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Double Description Method (1953) 
All known algorithms for computing EMs are variants of the  
Double Description Method. 

-  derive simple & efficient algorithm for extreme ray enumeration, the so-called 
Double Description Method. 

-  show that it serves as a framework to the popular EM computation methods.  

Analogy with Computer Graphics problem: 
How can one efficiently describe the space 
in a dark room that is lighted by a torch  
shining through the open door? 
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Duality of Matrices 

Left: all points above the dividing line (the shaded area) fulfill the condition x ≥ 0.  
Middle: the points in the grey area fulfill the conditions x1 ≥ 0 and x2 ≥ 0.  

But how could we describe the points in the grey area on the right side in a 
correspondingly simple manner?  
Obviously, we could define a new coordinate system (r1, r2) as a new set of 
generating vectors.  
But we could also try to transform this area back into the grey area of the middle 
panel and use the old axes x1 and x2.  

In 2D, this transformation can be obviously best performed by multiplying all vectors 
inside the grey area by a two-dimensional rotation matrix. 

This is the 
duality 
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The Double Description Method 
A pair (A,R) of real matrices A and R is said to be a double description pair or 
simply a DD pair if the relationship 
 A x ≥ 0  if and only if  x = R λ for some λ ≥ 0 
holds. Clearly, for a pair (A,R) to be a DD pair, the column size of A has to equal 
the row size of R, say d. 

For such a pair,  
the set P(A) represented by A as  

is simultaneously represented by R as 

A subset P of ℜd is called polyhedral cone if P = P(A) for some matrix A,  
and A is called a representation matrix of the polyhedral cone P(A). 

Then, we say R is a generating matrix for P. Clearly, each column vector of a 
generating matrix R lies in the cone P and every vector in P is a nonnegative 
combination of some columns of R. 
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The Double Description Method 
Theorem 1 (Minkowski‘s Theorem for Polyhedral Cones) 
For any m × n real matrix A, there exists some d × m real matrix R such that (A,R) 
is a DD pair, or in other words, the cone P(A) is generated by R. 

The theorem states that every polyhedral cone admits a generating matrix. 
The nontriviality comes from the fact that the row size of R is finite. 
If we allow an infinite size, there is a trivial generating matrix consisting of all 
vectors in the cone. 

Also the converse is true: 

Theorem 2 (Weyl‘s Theorem for Polyhedral Cones) 
For any d × n real matrix R, there exists some m × d real matrix A such that (A,R) 
is a DD pair, or in other words, the set generated by R is the cone P(A). 
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The Double Description Method 
Task: how does one construct a matrix R from a given matrix A, and the converse? 

These two problems are computationally equivalent. 
Farkas‘ Lemma shows that (A,R) is a DD pair if and only if (RT,AT) is a DD pair. 

A more appropriate formulation of the problem is to require the minimality of R: 
find a matrix R such that no proper submatrix is generating P(A). 
A minimal set of generators is unique up to positive scaling when we assume the 
regularity condition that the cone is pointed, i.e. the origin is an extreme point of 
P(A). 

Geometrically, the columns of a minimal generating matrix are in 1-to-1 
correspondence with the extreme rays of P. 

Thus the problem is also known as the extreme ray enumeration problem. 

No efficient (polynomial) algorithm is known for the general problem. 
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Double Description Method: primitive form 
Suppose that the m × d matrix A is given and let 
(This is equivalent to the situation at the beginning of constructing EPs or EFMs: we only know S.) 

The DD method is an incremental algorithm to construct a d × m matrix R  
such that (A,R) is a DD  pair. 

Let us assume for simplicity that the cone P(A) is pointed. 

Let K be a subset of the row indices {1,2,...,m} of A and let AK denote the 
submatrix of A consisting of rows indexed by K. 
Suppose we already found a generating matrix R for AK, or equivalently, 
(AK,R) is a DD pair.  If A = AK ,we are done. 

Otherwise we select any row index i not in K and try to construct a DD pair 
(AK+i, R‘) using the information of the DD pair (AK,R).  

Once this basic procedure is described, we have an algorithm to construct a 
generating matrix R for P(A). 
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Geometric version of iteration step 
The procedure can be understood geometrically by looking at the  
cut-section C of the cone P(AK) with some appropriate hyperplane h in ℜd  
which intersects with every extreme ray of P(AK) at a single point. 

Let us assume that the cone is pointed and  
thus C is bounded.  
Having a generating matrix R means that all  
extreme rays (i.e. extreme points of the  
cut-section) of the cone are represented  
by columns of R. 
Such a cutsection is illustrated in the Fig. 

Here, C is the cube abcdefgh. 
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Geometric version of iteration step 
The newly introduced inequality Ai⋅x ≥ 0 partitions the space ℜd into three parts:  
 Hi

+ = {x ∈ ℜd : Ai⋅x > 0 } 
 Hi

0 = {x ∈ ℜd : Ai⋅x = 0 } 
 Hi

- =  {x ∈ ℜd : Ai⋅x < 0 } 
The intersection of Hi

0 with P and the new extreme points i and j in the cut-section 
C are shown in bold in the Fig. 

Let J be the set of column indices of R. The rays rj (j ∈J ) are then partitioned into 
three parts accordingly: 
 J+ = {j ∈ J : rj ∈ Hi

+ } 
 J0 = {j ∈ J : rj ∈ Hi

0 } 
 J-  = {j ∈ J : rj ∈ Hi

- } 
We call the rays indexed by J+, J0, J- the positive, zero, negative rays with 
respect to i, respectively. 
To construct a matrix R‘ from R, we generate new | J+| × | J-| rays lying on the ith 
hyperplane Hi

0 by taking an appropriate positive combination of each positive ray 
rj and each negative ray rj‘ and by discarding all negative rays. 
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Geometric version of iteration step 
The following lemma ensures that we have a DD pair (AK+i ,R‘), and provides the 
key procedure for the most primitive version of the DD method. 

Lemma 3 Let (AK,R) be a DD pair and let i be a row index of A not in K. 
Then the pair (AK+i ,R‘) is a DD pair, where R‘ is the d × |J‘ | matrix with column 
vectors rj (j ∈ J‘) defined by 
 J‘ = J+ ∪ J0 ∪ (J+ × J-), and 
 rjj‘ = (Ai⋅rj)⋅rj‘– (Ai⋅rj‘)⋅rj for each (j,j‘) ∈J+ × J- 

Proof omitted.  

16. Lecture WS 2014/15 



Bioinformatics III 
11 

Finding seed DD pair 
It is quite simple to find a DD pair (AK,R) when |K| = 1, which can serve as the 
initial DD pair. 

Another simple (and perhaps the most efficient) way to obtain an initial DD form of 
P is by selecting a maximal submatrix AK of A consisting of linearly independent 
rows of A. 

The vectors rj‘s are obtained by solving the system of equations  
  AK R = I 
where I is the identity matrix of size |K|, R is a matrix of unknown column vectors 
rj, j ∈J.  

As we have assumed rank(A) = d, i.e. R = AK
-1 , the pair (AK,R) is clearly a DD 

pair, since AK⋅x ≥ 0 ↔ x = AK
-1λ, λ ≥ 0. 
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Primitive algorithm for DoubleDescriptionMethod 

For this, we will use the zero set or active set Z(x) which is the set of inequality 
indices satisfied by x in P(A) with equality.  

Noting A i• the ith row of A, Z(x) = {i : A i• x = 0} 

This algorithm is very primitive, and 
the straightforward implementation 
will be quite useless, because the 
size of J increases extremely fast. 

This is because many vectors rjj‘  
generated by the algorithm (defined 
in Lemma 3) are unnessary. We 
need to avoid generating redundant 
vectors. 
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Towards the standard implementation 
Two distinct extreme rays r and r‘ of P are adjacent if the minimal face of P 
containing both contains no other extreme rays. 

Proposition 7. Let r and r‘ be distinct rays of P.  
Then the following statements are equivalent 
(a) r and r‘ are adjacent extreme rays, 
(b) r and r‘ are extreme rays and the rank of the matrix AZ(r) ∩ Z(r‘) is d – 2, 
(c) if r‘‘ is a ray with Z(r‘‘) ⊃ Z(r) ∩ Z(r‘) then either r‘‘ ≃ r or r‘‘ ≃ r ‘. 

Lemma 8. Let (AK,R) be a DD pair such that rank(AK) = d and let i be a row index 
of A not in K. Then the pair (AK+i , R‘) is a DD pair, where R‘ is the d × | J‘| matrix 
with column vectors rj (j ∈ J‘) defined by 
 J‘ = J+ ∪ J0 ∪ Adj 
 Adj = {(j,j‘) ∈ J+ × J- : rj and rj‘ are adjacent in P(AK)} and 
 r = (Ai rj ) rj‘ – (Airj ) rj for each (j,j‘) ∈Adj. 
Furthermore, if R is a minimal generating matrix for P(AK) then R‘ is a minimal 
generating matrix for P(AK+i). 
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Algorithm for standard form of double description method 
Hence we can write a straightforward variation of the DD method which produces 
a minimal generating set for P: 

To implement DDMethodStandard, we must check for each pair of extreme rays 
r and r‘ of P(AK) with Ai r > 0 and Ai r‘ < 0 whether they are adjacent in P(AK).   

DDMethodStandard(A) 

such that R is minimal  

Lemma 8  
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Tools for analyzing network states 

Price et al. Nature Rev Microbiol  
2, 886 (2004) 

The two steps that are used 
to form a solution space — 
reconstruction and the 
imposition of governing 
constraints — are illustrated 
in the centre of the figure. 
Several methods are being 
developed at various 
laboratories to analyse the 
solution space.  
Ci and Cj concentrations of 
compounds i and j;  
EP, extreme pathway;  
vi  and vj fluxes through 
reactions i and j;  
v1 –v3 flux through reactions 
1-3;  
vnet, net flux through loop.  
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Application of elementary modes 
Metabolic network structure of E.coli determines 

key aspects of functionality and regulation 
Compute EFMs for central 
metabolism of E.coli. 

Catabolic part: substrate uptake 
reactions, glycolysis, pentose 
phosphate pathway, TCA cycle, 
excretion of by-products (acetate, 
formate, lactate, ethanol) 

Anabolic part: conversions of 
precursors into building blocks like 
amino acids, to macromolecules, 
and to biomass. 

Stelling et al. Nature 420, 190 (2002) 
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Metabolic network topology and phenotype 
Idea: 
Can the total number of EFMs for given 
conditions be used as quantitative 
measure of metabolic flexibility? 

a, Relative number of EFMs N enabling 
deletion mutants of gene i (Δ i) inE. coli to 
grow (abbreviated by µ) for 90 different 
combinations of mutation and carbon 
source.  

Shown are results for 90 deletions of 
different individual genes. 

Stelling et al. Nature 420, 190 (2002) 

Answer: Yes, the # of EFMs for mutant  
strain allows correct prediction of  
growth phenotype in more than 90%  
of the cases. 

16. Lecture WS 2014/15 



Bioinformatics III 
18 

Robustness analysis 
The # of EFMs qualitatively indicates whether a mutant is viable or not, but does 
not describe quantitatively how well a mutant grows. 

Define maximal biomass yield Ymass as the optimum of: 

ei is the single reaction rate (growth and substrate uptake) in EFM i selected for 
utilization of substrate Sk. 

Stelling et al. Nature 420, 190 (2002) 

16. Lecture WS 2014/15 



16. Lecture WS 2014/15 Bioinformatics III 
19 

Robustness Analysis 

Dependency of the mutants' maximal 
growth yield Ymax(Δi) (open circles)  
and the network diameter D(Δi) (open 
squares) on the share of elementary 
modes operational in the mutants.  
Stelling et al. Nature 420, 190 (2002) 

Central metabolism of E.coli behaves in a highly robust manner because 
mutants with significantly reduced metabolic flexibility show a growth yield 
similar to wild type. 
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Current metabolomics 
Review: 
(1) recent work on metabolic networks required revising the picture of separate 
biochemical pathways into a densely-woven metabolic network 

(2) Connectivity of substrates in this network follows a power-law (Yeong&Barabasi). 

(3) Constraint-based modeling approaches (FBA) were successful in analyzing the 
capabilities of cellular metabolism including 
 - its capacity to predict deletion phenotypes 
 - the ability to calculate the relative flux values of metabolic reactions, and 
 - the capability to identify properties of alternate optimal growth states 
 in a wide range of simulated environmental conditions 

Open questions 
- what parts of metabolism are involved in adaptation to environmental conditions? 
- is there a central essential metabolic core? 
- what role does transcriptional regulation play? 
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Distribution of fluxes in E.coli 

Stoichiometric matrix for E.coli strain MG1655 containing 537 metabolites and 
739 reactions taken from Palsson et al. 

Apply flux balance analysis to characterize solution space  
(all possible flux states under a given condition). 

Nature 427, 839 (2004) 

Aim: understand principles that govern 
the use of individual reactions under 
different growth conditions. 

vj is the flux of reaction j and Sij is the stoichiometric coefficient of reaction j. 
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Optimal states 

Using linear programming and adapting constraints for each reaction flux vi of the 
form βi

min ≤ vi ≤ βi
max, the flux states were calculated that optimize cell growth on 

various substrates. 

Plot the flux distribution for active (non-zero flux) reactions of E.coli grown in a 
glutamate- or succinate-rich substrate. 

Denote the mass carried by reaction j producing (consuming) metabolite i by  

Observation: 
Fluxes vary widely: e.g. dimensionless flux of succinyl coenzyme A synthetase 
reaction is 0.185, whereas the flux of the aspartate oxidase reaction is 10.000 
times smaller, 2.2 × 10-5. 
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Overall flux organization of E.coli metabolic network 
a, Flux distribution for optimized biomass production 
on succinate (black) and glutamate (red) substrates.  

The solid line corresponds to the power-law fit  
that a reaction has flux v 
P(v) ∝ (v + v0)-α , with  v0 = 0.0003 and α = 1.5.  

d, The distribution of experimentally determined fluxes 
from the central metabolism of E. coli shows  
power-law behaviour as well, with a best fit to  
P(v)∝ v-α with α = 1.  

Both computed and experimental flux distribution 
show wide spectrum of fluxes. 

Almaar et al., Nature 427, 839 (2004) 
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Response to different environmental conditions 

Almaar et al., Nature 427, 839 (2004) 

Is the flux distribution independent of 
environmental conditions? 

b, Flux distribution for optimized biomass on succinate 
substrate (black) with an additional 10% (red), 50% 
(green) and 80% (blue) randomly chosen subsets of 
the 96 input channels (substrates) turned on.  

The flux distribution was averaged over 5,000 
independent random choices of uptake metabolites.  

→ Yes, the flux distribution is independent of the 
external conditions. 
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Use scaling behavior to determine local connectivity 
The observed flux distribution is compatible with two different potential local flux 
structures: 
(a) a homogenous local organization would imply that all reactions producing 
(consuming) a given metabolite have comparable fluxes 
(b) a more delocalized „high-flux backbone (HFB)“ is expected if the local flux 
organisation is heterogenous such that each metabolite has a dominant source 
(consuming) reaction. 

Almaar et al., Nature 427, 839 (2004) 
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Characterizing the local inhomogeneity of the flux net 
a, Measured kY(k) shown as a function of k for 
incoming and outgoing reactions, averaged over 
all metabolites, indicates that k×Y(k) ∝ k0.73.  
Inset shows non-zero mass flows,  v^ij, producing 
(consuming) FAD on a glutamate-rich substrate. 

→ an intermediate behavior is found between 
the two extreme cases. 

→ the large-scale inhomogeneity observed in the 
overall flux distribution is also increasingly valid at 
the level of the individual metabolites. 

The more reactions that consume (produce) a 
given metabolite, the more likely it is that a single 
reaction carries most of the flux, see FAD. 

Almaar et al., Nature 427, 839 (2004) 
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Clean up metabolic network 
Use simple algorithm that removes for each metabolite systematically all reactions  
but the one providing the largest incoming (outgoing) flux distribution. 

The algorithm uncovers the „high-flux-backbone“ of the metabolism,  
a distinct structure of linked reactions that form a giant component  
with a star-like topology. 

Almaar et al., Nature 427, 839 (2004) 
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Maximal flow networks 

glutamate rich    succinate rich substrates 

Directed links: Two metabolites (e.g. A and B) are connected with a directed link pointing 
from A to B only if the reaction with maximal flux consuming A is the reaction with maximal 
flux producing B.  
Shown are all metabolites that have at least one neighbour after completing this procedure. 
The background colours denote different known biochemical pathways. 

Almaar et al., Nature 427, 839 (2004) 
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FBA-optimized network on glutamate-rich substrate 
High-flux backbone for FBA-optimized metabolic 
network of E. coli on a glutamate-rich substrate.  
Metabolites (vertices) coloured blue have at least one 
neighbour in common in glutamate- and succinate-rich 
substrates, and those coloured red have none. 
Reactions (lines) are coloured blue if they are identical 
in glutamate- and succinate-rich substrates, green if a 
different reaction connects the same neighbour pair, and 
red if this is a new neighbour pair. Black dotted lines 
indicate where the disconnected pathways, for example, 
folate biosynthesis, would connect to the cluster through 
a link that is not part of the HFB. Thus, the red nodes 
and links highlight the predicted changes in the HFB 
when shifting E. coli from glutamate- to succinate-rich 
media. Dashed lines indicate links to the biomass 
growth reaction.  

Almaar et al., Nature 427, 839 (2004) 

(1) Pentose Phospate  (11) Respiration   
(2) Purine Biosynthesis  (12) Glutamate Biosynthesis  (20) Histidine Biosynthesis 
(3) Aromatic Amino Acids  (13) NAD Biosynthesis   (21) Pyrimidine Biosynthesis 
(4) Folate Biosynthesis  (14) Threonine, Lysine and Methionine Biosynthesis  
(5) Serine Biosynthesis  (15) Branched Chain Amino Acid Biosynthesis  
(6) Cysteine Biosynthesis  (16) Spermidine Biosynthesis  (22) Membrane Lipid Biosynthesis 
(7) Riboflavin Biosynthesis  (17) Salvage Pathways   (23) Arginine Biosynthesis 
(8) Vitamin B6 Biosynthesis (18) Murein Biosynthesis   (24) Pyruvate Metabolism  
(9) Coenzyme A Biosynthesis (19) Cell Envelope Biosynthesis  (25) Glycolysis  
(10) TCA Cycle  
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Interpretation 
Only a few pathways appear disconnected indicating that although these pathways 
are part of the HFB, their end product is only the second-most important source for 
another HFB metabolite. 

Groups of individual HFB reactions largely overlap with traditional biochemical 
partitioning of cellular metabolism. 

Almaar et al., Nature 427, 839 (2004) 
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How sensitive is the HFB to changes in the environment? 

Almaar et al., Nature 427, 839 (2004) 

b, Fluxes of individual 
reactions for glutamate-rich 
and succinate-rich conditions. 
Reactions with negligible flux 
changes follow the diagonal 
(solid line).  
Some reactions are turned off 
in only one of the conditions 
(shown close to the 
coordinate axes). Reactions 
belonging to the HFB are 
indicated by black squares, 
the rest are indicated by blue 
dots. Reactions in which the 
direction of the flux is 
reversed are coloured green.  

Only reactions in the high-flux territory undergo 
noticeable differences! 

Type I: reactions turned on in one conditions and 
off in the other (symbols). 
Type II: reactions remain active but show an 
orders-in-magnitude shift in flux under the two 
different growth conditions. 
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Flux distributions for individual reactions 
Shown is the flux distribution for four selected 
E. coli reactions in a 50% random environment.  
a Triosphosphate isomerase;  
b carbon dioxide transport;  
c NAD kinase;  
d guanosine kinase.  

Reactions on the σ ∝ v curve (small fluxes) 
have unimodal/gaussian distributions (a and 
c). Shifts in growth-conditions only lead to small 
changes of their flux values. 

Reactions off this curve have multimodal 
distributions (b and d), showing several 
discrete flux values under diverse conditions. 
Under different growth conditions they show 
several discrete and distinct flux values.  

Almaar et al., Nature 427, 839 (2004) 
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Summary  
Metabolic network use is highly uneven (power-law distribution) at the global level 
and at the level of the individual metabolites. 

Whereas most metabolic reactions have low fluxes, the overall activity of the 
metabolism is dominated by several reactions with very high fluxes. 

E. coli responds to changes in growth conditions by reorganizing the rates of 
selected fluxes predominantly within this high-flux backbone. 
Apart from minor changes, the use of the other pathways remains unaltered. 
These reorganizations result in large, discrete changes in the fluxes of the HFB 
reactions. 
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The same authors as before used Flux Balance Analysis to examine utilization 
and relative flux rate of each metabolite in a wide range of simulated 
environmental conditions for E.coli, H. pylori and S. cerevisae: 
For each system they considered 30.000 randomly chosen combinations where 
each uptake reaction is a assigned a random value between 0 and 20 mmol/g/h. 

→ adaptation to different conditions occurs by 2 mechanisms: 
(a) flux plasticity: changes in the fluxes of already active reactions. 
E.g. changing from glucose- to succinate-rich conditions alters the flux of 264 
E.coli reactions by more than 20% 

(b) less commonly, adaptation includes structural plasticity, turning on 
previously zero-flux reactions or switching off active pathways. 
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The two adaptation method mechanisms allow for the possibility of a group of 
reactions not subject to structural plasticity being active under all environmental 
conditions. 

Assume that active reactions were randomly distributed. 

If typically a q fraction of the metabolic reactions are active under a specific 
growth condition,  
we expect for n distinct conditions an overlap of at least qn reactions. 
This converges quickly to 0. 

Emergence of the Metabolic Core 
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In a-c, as the number of conditions increases, the curve converges to a constant 
enoted by the dashed line, identifying the metabolic core of an organism. 

Red line : number of reactions that are always active if activity is randomly 
distributed in the metabolic network. The fact that it converges to zero indicates 
that the real core represents a collective network effect, forcing a group of 
reactions to be active in all conditions.  

Emergence of the Metabolic Core 
(a–c) The average relative size of the 
number of reactions that are always 
active as a function of the number of 
sampled conditions (black line). 

(d and e) The number of metabolic 
reactions (d) and the number of 
metabolic core reactions (e) in the 
three studied organisms. 
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Shown are all reactions that are found to be active 
in each of the 30,000 investigated external 
conditions.  
Blue: Metabolites that contribute directly to 
biomass formation, 
Red (green): core reactions (links) catalyzed by 
essential (or nonessential) enzymes. 
Black-colored links: enzymes with unknown deletion 
phenotype.  
Blue dashed lines: multiple appearances of a 
metabolite,  
Links with arrows: unidirectional reactions.  
Note that 20 out of the 51 metabolites necessary for 
biomass synthesis are not present in the core, 
indicating that they are produced (or consumed) in a 
growth-condition-specific manner.  
Blue and brown shading: folate and peptidoglycan 
biosynthesis pathways  

White numbered arrows denote current antibiotic 
targets inhibited by: (1) sulfonamides, (2) 
trimethoprim, (3) cycloserine, and (4) fosfomycin.  
A few reactions appear disconnected since we have 
omitted the drawing of cofactors. 

Metabolic Core of E.coli: The constantly active reactions form 
a tightly connected cluster! 

16. Lecture WS 2014/15 



Bioinformatics III 
38 

The metabolic cores contain 2 types of reactions: 

(a) reactions that are essential for biomass production under all environment 
conditions (81 of 90 in E.coli) 

(b) reactions that assure optimal metabolic performance. 

Metabolic Core Reactions 
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(A) The number of overlapping metabolic reactions in the 
metabolic core of H. pylori, E. coli, and S. cerevisiae.  
The metabolic cores of simple organisms (H. pylori and 
E.coli) overlap to a large extent. 
The largest organism (S.cerevisae) has a much larger 
reaction network that allows more flexbility → the relative 
size of the metabolic core is much lower. 

(B) The fraction of metabolic reactions catalyzed by 
essential enzymes in the cores (black) and outside the 
core in E. coli and S. cerevisiae. 
→ Reactions of the metabolic core are mostly 
essential ones. 

(C) One could assume that the core represents a subset 
of high-flux reactions. This is apparently not the case. 
The distributions of average metabolic fluxes for the 
core and the noncore reactions in E. coli are very 
similar. 

Characterizing the Metabolic Cores 
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- Adaptation to environmental conditions occurs via structural plasticity and/or flux 
plasticity. 
Here: identification of a surprisingly stable metabolic core of reactions that are 
tightly connected to eachother. 

- the reactions belonging to this core represent potential targets for antimicrobial 
intervention. 

Summary 
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