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Mass Action Kinetics

Most simple dynamic system: inorganic chemistry

Consider reaction A+ B <=>AB

Interesting quantities:
(changes of) densities of A, B, and AB

Nj

number of particles Ny d
Al=75 —lAl)

unit volume

density =

1 mol = 1 Mol/Liter = 6.022x 10x (0.1 m)= =0.6 nm=

Association: probability that A finds and reacts with B

=> changes proportional to densities of A and of B How to put that

Dissociation: probability for AB to break up into formulas’?
=> changes proportional to density of AB
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Mass Action Il
Again: A+B<=>AB

Objective: mathematical description for the changes
of [A], [B], and [AB]

Consider [A]:
Gain from dissociation AB =>A+ B Loss from association A+ B => AB
d
E[A] =Gy — Ly
AB falls apart A has to find B
=> (Ga depends only on [AB] => La depends on [A] and [B]
Gy =k, |AB| Ly =ks|A] B

phenomenological
proportionality
constant

%[A] = k. [AB] — k¢ [A][B]
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Mass Action !

A+ B <=>AB

d
For [A]: from above we had E[A] = k,[AB] — k¢|A]|B]

d d
For [B]: for symmetry reasons —(B| =—|A]

dt dt

. d d

For [AB]: exchange gain and loss E[A | = _E[A] =k¢|A][B] — k,|AB]

with [A](to), [B](to), and [AB](to) => complete description of the system

time course = Iinitial conditions + dynamics
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A Second Example

Slightly more complex: A+ 2B <=>AB:

Association: ¢ one A and two B have to come together
* one AB2 requires two B

Ly = k; [A[B][B] = ky [A][B?  Ls = 2k [A][B]

Dissociation: one AB2 decays into one A and two B

Gu = k,[AB)] Gg = 2k, [AB))]

Put everything together

a
dt

d d d d
SBl=2204]  Z{AB]=—S[A

[A] =k, [AB,] — k¢[A] [B]? dt dt
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Some Rules of Thumb

A+ 2B <=> AB:> "Ais produced when AB:2 falls apart or
Is consumed when AB2 is built from one A and two B"
Sign matters: Gains with "+", losses with "-"

Logical conditions: "...from A and B"
and — "XII Or — ||+||

Stoichiometries: one factor for each educt (=> [B]?)
prefactors survive

Mass conservationterms with "-" have to show up with "+", too

©14] =k, [AB,] — ky[A] [B]

d d d d
E[B] = 2a[f“i] E[ABE] = _E[A]
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A Worked Example

Lotka-Volterra population model

R1: A+ X => 2X prey X lives on A
R2: X+Y =>2Y predator Y lives on prey X
R3: Y => B predator Y dies stoichiometric
matrix S
Rates for the reactions Changes of the metabolites
@ —kAX R1 R2 R3
dt A »
" _poxy OO
B k¥ ; / 1 // 11
dt

ix /]

=> change of X; o +kAX — kXY 4+ 0
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Setting up the Equations

i [ Rl 1o
dRs/dt 0 0 1
(A
d. d|X d dX; dR;
: Y — —Q — S;i —2
we get: er el S drR or 7 ; i
VRN
amounts speeds of
process_ed per the reactions
Plug in to get: reaction
dA dRy dX dR; dR
= = —kAX | 1 2 _
dt dt 1 dt = dt dt — klAX kzXY
dB dR3 dY dRs dR
4 kY i 2 3 _
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How Does It Look Like?

Lotka—Volterra: assume A= const, B ignored

=> cyclic population changes
y POp g o- AR Y
dX >
e kiAX — ko XY ><. '
1 -
dY
— = ko XY — kY
dt 2 3
ki=ko=k3=0.3 0 | |
0 50 100
time
Steady State: when do the populations not change?
dX dY ki k3 Steady state =
— =0 = Y=—A X=—
dt dt g ko ko fluxes
balanced
With ki =k2=k3=0.3 and A=1 => X=Y=1
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From rates to differences

Reaction: A+B—=— AB
. dA
Rate equation: = —k-A-B= f(A(¢),B(t))

I \

derivative of A(t) = some function

Taylor expansion around f, = O:¢

dA t? d’A t* d*A
A(r)—A(O)th-E(O) | Z-dﬂ(ow..._ék!-drk(m

Linear approximation:

A() ~A(0) + :%(0) o)

~A(0) +1- £ (A(0),B(0)) + O(r°)
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From rates to differences Il

Linear approximation to (true) A(t):

A(t) ~ A(0) + :-%(0) +  0(t?)

~ A(0) +1- £ (A(0),B(0)) + O(t)

|

Initial condition Increment error
Fort—0: I d_A(O) . 2 dzA(O) .
dt 2 dt?

Use linear approximation for small time step At:

dA
A(t+Ar) = A(t) + At-g(t) "forward Euler" algorithm
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"Forward Euler” algorithm

General form:  Xi(t+At) = Xi(t) + At- f ) + O(At?)
2 /. v
relative error: g = Mézxf( o At 1st order algorithm

relative error decreases with 1st power of step size At

b X (b b X
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Example: chained reactions

Reaction: A— B —~0C kag = 0.1, kgc=0.07

Time evolution: .
Relative error vs. /At

att=10:
_ (]
, § 0.1
S )
'}E; 2 0.01-
I= ©
) O C
S 2 0.001-
O | | | |
@)
C 0.1 04 1 4
0.50- time step At
0.00™ T t : —1
S runtime a (At)
time
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Example Code: Forward Euler

'

SO 6 « BspCode_Euler.py A=>B == C
# Initial values
A= 1.0 +
B = 6.0 .
C = 8.8 {
# Rate constants @ lterate:
kl = 8.1
kZ = 8.87 dA
t=8
# main loop
whilelt < 28.8):
# derivatives
dll = k1 ¥ &
deZ = kZ ¥ B
# add up changes
A += dbt ¥ {-dR1) Important:
B += dt * {dR1 - dRZ)
C 4= dt * dR2 ] . .
o first calculate all derivatives,
# increment t “y
b=t then update densities!
# output
print t, 4, B, C
@ E RE S
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The “correct” time step?

o

c

O

©

I=

(D)

@)

C

o)

@)
0.507 =
0.00 T t

0 10 20 30 40
time

Note 1:

read “«” as “a few percent”
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A=—B=20C

Approximation works for:

AA| =

Here:

=>

dA
At —| = |—kap-A-At| K A
dt
=> At <& :
- max (k)

kag=0.1, kgec=0.07
At < 0.171'=10
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From Test Tubes to Cells

Rate equations <=> description via densities

_ indistinguishable particles
volume element

density

=> density Is a continuum measure,
independent of the volume element

"half of the volume => half of the particles”

When density gets very low
=> each particle matters

Examples:
~10 Lac repressors per cell, chemotaxis,
transcription from a single gene, ...
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Density Fluctuations

N=10 o 1 67 N=100 e 5 56
6 6
) ) B B
° ° - i
0 0
0 3 6 9

N=1000 e 55 6 N=10000 (o 556

6

4

2

0
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Spread: Poisson Distribution

Stochastic probability that k events occur follows the Poisson distribution
(here: event = "a particle is present"):

xk Y k=0,1,2,...

Pe=14° A > 0 is a parameter
Average: (k) = Z k pi=M\ Variance: g2 —= E pr (k— (k))z — A
c=VA
Relative spread (error): © :
kY VA

Avg. number of particles per unit volume| 100 1000 1 Mol

relative uncertainty 10% 3% 1e-12

=> Fluctuations are negligible for "chemical" test tube situations
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Reactions in the Particle View

Consider association: A
pr -
B

A+B => AB

Continuous rate equation: —— = k|A| |B]

Number of new AB in volume V during At:

d
Hmvm
dt

Ny Np
kap — — V AL
ABV V

kap At
Ny N
V A+YB

= PypNao Np

ANyp

Density “picture” Particle “picture”
reaction rate kas => reaction probability Pas
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Units!
Consider: A
Nl
8" % -

A+B => AB

Change in the number of AB: Association probability:
kap At
ANsp = Pap Ny Np Pig = A’;
dAB

Units: Continuous case el kapA B

dAB Mol Mol )

[W] =7y A=Bl=Tm <= kel = o

Stochastic case
[Nag] = [Na] = [Ng] =1 <=>  |[Ps] =1
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Direct Implementation
A+B => AB

‘806

o Continuous_AB.py

# contirjous association of A and B

# parameter
tEnd = 5.6

dt = @.81
volume = 1868.8

# rote and probability
kAE = 1.A@
prob = kAE # dt / wolume

initial conditions: particle numbers
1688

1688

BE=mn

H#
A
B
A

#

convert to densities
ASva lume

E/vwolume

AE = AB/ wolume

m I

¥ main loop
t = 8.0
print £, "Lt", A, "4t", B, "', AB

whi led t<tEnd )
dAE = dt * KAE * A * E

AE += dAE
A -= dfE
E -= dfE

¥ jncrement time and output
t += dt
print £, "Lt", A, "4t", B, "', AB

E,

[ e |
fapd |

Sl

-l

Note: both versions are didactic implementations
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'S ' . ™)
S&0O6 « Stochastic_AB.py
# Stochostic association of A + B = AB
impor-t randam 'i:
¥ parameter {%
tEnd = 5.8
dt = @.a1 )
wolume = 188.8
# rate and probability
kAE = 1.A
prob = KAE * dt / wolume
# jnitial conditions
A = 1888
B = 1688
AEB = &
¥ main loop
t=6.4
print £, "WtY, Advolume, "t", BAvolume, "St", ABESvolume
while{t<tEnd}:
dAE = A&
¥ check for ewvery pair A, B
for ia in xrange(A):
for ib in xrangelB):
r = pandom.randomd )
if {r < prob):
dAB+=1
AE += dAE
A —-= dAE
B -= dAE
¥ jncrement time and output
t += dt
print t, "“t", Advolume, "t", BAvolume, "“t", ABSvolume
e > &



Example: Chained Reactions

A=>B=>C
Rates: dA dB dC
—=—kiA —-=kA—kB — =kB

Time course from continuous rate equations (benchmark):

ki=ko=0.3 (units?)
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Stochastic Implementation

A=>B=>C Ao = 1000 particles initially
t=7
1.00 400
A 300 A
_ . B
< > ¢
o 0.507 S 200-
m =
< 2 100 Jl
OOO O | | i
0 10 20 30 000 025 050 075 1.00
time
k1 =k2=0.3 Values att =7 (1000 tries)

=> Stochastic version exhibits fluctuations
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Less Particles => Larger Fluctuations

Ao =100 shown are 4 different runs

1.00

C /Ao

-0.507 )

A, B

1.00

A, B, C/Ao
o
o
t
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Even Less Particles

1.00

C /Ao

-0.501 °

A, B
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Spread vs. Particle Number

Ao = 1000

Poisson:
relative fluctuationse< 1/vN 3001 A )ﬁ

A
B
200 -
p &
Repeat calculation 1000 times 1007 a&j%k 5?[1%

and record values at t=7. 0

Fit distributions with Gaussian
(Normal distribution)

(x— <x >)2]

g(X)=ﬂxp[ /Ay

frequencies

<A>=0.13, wa = 0.45
<B> = 0.26, we = 0.55
<C>=0.61, wc = 0.45
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Stochastic Propagation

Naive implementation: Problems?
For every timestep: + very simple
events =0 : : :
For every possible pair of A, B: + direct implementation of the
get random number r € [0, 1) underlying process
if r < Pag:
svents++ — runtime O(N?)
AB += events
A, B —= events — first order approximation

— one trajectory at a time

=> how to do better???

/ AN

Determine complete More efficient
probability distribution propagation
=> Master equation => Gillespie algorithm
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A Fast Algorithm :
\ .

2340 Daniel T. Gillespie

Exact Stochastic Simulation of Coupled Chemical Reactions

Danilel T. Gillespie*

Research Department, Naval Weapons Center, China Lake, California 93555 (Received May 12, 1977)

Publication costs assisted by the Naval Weapons Center

There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical
system: The deterministic approach regards the time evolution as a continuous, wholly predictable process
which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic
approach regards the time evolution as a kind of random-walk process which is governed by a single dif-
ferential-difference equation (the “master equation™). Fairly simple kinetic theory arguments show that the
stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but
unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way
to make exact numerical calculations within the framework of the stochastic formulation without having to
deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously
derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like
the master equation, this “stochastic simulation algorithm™ correctly accounts for the inherent fluctuations
and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures
for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal
time increments d¢ by finite time steps At. The feasibility and utility of the simulation algorithm are demonstrated
by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and
the Oregonator.

D. Gillespie, J. Phys. Chem. 81 (1977) 2340-2361
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Gillespie — Step O

Decay reation: A => O (this model describes e.g. the radioactive decay,

Probability for one reaction in (¢, t+At) with A(t) molecules = A(t) k At

Naive Algorithm:

A = A0
For every timestep:
get random numberr € [0, 1)
if r < A*k*dt:
A = A-1

It works, but:  A*k*dt << 1 for reasons of (good) accuracy
=> many many steps where nothings happens

=> adaptive stepsize method?

Bioinformatics 3 — WS 14/15 V17 - 29



Gillespie — Step 1

Idea: Figure out when the next reaction will take place!
(In between the discrete events nothing happens anyway ... :-)

Suppose A(t) molecules in the system at time t

f(A(t), s) = probability that with A(t) molecules the next reaction takes place in
interval (t+s, t+s+ds) with ds =>0

g(A(t), s) = probability that with A(t) molecules no reaction occurs in (t, t+s)

Then: f(A(),s)ds = g(A(t),s) A(t +5) kds
No reaction during (t, t+s):

f(A(t),s)ds = g(A(2),s) A(t)kds

probability for reaction in (t+s, t+s+ds)
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Probability for (No Reaction)

Now we need g(A(t), s)

Extend g(A(t), s) a bit:
8(A(2),s +ds) = g(Alt),s) [1-Al(t +s)kds]|

Again A(t+s) = A(t) and resorting:

i CA(), s +ds) — g(A(t),s) _ dg(A(t), )
ds—0 ds ds

= —A(t)k g((A(t), 5)

With g(A, 0) =1 ("no reaction during no time")

=> Distribution of waiting times between discrete reaction events:
g(A(r),s) = exp|—-A(t)ks

1

Life time = average waiting time: —
J J 07 XAQ)
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Exponentially Distributed Random Numbers

Exponential probability distribution: A

1
g(A(t),5) = exp[—A(t)ks] N

Solve r = exp[—A(t)ks] fors: @ |

1 R
1 1 1 1 0 . t
— | = _ life time
o= i) = o]

Simple Gillespie algorithm:

A = A0

While(A > 0):

get random numberr € [0, 1)
t=1t+s(r)

A = A-1

Bioinformatics 3 — WS 14/15 V17 - 32



Gillespie vs. Naive Algorithm

Naive: Gillespie:

"What is the probability
that an event will occur
during the next At?"

"How long will it take
until the next event?"

=> small fixed timesteps => variable timesteps
=> 1st order approximation => exact
30 ® Gillespie 30 ® Gillespie
* naive * naive
- analytic - analytic

207
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Gillespie — Complete
For an arbitrary number of reactions (events):

(i) determine probabilities for the individual reactions: ai i=1, ..., N
total probability ao = 2 ai

1 1
(i) get time s until next event in any of the reactionss = - In [r—]
1

j—1 J
(ilf) Choose the next reaction | from: E&f < Oprz < EUL;
i=1 i=1

(0% 0.02] o3 Olg4 ol O
kG tdl

‘ -\ 2
0 -ﬁb o Oqt+op Exontoptog OLg+.. +oudh 4 oq+...4+05 dg
- = "

(iv) update time and particle numbers

Bioinformatics 3 — WS 14/15 V17 - 34



An Example with Two Species

Reactions: A+A=> g A+B S g g=3aA g8
dA dB
Continuous rate equations=—— = k3 — 2A%k; — ABk, — = ki — ABk
. k3 — k4 K4
: Ass — Bss — 7 .
Stationary state \/ oK, oA
with ki =103 s ko =102 s ks=1.2 s ke =1 s

=> Ass = 10, Bss = 10

Chemical master equation:

dpn.m
dt

=ki(n+2)(n+1)pni2m —kin(n—1)pom

+ ka(n+ 1) (m+ 1) pntim+1 — kanmpnm
+ II33 pn—l,m — kﬁ pn,m + kﬁl pn,m—l — k-i pﬂ,m
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Gillespie Algorithm

(ad4) Generate two random numbers 71, 7y uniformly distributed in (0, 1}.

(b4) Compute the propensity functions of each reaction by a; = A(t)(A(t) — 1)k,
ay = A(t)B(t)ky, oy = k4 and oy = ky. Compute oy = oy + g + @ + .

(c4) Compute the time when the next chemical reaction takes place as t4+ 7 where

1 1
T=—In [—:| , (2.29)
¥ ™

(d4) Compute the number of molecules at time t + T by

r

At) — 2 if0<ry < ar/ag;
_ JA(t) -1 if o /og <1 < (00 + @) /0
A[t + Tj - < A[:tj + 1 lf [:EE]_ + Cl‘gjl',frﬂ’[] i: T < [:Cl‘]_ + o + Cl‘a}fﬂ:u; [ESD}
\ Alt) if (a1 4+ as + a3)/ag < < 1;
[ B(t) if 0 <7y <o /og;
) B(t)-1 if o fog < ry < (o + ) /g
B(t+17)= B(t) if (a1 + an)/ag <1y < (0 + g + a3)/ag; (2.31)
B(t) +1 if (o) + g + @) /o <7y < 1;

Erban, Chapman, Maini, arXiv:0704.1908v2 [g-bio.SC]

Then continue with step (a4) for time ¢ + 7.
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Stochastic Simulation

A+A S5 g

\

(a)

A+B % g

25

%)
]
;-
—

i RV

1

ey

number of A molecules
o o
- ..f _—5__
=
; —
:_'__
— i
[ ]
[ ]
[ ]
_!q;_
1 -
e =
| |
L]
[ ]
]

|" *solution of DDE5|

l u l\ I

O
9
i)
<
O,
AN
>
o0
o
(@)
.
ﬂ-
o
N
o
=
x
®©
£
®©
=
o
®
-
Q.
®
L
O
=
o
O
| -
LLJ

5 s
., —_ I f
ol
0 20 40 60 80 100
time [sec]

—1 oy =102

K3 K4
g => A g => B
(b)
25 |
|- = =solution of ODEs | |'| l[HI\]N
HED
3 }‘/w l|n
@
E'lﬁ |
2 : .l.
o I T ey | LT
E‘ID d-&u' ------ -a -_ ------------- el
S et WA ]
s | il . ﬁ i
= EHWL s {1 \leJ ||_ ri
0
0 20 40 60 80 100
time [sec]

sec™ ! ks =1.2 sec—1

Fic. 2.3. Five realizations of SSA (a4)-(d4{). Number of molecules of chemical species A
(left panel) and B (right panel) are plotted as functions of time as solid lines.
correspond to different realizations. The solution of (2.38)—(2.34) is given by the dashed line.
use A(0) =0, B(0) =0, k1 = 1072 sec

Different colours

We

and kg = 1sec™ 1.
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Distribution of Stationary States

A+A> g A+BS 0 O3 A o358
ki =103 s ko =102 s ka=1.2s" ka=1s"
Continuous model: _ From long—time Gillespie

Ass = 10, Bss = 10 runs.
<A>=96, <B>=122 [

o

Fic. 2.4, (a) Stationary distribution ¢(n,m) obtained by long time simulation of (a4)-(d{f) for
k1 =103 sec 1, ko =10 2 sec !, kg = 1.2 sec ! and ky = 1sec™ 1. (b) Stationary distribution of
A obtained by (2.95).

(Q\|

>
(0 @)
S
. (a) (b)

- -3
<t x 10
) 30
N~
=

> L o0 0.08
X E 5

A =

20 F 16 =

© Ecé 2 006
R E o

(- (i -
i = 15 =

(qv] o
E - = 0.04

. E 10 =

C = w
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E 5
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qv] 0 ==
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Stochastic vs. Continuous

For many simple systems:
stochastic solution looks like noisy deterministic solution

Some more examples, where stochastic
description gives qualitatively different results

« swapping between two stationary states
* noise-induced oscillations
 Lotka-Volterra with small populations

* sensitivity in signalling

Bioinformatics 3 — WS 14/15 V17 - 39



Two Stationary States

k1 ks

Reactions: 24 — 3A, D — A F. Schldgl, Z. Physik 253 (1972) 147162
ko k..g:
dA

Rate equation: ~ —~ = kiA? — kA’ + ks — kA

With: k1 =0.18 min™’ ko =2.5x 104 min~! ks = 2200 min~! ke = 37.5 min~!

Stationary states: As1 =100, As2 =400 (stable) Au = 220 (unstable)

=> Depending on initial conditions (A(0) <> 220),
the deterministic system goes into As1 or As2 (and stays there).
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-

Erban, Chapman, Maini, arXiv:0704.1908v2

Two States — Stochastic

- stochastic

500 — deterministic 500 '
& 400 B 400
= =
[ ) (4]
@ @
£ 300 £ 300 -
S S5
o o
2 200 £ 200 ‘
E E ‘ |
= =
= =

{1

1DDW 100
0 0

0 0.5 1 1.5 2 0 20 40 60 80
time [min]

100
time [min]

Fia. 5.1. Simulation of (5.1). One realization of S5A {a5)—-(d5) for the system of chemical
reactions (5.1) (blue line) and the solution of the deterministic ODE (5.2) (red line). (a) The
number of molecules of A as a function of time over the first two minutes of simulation. (b) Time
evolution over 100 minutes.
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=> Fluctuations can drive the system from one stable state into another
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Self-Induced Stochastic Resonance

System 2A+B > 3A @ <=5 A o =5 B

Compare the time evolution \ /
from initial state (A, B) = (10, — Stochastic
10)

In deterministic and stochastic
simulations.

=> deterministic simulation
converges to and stays at
fixed point (A, B) = (10,
1.1e4) 10°

number of A molecules
o

0 20 40 60 80
time [min]

=> periodic oscillations in
the stochastic model
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Summary

Today:

* Mass action kinetics

=> solving (integrating) differential equations for time-dependent
behavior

=> Forward-Euler: extrapolation, time steps

» Stochastic Description
=> why stochastic?
=> Gillespie algorithm
=> different dynamic behavior
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