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Mass Action Kinetics 
Most simple dynamic system:  inorganic chemistry 

Consider reaction A + B <=> AB 

Association:  probability that A finds and reacts with B 
=> changes proportional to densities of A and of B 

Dissociation:  probability for AB to break up 
=> changes proportional to density of AB 

Interesting quantities:  
(changes of) densities of A, B, and AB 

<=> 

density =  number of particles 
unit volume 

How to put that 
into formulas? 

1 mol  =  1 Mol / Liter   =  6.022 x 1023 x (0.1 m)–3  = 0.6  nm–3 
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Mass Action II 
Again: A + B <=> AB 

Objective: mathematical description for the changes 
of [A], [B], and [AB] 

Consider [A]: 

Loss from association A + B => AB Gain from dissociation AB => A + B 

A has to find B 
=> LA depends on [A] and [B] 

AB falls apart 
=> GA depends only on [AB] 

phenomenological 
proportionality 

constant 



Bioinformatics 3 – WS 14/15 V 17  –  4 

Mass Action !!! 
A + B <=> AB 

For [A]: 

For [B]: 

from above we had 

for symmetry reasons 

For [AB]: exchange gain and loss 

time course  =  initial conditions + dynamics 

with [A](t0), [B](t0), and [AB](t0)  =>  complete description of the system 
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A Second Example 
Slightly more complex: A + 2B <=> AB2 

Association: • one A and two B have to come together 
• one AB2 requires two B 

Dissociation: one AB2 decays into one A and two B 

Put everything together 
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Some Rules of  Thumb 

Sign matters:   Gains with "+", losses with "–" 

A + 2B <=> AB2 "A is produced when AB2 falls apart or  
is consumed when AB2 is built from one A and two B" 

Logical conditions:  "…from A and B" 
and = "x"      or = "+" 

Stoichiometries: one factor for each educt (=> [B]2) 
prefactors survive 

Mass conservation: terms with "–" have to show up with "+", too 
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A Worked Example 
Lotka-Volterra population model 

R1: A + X  =>  2X prey X lives on A 
R2: X + Y  =>  2Y predator Y lives on prey X 
R3: Y  =>  B predator Y dies 

Rates for the reactions Changes of the metabolites 

R1 R2 R3 

A –1 

X 1 –1 

Y 1 –1 

B 1 

stoichiometric 
matrix S 

=> change of X:  
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Setting up the Equations 

With and 

we get: 

Plug in to get: 

or 

amounts 
processed per 

reaction 

speeds of 
the reactions 
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How Does It Look Like? 
Lotka–Volterra:    assume  A = const,   B ignored 
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0

1
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time 

X
, Y

 

X Y 

k1 = k2 = k3 = 0.3 

Steady State: when do the populations not change? 

=> 

With k1 = k2 = k3 = 0.3  and  A = 1 =>  X = Y = 1 

=> cyclic population changes 

Steady state = 
fluxes 

balanced 
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From rates to differences 

Rate equation: 

Reaction: 

derivative of A(t)  =  some function 

Taylor expansion around t0 = 0: 

Linear approximation: 
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From rates to differences II 
Linear approximation to (true) A(t): 

initial condition increment error 

For          : 

Use linear approximation for small time step Δt: 

"forward Euler" algorithm 
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“Forward Euler” algorithm 
General form: 

relative error: 1st order algorithm 

relative error decreases with 1st power of step size Δt 

t

 X (t)

t t

 X (t)

t/2
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Example: chained reactions 

Relative error vs. Δt  
at t = 10: 
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Reaction: 

Time evolution: 
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Example Code:  Forward Euler 
A  =>  B  =>  C 

Iterate: 

Important: 

first calculate all derivatives, 
then update densities! 
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The “correct” time step? 

Approximation works for: 

=> 

Here: 

=> 

Note 1:   
read “«” as  “a few percent” 
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From Test Tubes to Cells 
Rate equations  <=>  description via densities 

density  = indistinguishable particles 
volume element 

=> density is a continuum measure, 
     independent of the volume element 

"half of the volume => half of the particles" 

When density gets very low 
=> each particle matters 

Examples: 
~10 Lac repressors per cell, chemotaxis, 
transcription from a single gene, … 
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Density Fluctuations 
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Spread: Poisson Distribution 
Stochastic probability that k events occur follows the Poisson distribution 
(here: event = "a particle is present"):  

k = 0, 1, 2, … 
λ > 0 is a parameter 

Average: Variance: 

Relative spread (error): 

Avg. number of particles per unit volume 

relative uncertainty 

100 

10% 

1000 

3% 

1 Mol 

1e-12 

=> Fluctuations are negligible for "chemical" test tube situations 
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Reactions in the Particle View 
Consider association:  

A + B  =>  AB 

Continuous rate equation: 

Number of new AB in volume V during Δt: 

Density “picture”  Particle “picture” 
reaction rate kAB  =>   reaction probability PAB 
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Units! 

A + B  =>  AB 

Consider: 

Change in the number of AB: Association probability: 

Units: 

<=> 

Continuous case 

<=> 
Stochastic case 
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Direct Implementation 

Note: both versions are didactic implementations 

A + B  =>  AB 
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Example: Chained Reactions 
A  =>  B  =>  C 

k1 = k2 = 0.3   (units?) 
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Rates: 

Time course from continuous rate equations (benchmark): 



Bioinformatics 3 – WS 14/15 V 17  –  23 

Stochastic Implementation 

k1 = k2 = 0.3 
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=> Stochastic version exhibits fluctuations 

A => B => C 
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Less Particles => Larger Fluctuations 
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Even Less Particles 
A0 = 30 
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Spread vs. Particle Number 

0.00 0.50 1.00
0

100
200
300

0.00 0.50 1.00
0

150

300

0.00 0.50 1.00
0

200

400

A0 = 1000 

A0 = 100 

A0 = 30 

A 
B C 

B A 

A B 
C 

fre
qu

en
ci

es
 

Poisson:  
relative fluctuations 

Repeat calculation 1000 times 
and record values at t = 7. 

Fit distributions with Gaussian 
(Normal distribution) 

<A> = 0.13,  wA = 0.45 
<B> = 0.26,  wB = 0.55 
<C> = 0.61,  wC = 0.45 
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Stochastic Propagation 
Naive implementation: 
 
For every timestep: 

events = 0 
For every possible pair of A, B: 

get random number r ∈ [0, 1) 
if r ≤ PAB: 

events++ 
AB += events 
A, B –= events 
 

Problems? 

+ very simple 
+ direct implementation of the  
   underlying process 

– runtime O(N2) 
– first order approximation 

=> how to do better??? 

Determine complete  
probability distribution 
=> Master equation 

More efficient 
propagation 

=> Gillespie algorithm 

– one trajectory at a time 
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A Fast Algorithm 

D. Gillespie, J. Phys. Chem. 81 (1977) 2340–2361 
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Gillespie – Step 0 
Decay reation: A  =>  Ø       (this model describes e.g. the radioactive decay) 

Probability for one reaction in (t, t+Δt) with  A(t) molecules  =  A(t) k Δt 

Naive Algorithm:  
A = A0 
For every timestep: 

get random number r ε [0, 1) 
if r ≤ A*k*dt: 

A = A-1 
 

It works, but: A*k*dt << 1  for reasons of (good) accuracy 
=> many many steps where nothings happens 

=> adaptive stepsize method? 
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Gillespie – Step 1 
Idea:  Figure out when the next reaction will take place! 

(In between the discrete events nothing happens anyway … :-) 

Suppose  A(t) molecules in the system at time t 

f(A(t), s) = probability that with A(t) molecules the next reaction takes place in 
                interval (t+s, t+s+ds)  with  ds => 0 
g(A(t), s) = probability that with A(t) molecules no reaction occurs in (t, t+s) 

Then: 

No reaction during (t, t+s): 

probability for reaction in (t+s, t+s+ds) 
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Probability for (No Reaction) 
Now we need g(A(t), s) 

Extend g(A(t), s) a bit: 

Again A(t+s) = A(t) and resorting: 

With g(A, 0) = 1  ("no reaction during no time") 

=> Distribution of waiting times between discrete reaction events: 

Life time = average waiting time: 
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Exponentially Distributed Random Numbers 
Exponential probability distribution: 

Solve for s: 

 
A = A0 
While(A > 0): 

get random number r ε [0, 1) 
t = t + s(r) 
A = A-1 
 

1

0
t0

r ε
 [0
,1
] 

life time 

Simple Gillespie algorithm: 
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Gillespie vs. Naive Algorithm 
Naive: Gillespie: 

"What is the probability 
that an event will occur 
during the next Δt?" 

"How long will it take 
until the next event?" 

=> small fixed timesteps => variable timesteps 

=> 1st order approximation => exact 
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Gillespie – Complete 
For an arbitrary number of reactions (events): 

(i) determine probabilities for the individual reactions:  αi   i = 1, …, N 
total probability  α0 = Σ αi  

(ii) get time s until next event in any of the reactions: 

(iii) Choose the next reaction j from: 

0 1

1 2 3 4 5 6

012 123 1…4 1…5

(iv) update time and particle numbers 
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An Example with Two Species 
Reactions: A + A  =>  Ø 

k1 A + B  =>  Ø 
k2 Ø  =>  A 

k3 Ø  =>  B 
k4 

Continuous rate equations: 

Stationary state: 

with k1 = 10–3 s–1 k2 = 10–2 s–1 k3 = 1.2 s–1 k4 = 1 s–1 

=>  Ass = 10,  Bss = 10 

Chemical master equation: 
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Gillespie Algorithm 
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Stochastic Simulation 
A + A  =>  Ø 

k1 A + B  =>  Ø 
k2 Ø  =>  A 

k3 Ø  =>  B 
k4 
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Distribution of Stationary States 
A + A  =>  Ø 

k1 A + B  =>  Ø 
k2 Ø  =>  A 

k3 Ø  =>  B 
k4 

k1 = 10–3 s–1 k2 = 10–2 s–1 k3 = 1.2 s–1 k4 = 1 s–1 

Continuous model:  
Ass = 10,   Bss = 10 

From long–time Gillespie 
runs: 

<A> = 9.6,   <B> = 12.2 

<=> 
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Stochastic vs. Continuous 
For many simple systems:   
             stochastic solution looks like noisy deterministic solution 

Some more examples, where stochastic 
description gives qualitatively different results 

• swapping between two stationary states 

• noise-induced oscillations 

• Lotka-Volterra with small populations 

• sensitivity in signalling 
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Two Stationary States 
Reactions: F. Schlögl, Z. Physik 253 (1972) 147–162 

k1 = 0.18 min–1 k2 = 2.5 x 10–4 min–1 k3 = 2200 min–1 k4 = 37.5 min–1 With: 

Stationary states: As1 = 100,   As2 = 400 (stable) Au = 220  (unstable) 

Rate equation: 

=> Depending on initial conditions (A(0) <> 220),  
     the deterministic system goes into As1 or As2 (and stays there). 
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Two States – Stochastic 

=> Fluctuations can drive the system from one stable state into another 
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Self-Induced Stochastic Resonance 
System 2A + B  =>  3A 

k1 
Ø  =>  B 

k4 
Ø  <=>  A 

k2 

k3 

Compare the time evolution 
from initial state (A, B) = (10, 
10) 
in deterministic and stochastic 
simulations. 
=> deterministic simulation 
converges to and stays at 
fixed point (A, B) = (10, 
1.1e4) 

=> periodic oscillations in 
the stochastic model 
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Summary 
Today: 

• Mass action kinetics  
  => solving (integrating) differential equations for time-dependent 
behavior 
  => Forward-Euler: extrapolation,  time steps 
 • Stochastic Description 
  => why stochastic? 
  => Gillespie algorithm 
  => different dynamic behavior 


