport fluxes and 
the growth flux. 

14. Lecture WS 2014/15 
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Flux balance analysis 
Since the number of metabolites is generally smaller than the number of reactions 
(m < n) the flux-balance equation is typically underdetermined.  

Therefore there are generally multiple feasible  
flux distributions that satisfy the mass balance constraints. 
The set of solutions are confined to the nullspace of matrix S. 

S          .    v   =   0 

14. Lecture WS 2014/15 
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Null space: space of feasible solutions 

14. Lecture WS 2014/15 
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Feasible solution set for a metabolic reaction network 

The steady-state operation of the 
metabolic network is restricted to the 
region within a pointed cone, defined 
as the feasible set.  

The feasible set contains all flux vectors 
that satisfy the physicochemical 
constrains.  

Thus, the feasible set defines the 
capabilities of the metabolic network.  
All feasible metabolic flux distributions 
lie within the feasible set. 

Edwards & Palsson PNAS 97, 5528 (2000)  
14. Lecture WS 2014/15 
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True biological flux 
To find the „true“ biological flux in cells (→ e.g. Heinzle, UdS) one needs additional 
(experimental) information, 
or one may impose constraints 

on the magnitude of each individual metabolic flux. 

The intersection of the nullspace and the region  
defined by those linear inequalities defines a  
region in flux space = the feasible set of fluxes. 

In the limiting case, where all constraints 
on the metabolic network are known, such 

as the enzyme kinetics and gene 
regulation, the feasible set may be reduced 
to a single point. This single point must lie 

within the feasible set.  
14. Lecture WS 2014/15 
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E.coli in silico 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

Best studied cellular system: E. coli. 

In 2000, Edwards & Palsson constructed an in silico representation of  
E.coli metabolism.  

There were 2 good reasons for this: 

(1)  genome of E.coli MG1655 was already completely sequenced, 

(2)  Because of long history of E.coli research, biochemical literature, genomic 
information, metabolic databases EcoCyc, KEGG contained biochemical or 
genetic evidence for every metabolic reaction included in the in silico 
representation. In most cases, there existed both. 

14. Lecture WS 2014/15 
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Edwards & Palsson  

PNAS 97, 5528 (2000)  

Genes included in in silico model of E.coli 

14. Lecture WS 2014/15 
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E.coli in silico – Flux balance analysis 

Edwards & Palsson, PNAS 97, 5528 (2000)  

Define  αi = 0 for irreversible internal fluxes,  
 αi = -∞ for reversible internal fluxes (use biochemical literature) 

Transport fluxes for PO4
2-, NH3, CO2, SO4

2-, K+, Na+ were unrestrained. 

For other metabolites                          except for those that are able to leave the 
metabolic network (i.e. acetate, ethanol, lactate, succinate, formate, pyruvate etc.) 

When written in this way, the flux balance analysis (FBA) method finds the 
solution that maximizes the sum of all fluxes = gives maximal biomass. 

Find particular metabolic flux distribution in feasible set by linear programming. 
LP finds a solution that minimizes a particular metabolic objective –Z  
(subject to the imposed constraints) where e.g. 

14. Lecture WS 2014/15 
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E.coli in silico 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

Examine changes in the metabolic capabilities caused by hypothetical gene 
deletions. 

To simulate a gene deletion, the flux through the corresponding enzymatic 
reaction was restricted to zero. 

Compare optimal value of mutant (Zmutant) to the „wild-type“ objective Z  

to determine the systemic effect of the gene deletion. 

14. Lecture WS 2014/15 
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Rerouting of metabolic fluxes 
(Black) Flux distribution for the wild-type. 

(Red) zwf- mutant. Biomass yield is 99% of 
wild-type result.  

(Blue) zwf- pnt- mutant. Biomass yield is 
92% of wildtype result.  

Note how E.coli in silico circumvents 
removal of one critical reaction (red arrow) 
by increasing the flux through the 
alternative G6P → P6P reaction. 

Edwards & Palsson PNAS 97, 5528 (2000)  
14. Lecture WS 2014/15 
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Gene deletions in central intermediary metabolism 

The results were generated in a simulated aerobic environment with glucose as the carbon 
source. The transport fluxes were constrained as follows:  glucose = 10 mmol/g-dry weight 
(DW) per h;  oxygen = 15 mmol/g-DW per h.  

The maximal yields were calculated by using FBA with the objective of maximizing growth.  

Yellow bars: gene deletions that reduced the maximal biomass yield of Zmutant to less than 
95% of the in silico wild type Zwt.  

Edwards & Palsson PNAS 97, 5528 (2000)  

Maximal biomass yields 
on glucose for all 
possible single gene 
deletions in the central 
metabolic pathways 
(gycolysis, pentose 
phosphate pathway 
(PPP), TCA, respiration).  

14. Lecture WS 2014/15 
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Interpretation of gene deletion results 
The essential gene products were involved in the 3-carbon stage of glycolysis,  
3 reactions of the TCA cycle, and several points within the pentose phosphate 
pathway (PPP). 

The remainder of the central metabolic genes could be removed while E.coli in 
silico maintained the potential to support cellular growth. 

This suggests that a large number of the central metabolic genes can be removed 
without eliminating the capability of the metabolic network to support growth under 
the conditions considered. 

Edwards & Palsson PNAS 97, 5528 (2000)  
14. Lecture WS 2014/15 
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E.coli in silico – validation 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

+ and – means growth or no growth. 
± means that suppressor mutations have 
been observed that allow the mutant 
strain to grow. 

4 virtual growth media: 
glc: glucose,  gl: glycerol, succ: 
succinate, ac: acetate. 

In 68 of 79 cases, the prediction was 
consistent with exp. predictions. 

Red and yellow circles: predicted 
mutants that eliminate or reduce growth. 

14. Lecture WS 2014/15 
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Summary - FBA 
FBA analysis constructs the optimal network utilization simply using the 
stoichiometry of metabolic reactions and capacity constraints. 

Edwards & Palsson PNAS 97, 5528 (2000)  

For E.coli the in silico results are mostly consistent with experimental data. 

FBA shows that the E.coli metabolic network contains relatively few critical gene 
products in central metabolism. 
However, the ability to adjust to different environments (growth conditions) may be 
diminished by gene deletions. 

FBA identifies „the best“ the cell can do, not how the cell actually behaves under a 
given set of conditions. Here, survival was equated with growth. 

FBA does not directly consider regulation or regulatory constraints on the 
metabolic network. This can be treated separately (see future lecture). 

14. Lecture WS 2014/15 


