Bioinformatics 3

V17 – Dynamic Modelling: Rate Equations + Stochastic Propagation

Fri, Jan 9, 2015

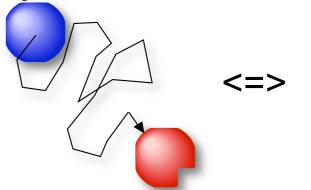
Mass Action Kinetics

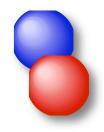
Most simple dynamic system: inorganic chemistry

Consider reaction A + B <=> AB

Interesting quantities:

(changes of) densities of A, B, and AB





density = $\frac{\text{number of particles}}{\text{unit volume}}$ $[A] = \frac{N_A}{V}, \quad \frac{d}{dt}[A](t)$

 $1 \text{ mol} = 1 \text{ Mol} / \text{Liter} = 6.022 \text{ x} 10^{23} \text{ x} (0.1 \text{ m})^{-3} = 0.6 \text{ nm}^{-3}$

Association: probability that A finds and reacts with B => changes proportional to densities of A *and* of B

Dissociation: probability for AB to break up => changes proportional to density of AB

How to put that into formulas?

Mass Action II

Again:

A + B <=> AB

Objective: mathematical description for the changes of [A], [B], and [AB]

Consider [A]:

Gain from dissociation AB => A + B

$$\frac{d}{dt}[A] = G_A - L_A$$

AB falls apart => G_A depends only on [AB]

 $G_A = k_r [AB]$

A has to find B => L_A depends on [A] and [B] $L_A = k_f [A] [B]$

Loss from association A + B => AB

phenomenological proportionality constant

 $\frac{d}{dt}[A] = k_r[AB] - k_f[A][B]$

Bioinformatics 3 – WS 14/15

Mass Action !!!

 $A + B \iff AB$

For [A]: from above we had $\frac{d}{dt}[A] = k_r[AB] - k_f[A][B]$

For [B]: for symmetry reasons

$$\frac{d}{dt}[B] = \frac{d}{dt}[A]$$

For [AB]: exchange gain and loss $\frac{d}{dt}[AB] = -\frac{d}{dt}[A] = k_f[A][B] - k_r[AB]$

with $[A](t_0)$, $[B](t_0)$, and $[AB](t_0) =>$ complete description of the system

time course = initial conditions + dynamics

A Second Example

Slightly more complex: $A + 2B \le AB_2$

Association: • one A and two B have to come together • one AB₂ requires two B

$$L_A = k_f [A] [B] [B] = k_f [A] [B]^2$$
 $L_B = 2k_f [A] [B]^2$

Dissociation: one AB₂ decays into one A and two B

$$G_A = k_r [AB_2] \qquad \qquad G_B = 2k_r [AB_2]$$

Put everything together

$$\frac{d}{dt}[A] = k_r[AB_2] - k_f[A][B]^2 \qquad \frac{d}{dt}[B] = 2\frac{d}{dt}[A] \qquad \frac{d}{dt}[AB_2] = -\frac{d}{dt}[A]$$

Some Rules of Thumb

A + 2B <=> AB₂ "A is produced when AB₂ falls apart or is consumed when AB₂ is built from one A and two B"

Sign matters: Gains with "+", losses with "-"

Logical conditions: "...from A and B"

and = "x" or = "+"

Stoichiometries: one factor for each educt (=> [B]²) prefactors survive

Mass conservationterms with "--" have to show up with "+", too

$$\frac{d}{dt}[A] = k_r[AB_2] - k_f[A][B]^2 \qquad \frac{d}{dt}[B] = 2\frac{d}{dt}[A] \qquad \frac{d}{dt}[AB_2] = -\frac{d}{dt}[A]$$

A Worked Example

Lotka-Volterra population model

R1:	A + X => 2X
R2:	X + Y => 2Y
R3:	Y => B

Rates for the reactions

 $\frac{dR_1}{dt} = k_1 A X$ $\frac{dR_2}{dt} = k_2 X Y$ $\frac{dR_3}{dt} = k_3 Y$

=> change of X:

prey X lives on A predator Y lives on prey X predator Y dies stoichiometric matrix S Changes of the metabolites **R**3 **R1** R2 Α -1 Х Y B $\frac{dX}{dt} = +k_1 A X - k_2 X Y + 0$

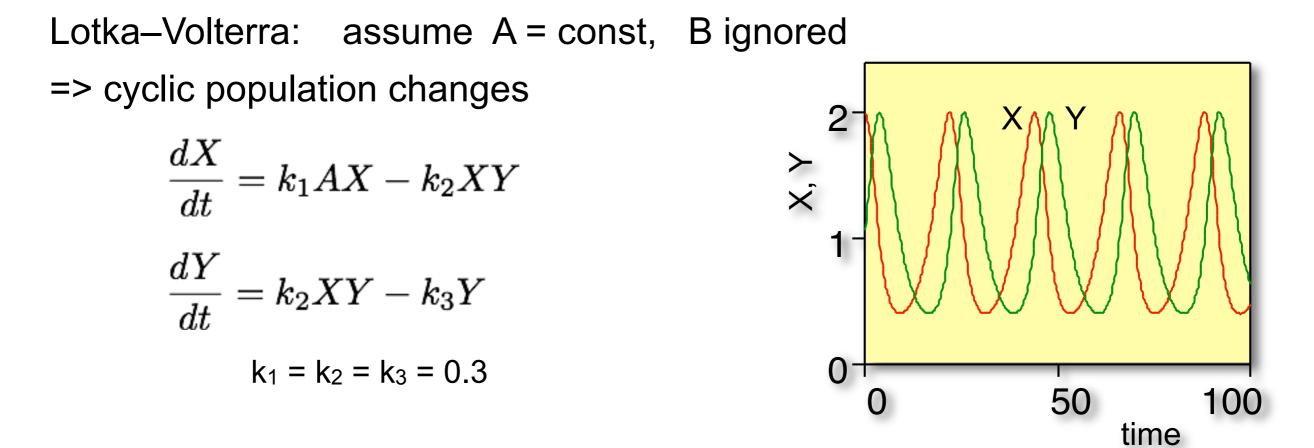
Setting up the Equations

With
$$\vec{v} = \frac{d\vec{R}}{dt} = \begin{pmatrix} dR_1/dt \\ dR_2/dt \\ dR_3/dt \end{pmatrix}$$
 and $S = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$
we get: $\frac{d}{dt}\vec{X} = \frac{d}{dt}\begin{pmatrix} A \\ Y \\ B \end{pmatrix} = S \frac{d}{dt}\vec{R}$ or $\frac{dX_i}{dt} = \sum_j S_{ij} \frac{dR_j}{dt}$
mounts processed per the reactions of the reactions of the reactions

$$\frac{dA}{dt} = -\frac{dR_1}{dt} = -k_1 A X$$
$$\frac{dB}{dt} = +\frac{dR_3}{dt} = k_3 Y$$

$$\begin{aligned} \frac{dX}{dt} &= +\frac{dR_1}{dt} - \frac{dR_2}{dt} = k_1 A X - k_2 X Y \\ \frac{dY}{dt} &= +\frac{dR_2}{dt} - \frac{dR_3}{dt} = k_2 X Y - k_3 Y \end{aligned}$$

How Does It Look Like?



Steady State: when do the populations not change?

$$\frac{dX}{dt} = \frac{dY}{dt} = 0 \qquad \Rightarrow \qquad Y = \frac{k_1}{k_2}A \qquad X = \frac{k_3}{k_2}$$
Steady state = fluxes
balanced
With k_1 = k_2 = k_3 = 0.3 and A = 1 \qquad \Rightarrow X = Y = 1

From rates to differences

Linear approximation:

$$A(t) \approx A(0) + t \cdot \frac{dA}{dt}(0) + O(t^2)$$
$$\approx A(0) + t \cdot f(A(0), B(0)) + O(t^2)$$

From rates to differences II

Linear approximation to (true) A(t):

$$t \cdot \frac{dA}{dt}(0) \gg \frac{t^2}{2} \cdot \frac{d^2A}{dt^2}(0) \gg \ldots$$

Use linear approximation for small time step Δt :

$$A(t+\Delta t) = A(t) + \Delta t \cdot \frac{dA}{dt}(t)$$

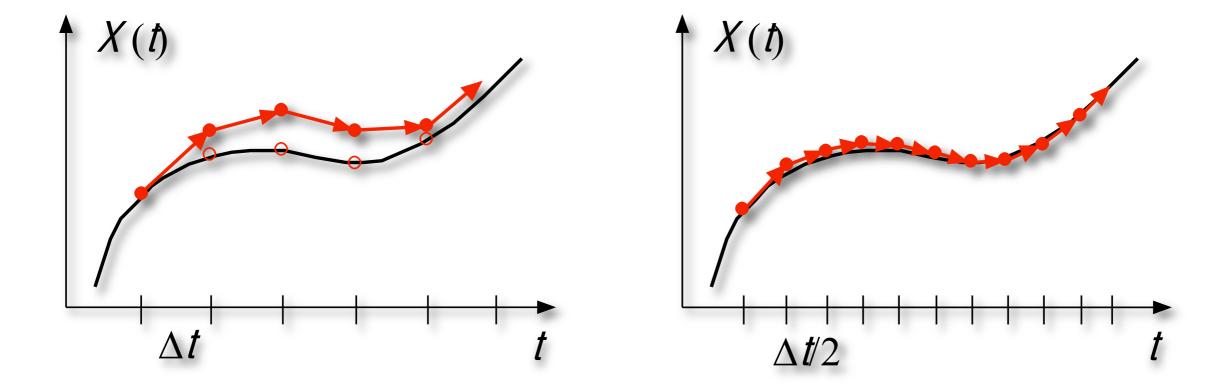
"forward Euler" algorithm

"Forward Euler" algorithm

General form: $\vec{X}_i(t + \Delta t) = \vec{X}_i(t) + \Delta t \cdot \vec{f}(\vec{X}_j(t)) + O(\Delta t^2)$

relative error: $\epsilon = \frac{\Delta t^2 / 2 \cdot X''}{\Delta t X'} \propto \Delta t$ 1st order algorithm

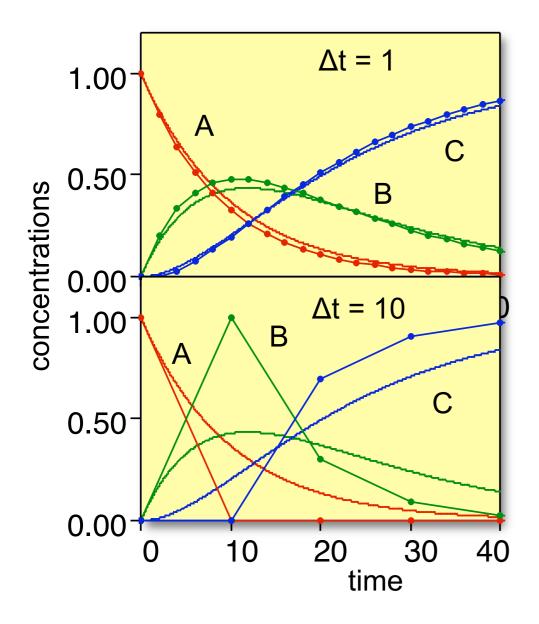
relative error decreases with 1st power of step size Δt



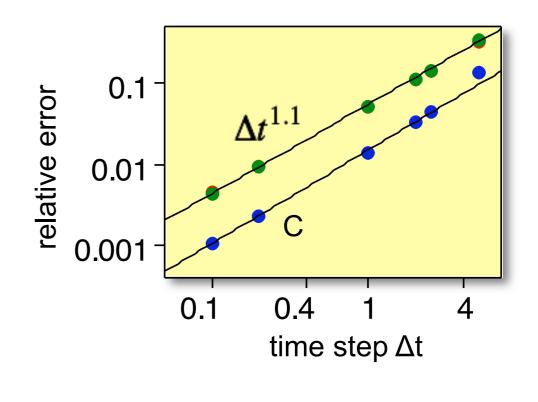
Example: chained reactions

Reaction: $A \implies B \implies C$ $k_{AB} = 0.1, k_{BC} = 0.07$

Time evolution:

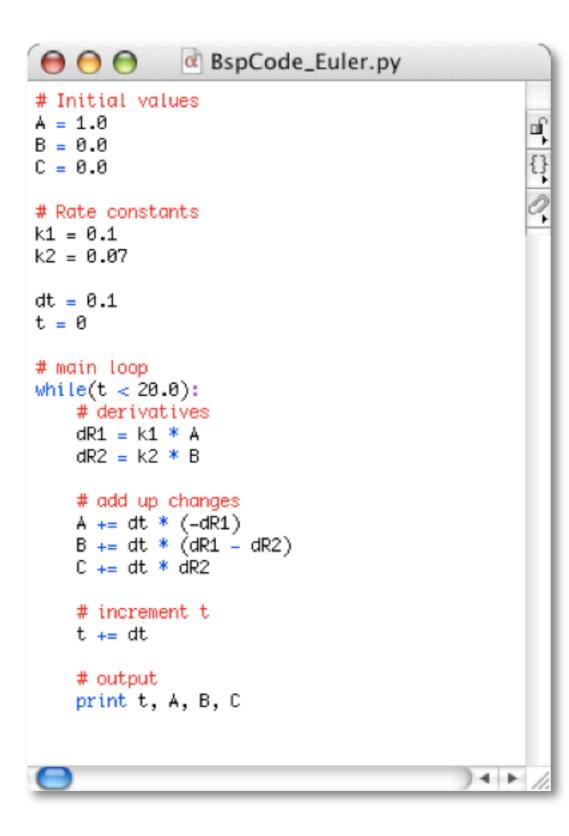


Relative error vs. Δt at t = 10:



runtime α (Δt)⁻¹

Example Code: Forward Euler



A => B => C

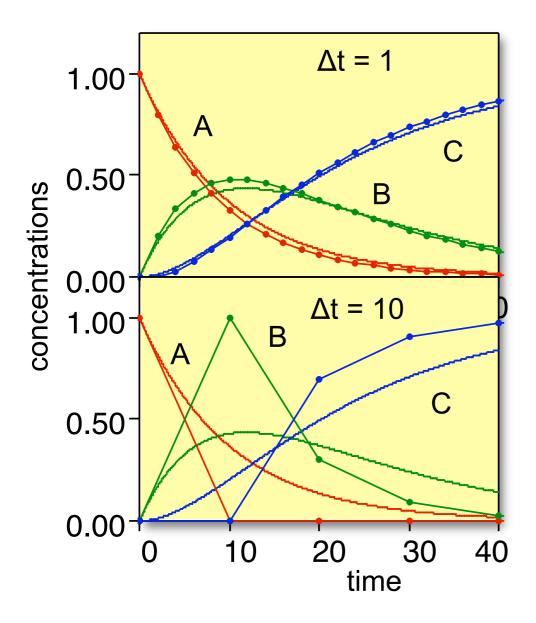
Iterate:

$$A(t+\Delta t) \;=\; A(t) \;+\; \Delta t \cdot rac{dA}{dt}(t)$$

Important:

first calculate all derivatives, then update densities!

The "correct" time step?



 $A \Longrightarrow B \Longrightarrow C$

Approximation works for:

$$|\Delta A| = \left| \Delta t \frac{dA}{dt} \right| = \left| -k_{AB} \cdot A \cdot \Delta t \right| \ll A$$
$$\implies \Delta t \ll \frac{1}{\max(k)}$$

Here:
$$k_{AB} = 0.1, \quad k_{BC} = 0.07$$

=> $\Delta t \ll 0.1^{-1} = 10$

Note 1: read "«" as "a few percent"

From Test Tubes to Cells

Rate equations <=> description via densities

density = indistinguishable particles volume element

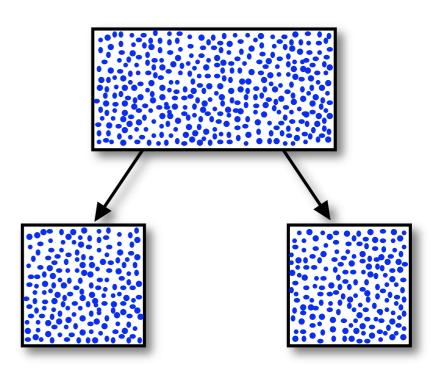
=> density is a continuum measure, independent of the volume element

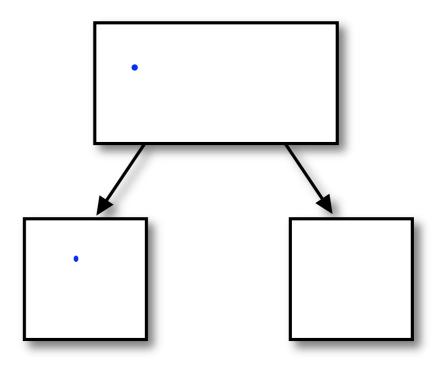
"half of the volume => half of the particles"

When density gets very low => each particle matters

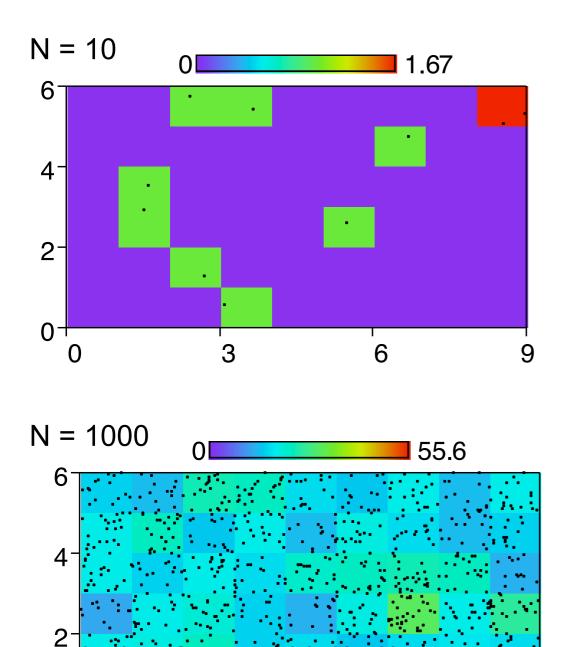
Examples:

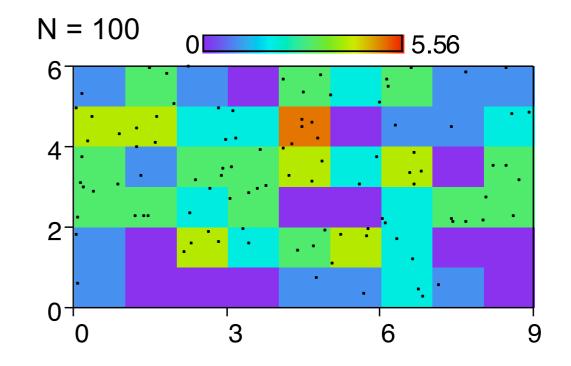
~10 Lac repressors per cell, chemotaxis, transcription from a single gene, ...

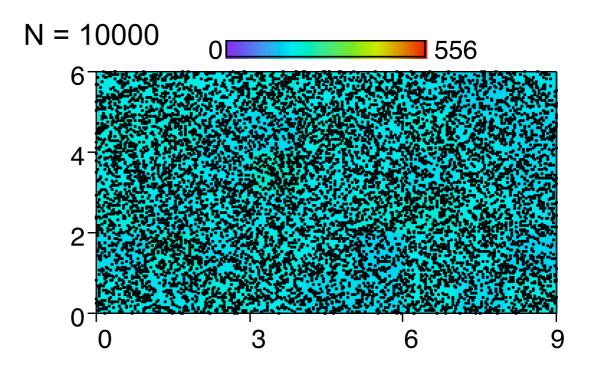




Density Fluctuations







3

6

9

0+

0

Spread: Poisson Distribution

Stochastic probability that *k* events occur follows the Poisson distribution (here: event = "a particle is present"):

$$p_k = \frac{\lambda^k}{k!} e^{-\lambda} \qquad \qquad k = 0, 1, 2, \dots \\ \lambda > 0 \text{ is a parameter}$$

Average: $\langle k \rangle = \sum k p_k = \lambda$ Variance: $\sigma^2 = \sum p_k (k - \langle k \rangle)^2 = \lambda$ $\sigma = \sqrt{\lambda}$

Relative spread (error): $\frac{\Delta k}{k} = \frac{\sigma}{\langle k \rangle} = \frac{1}{\sqrt{\lambda}}$

Avg. number of particles per unit volume	100	1000	1 Mol
relative uncertainty	10%	3%	1e-12

=> Fluctuations are negligible for "chemical" test tube situations

Reactions in the Particle View

Consider association:

 $A + B \implies AB$

Continuous rate equation:

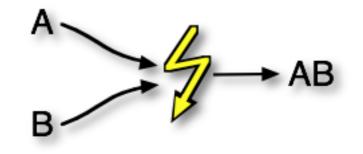
$$\frac{d[AB]}{dt} = k[A][B]$$

Number of new AB in volume V during Δt :

$$\Delta N_{AB} = \frac{d[AB]}{dt} V \Delta t$$
$$= k_{AB} \frac{N_A}{V} \frac{N_B}{V} V \Delta t$$
$$= \frac{k_{AB} \Delta t}{V} N_A N_B$$
$$= P_{AB} N_A N_B$$

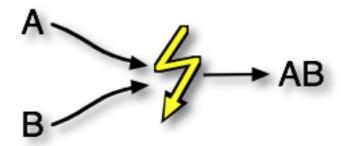
Density "picture"Particle "picture"reaction rate $k_{AB} =>$ reaction probability P_{AB}

Bioinformatics 3 – WS 14/15



Units!

 $A + B \implies AB$



Change in the number of AB:Association probability: $\Delta N_{AB} = P_{AB} N_A N_B$ $P_{AB} = \frac{k_{AB} \Delta t}{V}$ Units: Continuous case $\frac{dAB}{dt} = k_{AB} A B$

 $\begin{bmatrix} \frac{dAB}{dt} \end{bmatrix} = \frac{\text{Mol}}{ls} \qquad [A] = [B] = \frac{\text{Mol}}{l} \qquad <=> \qquad [k_{AB}] = \frac{l}{\text{Mol}s}$

Stochastic case

 $[N_{AB}] = [N_A] = [N_B] = 1$ <=> $[P_{AB}] = 1$

Direct Implementation

 $A + B \implies AB$

\varTheta 🔿 💿 🔯 Continuous_AB.py	Stochastic_AB.py
	# Stochastic association of A + B => AB
continuous association of A and B	
parameter	<pre>import random # parameter tEnd = 5.0 dt = 0.01</pre>
nd = 5.0	# parameter {
= 0.01	tEnd = 5.0
nd = 5.0 = 0.01 Lume = 100.0	dt = 0.01
ate and probability	
= 1.0 b = kAB * dt / volume	<pre># rate and probability hop = 1.0</pre>
B = KiB · dt / votalle	kAB = 1.0 prob = kAB * dt / volume
nitial conditions: particle numbers	prob = knb * dt / votalle
1000	<pre># initial conditions</pre>
1000	A = 1000
= 0	B = 1000
and the description	AB = 0
vert to densities /volume	
/volume	<pre># main loop t = 0.0</pre>
/volume	print t, "\t", A/volume, "\t", B/volume, "\t", AB/volume
	printe cy (c y hyboranie) (c y byboranie) (c y hbyboranie
loop)	<pre>while(t<tend):< pre=""></tend):<></pre>
	dAB = 0
:, "\t", A, "\t", B, "\t", AB	# check for every pair A, B
(t <tend):< td=""><td>for ia in xrange(A):</td></tend):<>	for ia in xrange(A):
B = dt * kAB * A * B	<pre>for ib in xrange(B): r = random.random()</pre>
· _	if (r < prob):
+= dAB	dAB+=1
-= dAB	AB += dAB
-= dAB	A -= dAB
increment time and output	B -= dAB
increment time and output += dt	# increased bins and subsub
int t, "\t", A, "\t", B, "\t", AB	<pre># increment time and output t += dt</pre>
	print t, "\t", A/volume, "\t", B/volume, "\t", AB/volume
) + + //	

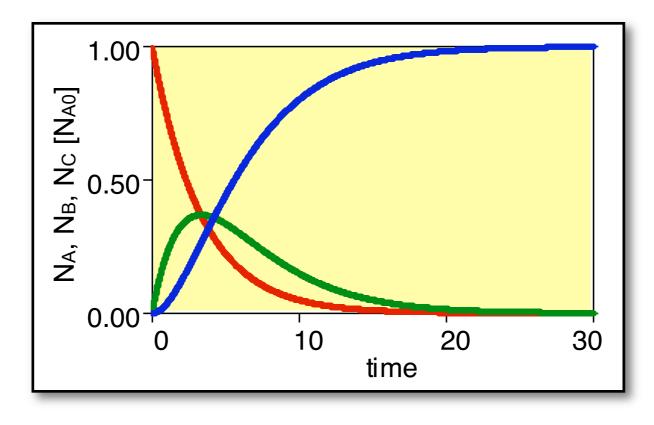
Note: both versions are didactic implementations

Example: Chained Reactions

Rates:

$$\frac{dA}{dt} = -k_1A \qquad \qquad \frac{dB}{dt} = k_1A - k_2B \qquad \qquad \frac{dC}{dt} = k_2B$$

Time course from continuous rate equations (benchmark):

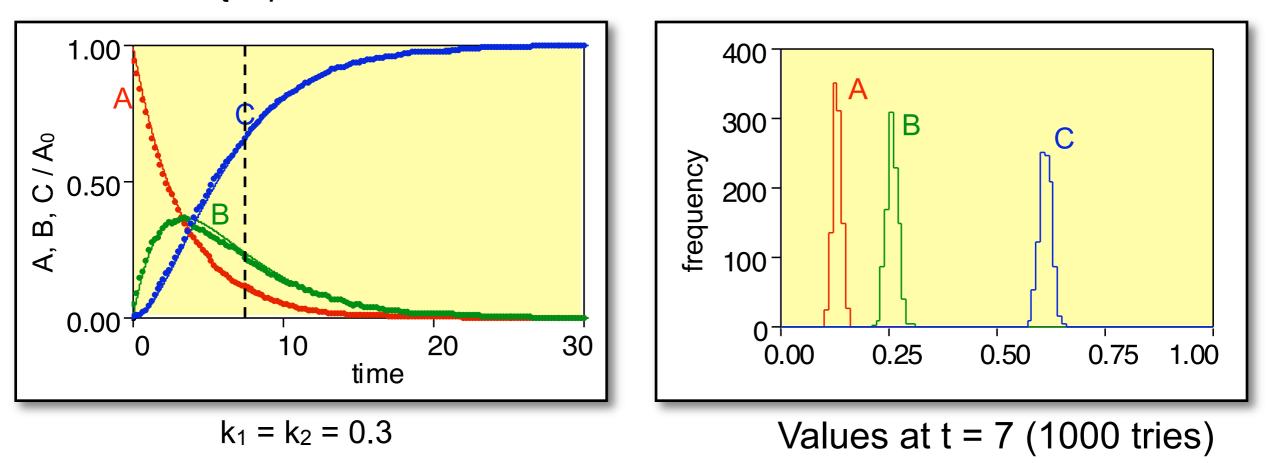


 $k_1 = k_2 = 0.3$ (units?)

Stochastic Implementation

 $A \Rightarrow B \Rightarrow C$ $A_0 = 1000$ particles initially

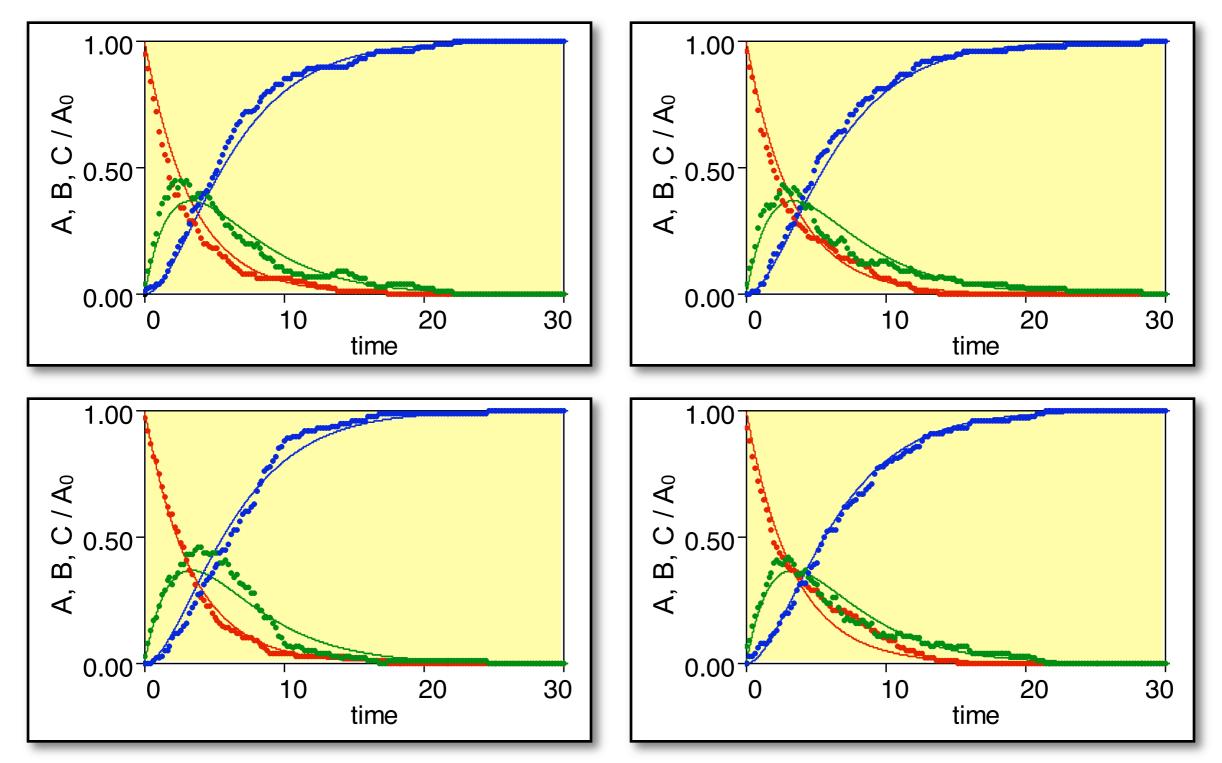
t = 7



=> Stochastic version exhibits fluctuations

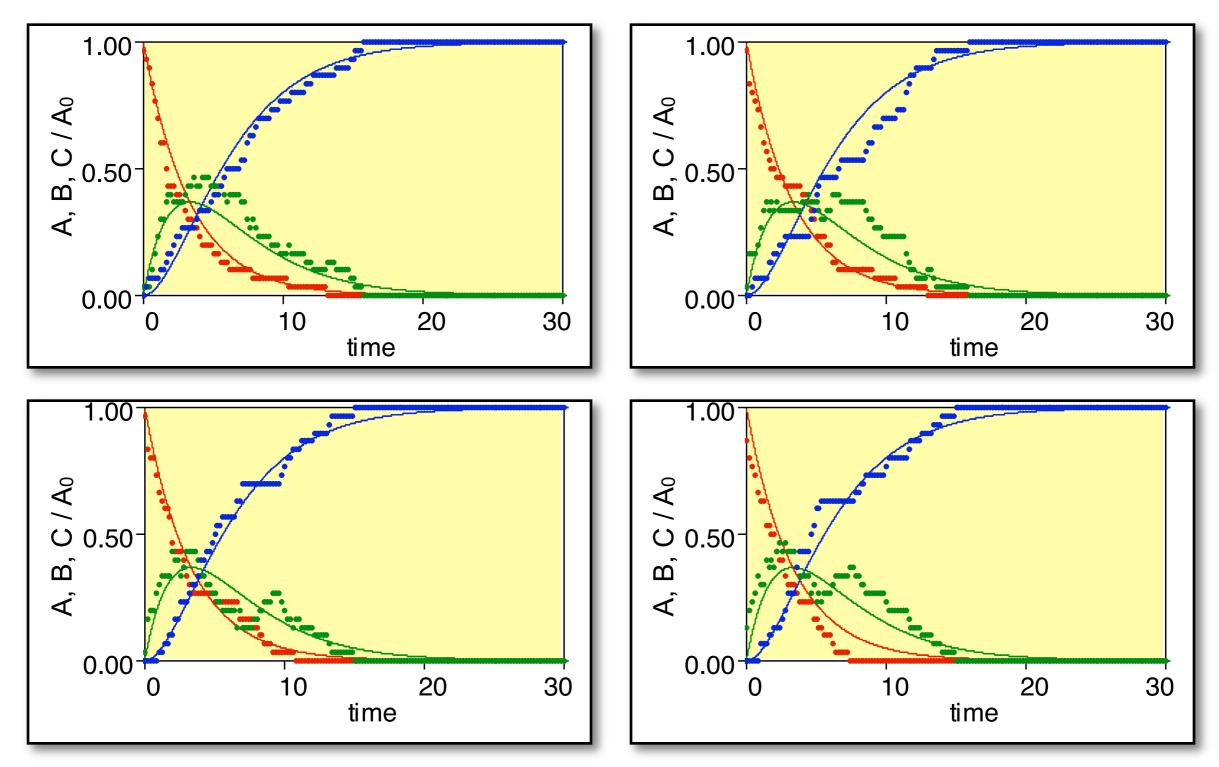
Less Particles => Larger Fluctuations

A₀ = 100 shown are 4 different runs



Even Less Particles

 $A_0 = 30$



Spread vs. Particle Number

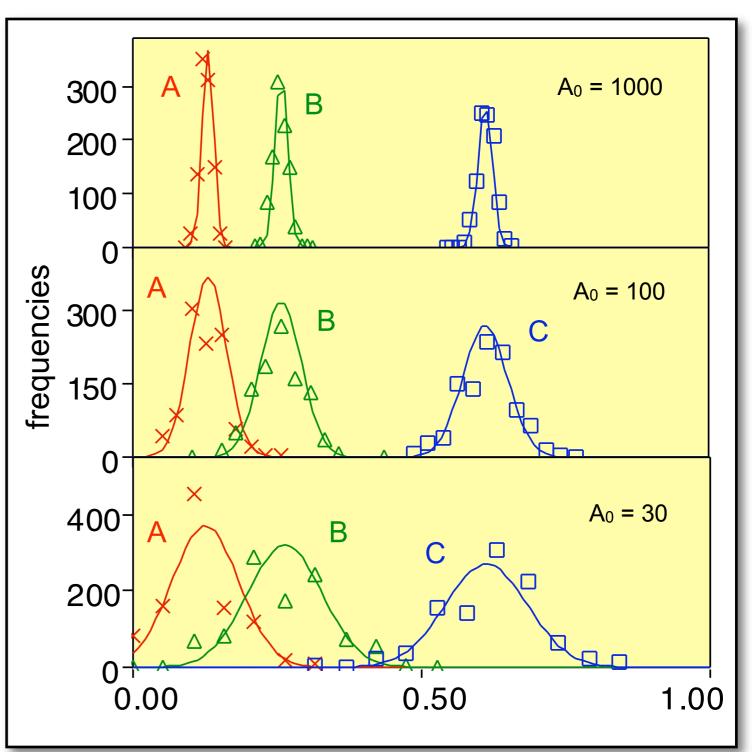
Poisson: relative fluctuations $\propto 1/\sqrt{N}$

Repeat calculation 1000 times and record values at t = 7.

Fit distributions with Gaussian (Normal distribution)

$$g(x) = \exp\left[-\frac{(x - \langle x \rangle)^2}{w/\sqrt{A_0}}\right]$$

<a> = 0.13,	w _A = 0.45
 = 0.26,	w _B = 0.55
<c> = 0.61.</c>	$w_{\rm C} = 0.45$



Stochastic Propagation

Naive implementation:

```
For every timestep:

events = 0

For every possible pair of A, B:

get random number r \in [0, 1)

if r \le P_{AB}:

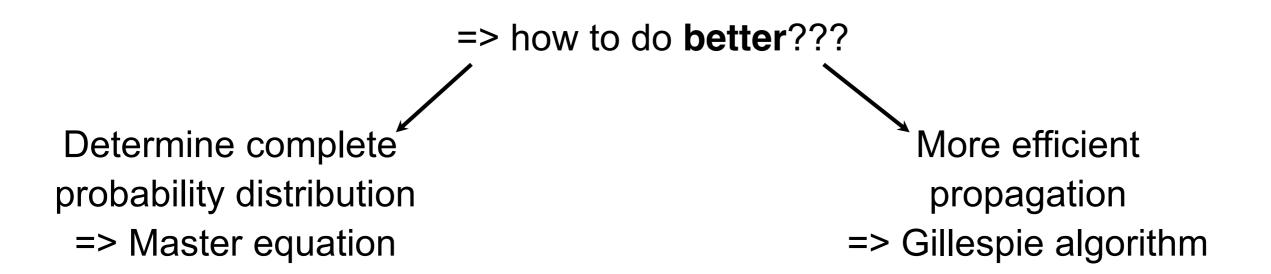
events++

AB += events

A, B -= events
```

Problems?

- + very simple
- + direct implementation of the underlying process
- runtime $O(N^2)$
- first order approximation
- one trajectory at a time



A Fast Algorithm

2340

Daniel T. Gillespie

Exact Stochastic Simulation of Coupled Chemical Reactions

Daniel T. Gillespie*

Research Department, Naval Weapons Center, China Lake, California 93555 (Received May 12, 1977)

Publication costs assisted by the Naval Weapons Center

There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical system: The *deterministic approach* regards the time evolution as a continuous, wholly predictable process which is governed by a set of coupled, ordinary differential equations (the "reaction-rate equations"); the stochastic approach regards the time evolution as a kind of random-walk process which is governed by a single differential-difference equation (the "master equation"). Fairly simple kinetic theory arguments show that the stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way to make exact numerical calculations within the framework of the stochastic formulation without having to deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like the master equation, this "stochastic simulation algorithm" correctly accounts for the inherent fluctuations and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal time increments dt by finite time steps Δt . The feasibility and utility of the simulation algorithm are demonstrated by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and the Oregonator.

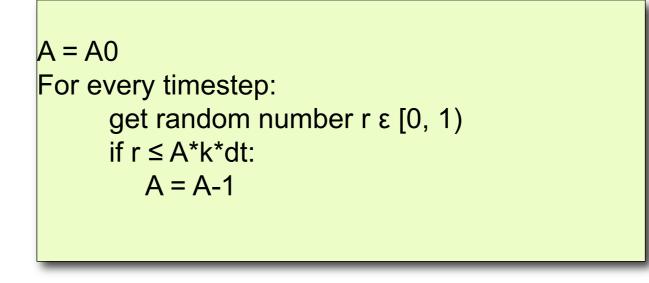
D. Gillespie, J. Phys. Chem. 81 (1977) 2340–2361

Gillespie – Step 0

Decay reation: $A \Rightarrow \emptyset$ (this model describes e.g. the radioactive decay)

Probability for one reaction in $(t, t+\Delta t)$ with A(t) molecules = $A(t) k \Delta t$

Naive Algorithm:



It works, but: A*k*dt << 1 for reasons of (good) accuracy => many many steps where nothings happens

=> adaptive stepsize method?

Gillespie – Step 1

Idea: Figure out when the next reaction will take place! (In between the discrete events nothing happens anyway ... :-)

Suppose A(t) molecules in the system at time t

f(A(t), s) = probability that with A(t) molecules the next reaction takes place in interval (t+s, t+s+ds) with ds => 0

g(A(t), s) = probability that with A(t) molecules no reaction occurs in (t, t+s)

Then:
$$f(A(t),s) ds = g(A(t),s) A(t+s) k ds$$

No reaction during (t, t+s):

$$f(A(t),s) ds = g(A(t),s) \underbrace{A(t)kds}$$

probability for reaction in (t+s, t+s+ds)

Probability for (No Reaction)

Now we need g(A(t), s)

Extend g(A(t), s) a bit:

$$g(A(t),s+ds) = g(A(t),s) \left[1-A(t+s)kds\right]$$

Again A(t+s) = A(t) and resorting:

$$\lim_{ds\to 0} \frac{g(A(t), s+ds) - g(A(t), s)}{ds} = \frac{dg(A(t), s)}{ds} = -A(t)kg((A(t), s))$$

With g(A, 0) = 1 ("no reaction during no time")

=> Distribution of waiting times between discrete reaction events: $g(A(t),s) = \exp[-A(t)ks]$

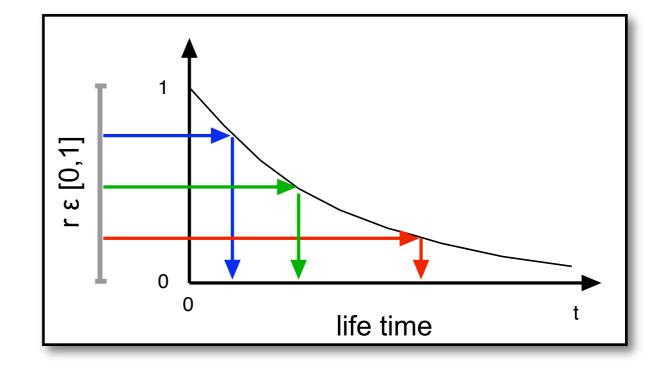
Life time = average waiting time: $s_0 = \frac{1}{kA(t)}$

Exponentially Distributed Random Numbers

Exponential probability distribution: $g(A(t),s) = \exp[-A(t)ks]$

Solve $r = \exp[-A(t)ks]$ for s:

$$s = \frac{1}{kA(t)} \ln\left[\frac{1}{r}\right] = \frac{1}{\alpha_0} \ln\left[\frac{1}{r}\right]$$



Simple Gillespie algorithm:

$$A = A0$$
While(A > 0):
get random number r ε [0, 1)
t = t + s(r)
A = A-1

Gillespie vs. Naive Algorithm

Naive:

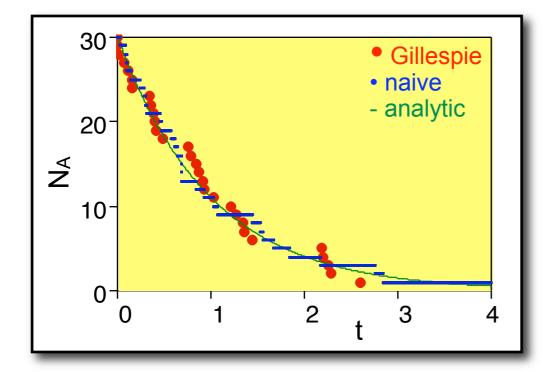
"What is the probability that an event will occur during the next Δt ?"

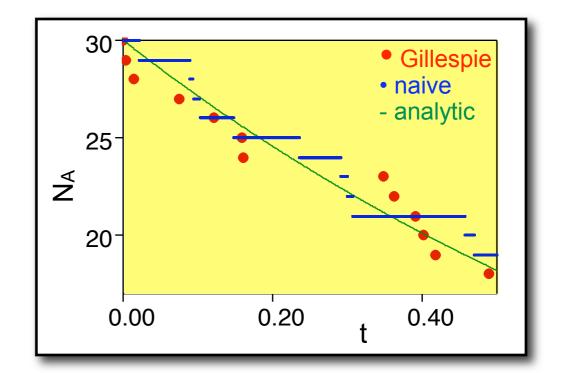
- => small fixed timesteps
- => 1st order approximation

Gillespie:

"How long will it take until the next event?"

=> variable timesteps





Gillespie – Complete

For an arbitrary number of reactions (events):

(i) determine probabilities for the individual reactions: α_i i = 1, ..., N total probability $\alpha_0 = \Sigma \alpha_i$

(ii) get time s until next event in any of the reactions $s = \frac{1}{\alpha_0} \ln \left| \frac{1}{r_1} \right|$

(iii) Choose the next reaction j from:

$$\sum_{i=1}^{j-1} \alpha_i \leq \alpha_0 r_2 < \sum_{i=1}^j \alpha_i$$

(iv) update time and particle numbers

An Example with Two Species

Reactions: $A + A \stackrel{k_1}{=} \emptyset$ $A + B \stackrel{k_2}{=} \emptyset$ $\emptyset \stackrel{k_3}{=} A$ $\emptyset \stackrel{k_4}{=} B$

Continuous rate equations:
$$\frac{dA}{dt} = k_3 - 2A^2k_1 - ABk_2$$
 $\frac{dB}{dt} = k_4 - ABk_2$

Stationary state:
$$A_{ss} = \sqrt{\frac{k_3 - k_4}{2k_1}}$$
 $B_{ss} = \frac{k_4}{k_2 A}$

with
$$k_1 = 10^{-3} \text{ s}^{-1}$$
 $k_2 = 10^{-2} \text{ s}^{-1}$ $k_3 = 1.2 \text{ s}^{-1}$ $k_4 = 1 \text{ s}^{-1}$
=> $A_{ss} = 10$, $B_{ss} = 10$

Chemical master equation:

$$\begin{aligned} \frac{\mathrm{d} p_{n,m}}{\mathrm{d} t} &= k_1 (n+2) (n+1) \, p_{n+2,m} - k_1 n (n-1) \, p_{n,m} \\ &+ k_2 (n+1) (m+1) \, p_{n+1,m+1} - k_2 n m \, p_{n,m} \\ &+ k_3 \, p_{n-1,m} - k_3 \, p_{n,m} + k_4 \, p_{n,m-1} - k_4 \, p_{n,m} \end{aligned}$$

Gillespie Algorithm

(a4) Generate two random numbers r₁, r₂ uniformly distributed in (0, 1).
(b4) Compute the propensity functions of each reaction by α₁ = A(t)(A(t)-1)k₁, α₂ = A(t)B(t)k₂, α₃ = k₃ and α₄ = k₄. Compute α₀ = α₁ + α₂ + α₃ + α₄.
(c4) Compute the time when the next chemical reaction takes place as t+τ where

$$\tau = \frac{1}{\alpha_0} \ln \left[\frac{1}{r_1} \right]. \tag{2.29}$$

(d4) Compute the number of molecules at time $t + \tau$ by

$$A(t+\tau) = \begin{cases} A(t) - 2 & \text{if } 0 \le r_2 < \alpha_1/\alpha_0; \\ A(t) - 1 & \text{if } \alpha_1/\alpha_0 \le r_2 < (\alpha_1 + \alpha_2)/\alpha_0; \\ A(t) + 1 & \text{if } (\alpha_1 + \alpha_2)/\alpha_0 \le r_2 < (\alpha_1 + \alpha_2 + \alpha_3)/\alpha_0; \\ A(t) & \text{if } (\alpha_1 + \alpha_2 + \alpha_3)/\alpha_0 \le r_2 < 1; \end{cases}$$
(2.30)

$$B(t+\tau) = \begin{cases} B(t) & \text{if } 0 \le r_2 < \alpha_1/\alpha_0; \\ B(t) - 1 & \text{if } \alpha_1/\alpha_0 \le r_2 < (\alpha_1 + \alpha_2)/\alpha_0; \\ B(t) & \text{if } (\alpha_1 + \alpha_2)/\alpha_0 \le r_2 < (\alpha_1 + \alpha_2 + \alpha_3)/\alpha_0; \\ B(t) + 1 & \text{if } (\alpha_1 + \alpha_2 + \alpha_3)/\alpha_0 \le r_2 < 1; \end{cases}$$
(2.31)

Then continue with step (a4) for time $t + \tau$.

Stochastic Simulation

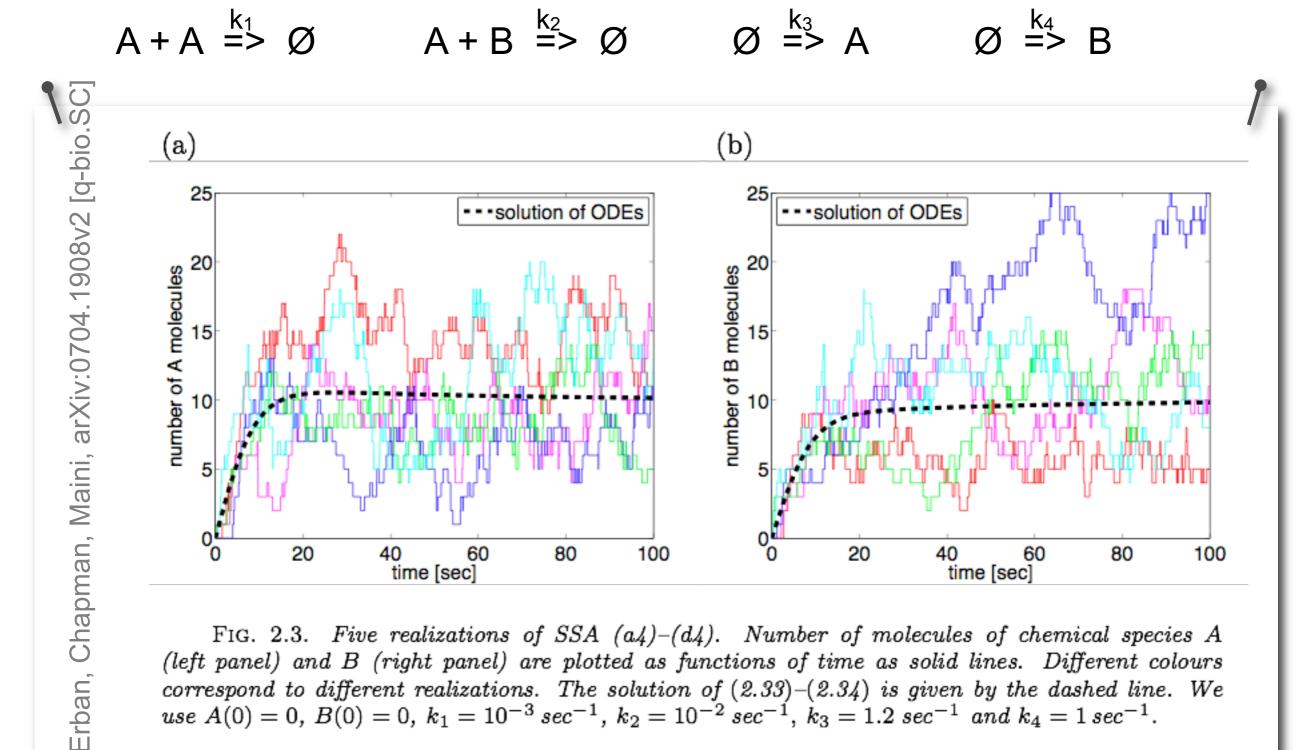
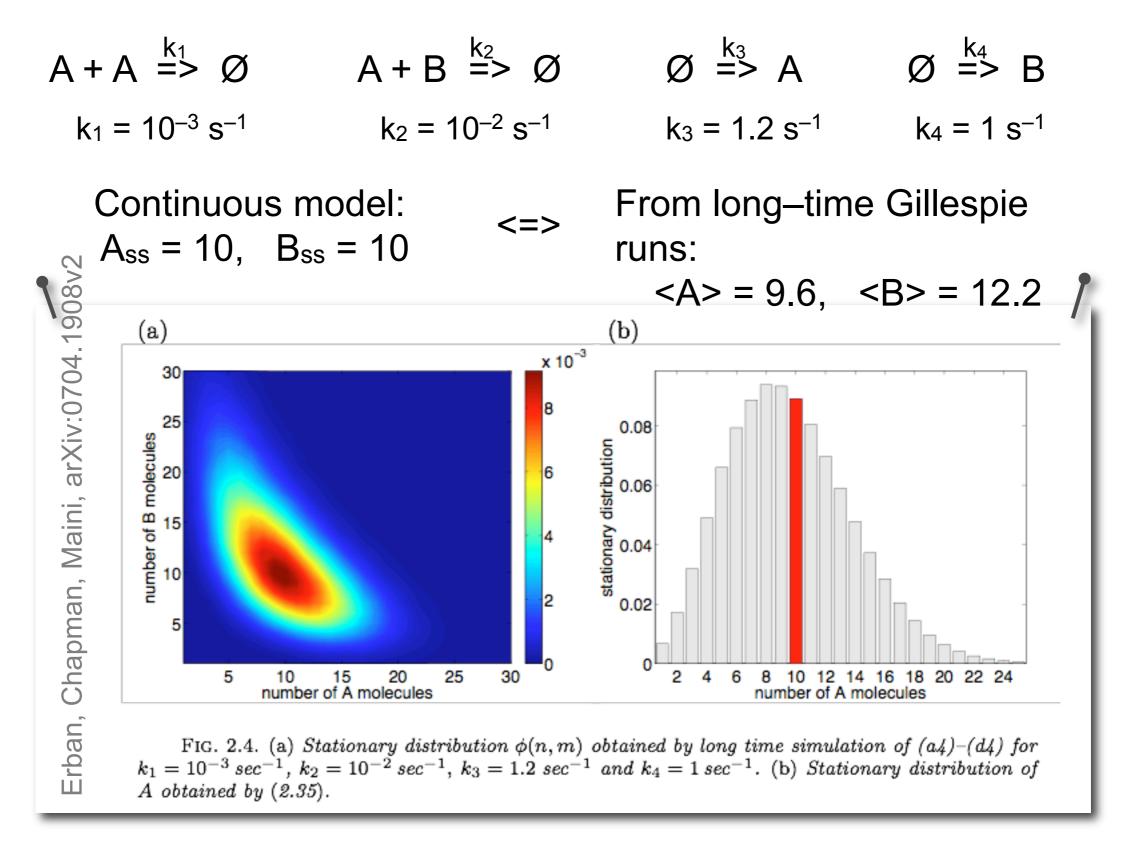


FIG. 2.3. Five realizations of SSA $(a_4)-(d_4)$. Number of molecules of chemical species A (left panel) and B (right panel) are plotted as functions of time as solid lines. Different colours correspond to different realizations. The solution of (2.33)-(2.34) is given by the dashed line. We use A(0) = 0, B(0) = 0, $k_1 = 10^{-3} \sec^{-1}$, $k_2 = 10^{-2} \sec^{-1}$, $k_3 = 1.2 \sec^{-1}$ and $k_4 = 1 \sec^{-1}$.

Distribution of Stationary States



Stochastic vs. Continuous

For **many** simple systems:

stochastic solution looks like noisy deterministic solution

Some more examples, where stochastic description gives **qualitatively different results**

- swapping between two stationary states
- noise-induced oscillations
- Lotka-Volterra with small populations
- sensitivity in signalling

Two Stationary States

Reactions: $2A \xrightarrow[k_2]{k_2} 3A$, $\emptyset \xrightarrow[k_4]{k_4} A$ F. Schlögl, Z. Physik **253** (1972) 147–162Rate equation: $\frac{dA}{dt} = k_1 A^2 - k_2 A^3 + k_3 - k_4 A$ With: $k_1 = 0.18 \text{ min}^{-1}$ $k_2 = 2.5 \times 10^{-4} \text{ min}^{-1}$ $k_3 = 2200 \text{ min}^{-1}$ $k_4 = 37.5 \text{ min}^{-1}$

Stationary states: $A_{s1} = 100$, $A_{s2} = 400$ (stable) $A_u = 220$ (unstable)

=> Depending on initial conditions (A(0) <> 220), the deterministic system goes into A_{s1} or A_{s2} (and stays there).

Two States – Stochastic

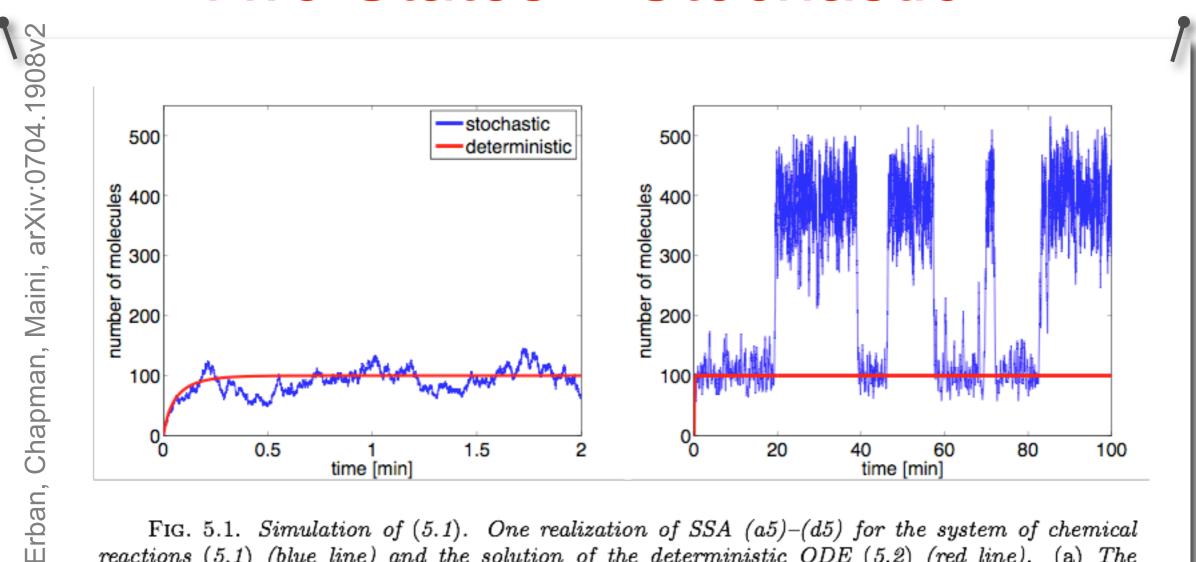


FIG. 5.1. Simulation of (5.1). One realization of SSA (a5)-(d5) for the system of chemical reactions (5.1) (blue line) and the solution of the deterministic ODE (5.2) (red line). (a) The number of molecules of A as a function of time over the first two minutes of simulation. (b) Time evolution over 100 minutes.

=> Fluctuations can drive the system from one stable state into another

Self-Induced Stochastic Resonance

System

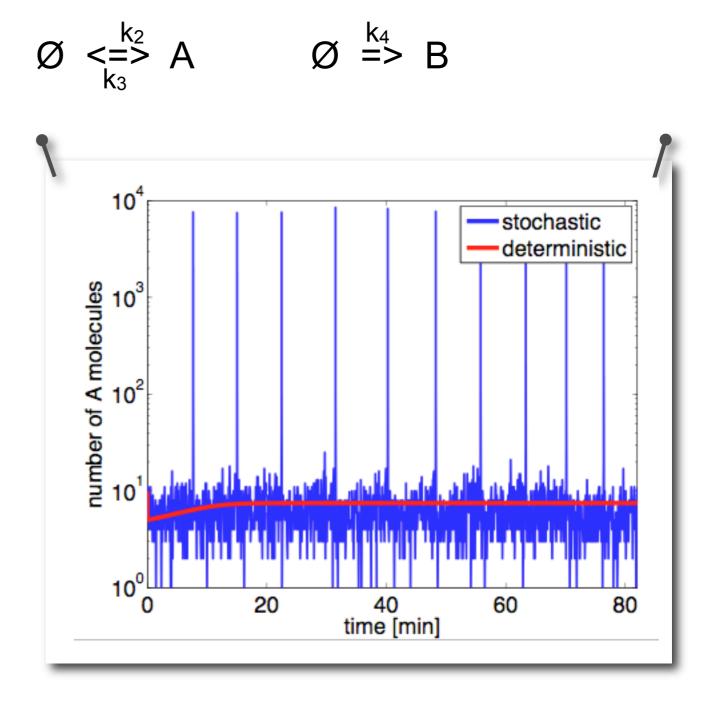
$$2A + B \stackrel{k_1}{=} 3A$$

Compare the time evolution from initial state (A, B) = (10, 10)

in deterministic and stochastic simulations.

=> deterministic simulation
converges to and stays at
fixed point (A, B) = (10,
1.1e4)

=> periodic **oscillations** in the **stochastic** model



Summary

Today:

Mass action kinetics

=> solving (integrating) differential equations for time-dependent behavior

=> Forward-Euler: extrapolation, time steps

- Stochastic Description
 - => why stochastic?
 - => Gillespie algorithm
 - => different dynamic behavior