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Graph Basics 
A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges. 

Degree distribution P(k) 

k 0 1 2 3 4 

P(k) 0 3/7 1/7 1/7 2/7 

Random network: 
also called the "Erdös-Renyi model" 
start from all nodes, add links randomly 
P(k) = "Poisson" 

Scale-free network: 
grow with preferential attachment 
P(k) = power law 
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Connected Components 

3 

Connected graph  <=>  there is a path between all pairs of nodes 

In large (random) networks:  complete {V} often not connected 
 identify connected subsets {Vi}  with  {V} = U {Vi}  
  connected components (CC) 

#CC = 5 
Nmax  = 15 
Nmin   = 1 
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Connectivity of the Neighborhood 
How many of the neighboring vertices are themselves neighbors? 
=> clustering coefficient C(k) 

Number of possible edges between k nodes: 
 
nk   is the actual number of edges between the neighbor nodes. 

Fraction of actual edges  clustering coefficient 

green: k = 2, nk = 1      C = 1 

red:  k = 4, nk = 2    C = 1/3 

Note: clustering coeff. sometimes also defined via fraction of possible triangles 

blue: k = 1, nk = ?    C is not defined 
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Clustering Coefficient of a Graph 
Data:  Ci for each node i     N values 

Statistics: 

average at fixed k  

 

k 

C
i, 

C
(k

), 
<C

> 
average over all nodes  

 

Note: it is also possible to average the C(k) 
This yields a different value for <C> !!! 
because no weighting is done for different occupancy of k’s. 
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C(k) for a Random Network 

Probability to have exactly m edges between the k neighbors 

Clustering coefficient when m edges exist between k neighbors 

In this way, we pick the m start nodes for the m edges from the k nodes. 
 
Average C(k) for degree k: 

  C(k) is independent of k 
     <=> same local connectivity throughout the network 
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The Percolation Threshold 
Connected component  =  all vertices that are connected by a path 

Very few edges 
 only CCs  
of size 2 

Many edges 
 graph is one CC 

Percolation 
transition at 
λ = 2 

Identify: 
Ncc = number of connected  
         components (clusters) 
 (green) 
Nmax = size of the largest  
           cluster (red) 

For λ > 2:    
“giant component” 
exists 

average degree λ 
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"percolation" 

Percolation Transition 
Example:  regular square lattice,  N = 25 nodes,  Lmax = 40 links between 
         next neighbors 

L = 3 
λ = 0.24 

 
Ncc = 22 
Nmax = 2 

L = 11 
λ = 0.88 

 
Ncc = 14 
Nmax = 4 

L = 22 
λ = 1.76 

 
Ncc = 3 

Nmax = 15 

L = 24 
λ = 1.92 

 
Ncc = 1 

Nmax = 25 

percolation = "spanning structure" emerges (long range connectivity) 
    for an infinite square lattice:  percolation transition at λ = 2 
here:  finite size effect  <=>  fewer possible links at the boundaries 
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Clusters in scale free graphs 
Scale-free network  <=>  no intrinsic scale 
  same properties at any k-level 
        same local connectivity 
           C(k) = const. 

k 

C
i, 

C
(k

), 
<C

> 

"Real" biological data 
 missing links 
      multiple clusters 

Is the metabolic 
network of a cell 
fully connected? 
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Algorithms on Graphs 
How to represent a graph in the computer? 

1. Adjacency list 
=> list of neighbors for each node 

1: 
2: 
3: 
4: 
5: 
6: 
7: 

(3) 
(3) 
(1, 2, 4, 5) 
(3, 5, 6) 
(3, 4, 6, 7) 
(4, 5) 
(5) 

Note: for weighted graphs store pairs of (neighbor label, edge weight) 

+ minimal memory requirement 
+ vertices can easily be added or removed 

– requires O(λ) time to determine  
   whether a certain edge exists 
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Graph Representation II 
2. Adjacency matrix 
 N x N matrix with entries Muv 
     Muv = weight when edge between u and v exists,  
              0 otherwise 

1 2 3 4 5 6 7 
1 – 0 1 0 0 0 0 
2 0 – 1 0 0 0 0 
3 1 1 – 1 1 0 0 
4 0 0 1 – 1 1 0 
5 0 0 1 1 – 1 1 
6 0 0 0 1 1 – 0 
7 0 0 0 0 1 0 – 

 symmetric for undirected graphs 

+ fast O(1) lookup of edges 
– large memory requirements 
– adding or removing nodes is expensive  

Note: very convenient in programming 
languages that support sparse multi-
dimensional arrays 
=> Perl 
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Graph Representation III 
3. Incidence matrix 
 N x M matrix with entries Mnm 
     Mnm = weight when edge m ends at node n 
               0 otherwise 

e1 e2 e3 e4 e5 e6 e7 
1 1 
2 1 
3 1 1 1 1 
4 1 1 
5 1 1 1 
6 1 1 
7 1 

e1 

e2 

e3 

e4 

e5 

e6 

e7 

  for a plain graph there are  
     two entries per column 
 
 directed graph:  
     indicate direction via sign (in/out) 

The incidence matrix is a special 
form of the stoichiometric matrix 
of reaction networks. 
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The Shortest Path Problem 

Edsger Dijkstra 
(1930-2002): 

Problem: 
Find the shortest path from a given vertex  
to the other vertices of the graph (Dijkstra 1959). 

We need (input): • weighted graph G(V, E) 
• start (source) vertex s in G 

We get (output): • shortest distances d[v] between s and v 
• shortest paths from s to v 

Idea: Always proceed with 
the closest node 
   greedy algorithm 

Real world application: 
   GPS navigation devices 
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Dijkstra Algorithm 0 
Initialization:  for all nodes v in G: 

    d[v] = oo 
    pred[v] = nil 
d[s] = 0  distance from source to source = 0 

distance and path to all 
other nodes is still 
unknown 

node 1 2 3 4 5 6 7 

d 0 oo oo oo oo oo oo 

pred – – – – – – – 

In the example:  s = 1 

   d[v]   = length of path from s to v 
pred[v] = predecessor node on the shortest path 
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Dijkstra I 

Iteration:  Q = V 
while Q is not empty: 
   u = node with minimal d 
   if d[u] = oo: 
      break 
   delete u from Q 
   for each neighbor v of u: 
      d_temp = d[u] + d(u,v) 
      if d_temp < d[v]: 
         d[v] = d_temp 
         pred[v] = u 
return pred[]C 

Save {V} into working copy Q 

choose node closest to s 
exit if all remaining 
nodes are inaccessible 

calculate distance to u's 
neighbors 

if new path is shorter 
=> update 
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Dijkstra-Example 
1) Q = (1, 2, 3, 4, 5, 6, 7) 

2) Q = (2, 3, 4, 5, 6, 7) 

3) Q = (2, 3, 5, 6, 7) 

4) Q = (2, 5, 6, 7) 
node 1 2 3 4 5 6 7 

d 0 26 21 12 30 37 42 
pred – 3 4 1 4 4 2 

node 1 2 3 4 5 6 7 
d 0 26 21 12 30 37 oo 

pred – 3 4 1 4 4 – 

node 1 2 3 4 5 6 7 
d 0 oo 21 12 30 37 oo 

pred – – 4 1 4 4 – 

node 1 2 3 4 5 6 7 
d 0 oo 23 12 oo oo oo 

pred – – 1 1 – – – 
Q = V 
while Q is not empty: 
   u = node with minimal d 

   if d[u] = oo: 
      break 

   delete u from Q 

   for each neighbor v of u: 
      d_temp = d[u] + d(u,v) 

      if d_temp < d[v]: 
         d[v] = d_temp 
         pred[v] = u 

return pred[]C 
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Example contd. 
Q = (2, 5, 6, 7) 4) 

Q = (6, 7) 

Q = (7) Final result: 

d(1, 7) = 42 path = (1, 4, 3, 2, 7) 

Q = (5, 6, 7) 5) 

d(1, 6) = 37 path = (1, 4, 6)  or (1,4,5,6) 

node 1 2 3 4 5 6 7 
d 0 26 21 12 30 37 42 

pred – 3 4 1 4 4 2 

node 1 2 3 4 5 6 7 
d 0 26 21 12 30 37 42 

pred – 3 4 1 4 4 2 

node 1 2 3 4 5 6 7 
d 0 26 21 12 30 37 42 

pred – 3 4 1 4 4 2 
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Beyond Dijkstra 

Graphs with positive and negative weights 
 Bellman-Ford-algorithm 

If there is a heuristic to estimate weights:   
 improve efficiency of Dijkstra 
      A*-algorithm 

Dijkstra works for directed and undirected graphs with 
  non-negative weights. 

Straight-forward implementation:  O(N2) 
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Graph Layout 
Task: visualize various interaction data: 
e.g. protein interaction data (undirected):  
  nodes – proteins 
  edges – interactions 
metabolic pathways (directed) 
  nodes – substances 
  edges – reactions 
regulatory networks (directed):  
  nodes – transcription factors + regulated proteins 
  edges – regulatory interaction 
co-localization (undirected) 
  nodes – proteins 
  edges – co-localization information 
homology (undirected/directed) 
  nodes – proteins 
  edges – sequence similarity (BLAST score) 
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Graph Layout Algorithms 
Graphs encapsulate relationship between objects 
 drawing gives visual impression of these relations 

Good Graph Layout:  aesthetic 
• minimal edge crossing 
• highlight symmetry (when present in the data) 
• even spacing between the nodes 

Many approaches in literature (and in software tools),  
most useful ones usually NP-complete (exponential runtime) 

Most popular for straight-edge-drawing: 
 force-directed:  spring model or spring-electrical model 
 embedding algorithms like H3 or LGL 
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Force-Directed Layout 
Peter Eades (1984):  graph layout heuristic 
 
 "Spring Embedder'' algorithm.  
 
•  edges   springs  
   vertices   rings that connect the springs  
 
•  Layout by dynamic relaxation 
 
  lowest-energy conformation 
 
 "Force Directed'' algorithm 

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html 
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Energy and Force 
Height

Distance

Downhill force

Distance

Energy increases when 
you go up the hill 

Energy: describes the 
altitude of the landscape 

You need more force 
for a steeper ascent 

Force: describes the 
change of the altitude, 
points downwards. 
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Spring Embedder Layout 
Springs regulate the mutual distance between the nodes 
• too close  repulsive force 
• too far  attractive force 

Spring embedder algorithm: 
• add springs for all edges 
• add loose springs to all non-adjacent vertex pairs 

Total energy of the system: 

xi, xj = position vectors for nodes i and j 
lij     = rest length of the spring between i and j 
R    = spring constant (stiffness) 

Problem: lij have to be determined a priori, e.g., from network distance 
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Spring Model Layout 
Task:  find configuration of minimal energy 

In 2D/3D:  force = negative gradient of the energy 

 Iteratively move nodes "downhill" along the gradient of the energy 
     displace nodes proportional to the force acting on them 

Problems: 
• local minima 
• a priori knowledge of all spring lengths 
  works best for regular grids 
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The Spring-Electrical-Model 
More general model than spring embedder model:  use two types of forces 
 
1) attractive harmonic force between connected nodes (springs) 
 

2) repulsive Coulomb-like force between all nodes 
    "all nodes have like charges"   repulsion 

one uses usually the same  
spring constant k for all edges 

either Qij = Q  or, e.g., Qij = ki kj  

Repulsion pushes all nodes apart,  springs pull connected nodes together 
 workhorse method for small to medium sized graphs 

 Do-it-yourself in Assignment 2 <= 
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Spring-Electrical Example 

http://www.it.usyd.edu.au/~aquigley/3dfade/ 
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Force-Directed Layout:  Summary 
Analogy to a physical system 
=> force directed layout methods tend to meet various aesthetic standards: 

Side-effect: vertices at the periphery tend to be closer to each other 
than those in the center… 

• efficient space filling,  
• uniform edge length (with equal weights and repulsions) 
• symmetry 
• smooth animation of the layout process (visual continuity) 

Force directed graph layout  the "work horse" of layout algorithms.  

Not so nice: the initial random placement of nodes and even very small 
changes of layout parameters will lead to different representations. 
(no unique solution) 
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Runtime Scaling 
Force directed layout: 

loop until convergence: 
   calculate forces: 
      L springs 
      N(N­1)/2 charge pairs 
   move vertices 
   output positions 

O(N2)!!! 

Several possible 
arrangements!!! 
(local minima) 

 force directed layout suitable for small to medium graphs (≤ O(1000) nodes?) 

Speed up layout by: 
• multi-level techniques to overcome local minima 
• clustering (octree) methods for distant  
groups of nodes   O(N log N) 
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H3 Algorithm 

Tamara Munzner (1996-1998): H3 algorithm  
  interactively visualize large data sets of 100.000 nodes. 

Two problems of force directed layout: 
• runtime scaling 
• 2D space for drawing the graph 

Spanning tree: connected acyclic subgraph that contains all the vertices of the 
original graph, but does not have to include all the links 

 find a minimum-weight spanning tree through a graph with weighted edges,  
     where domain-specific information is used to compute the weights 

• focusses on quasi-hierarchical graphs  
  use a spanning tree as the backbone of a layout algorithm 

• graph layout in exponential space (projected on 2D for interactive viewing) 
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Spanning Tree 

Idea:  remove links until graph has tree structure, keep all nodes connected 
 spanning tree 

Some algorithms work only/better on trees 

Minimal spanning tree = spanning tree with the least total weight of the edges 

Greedy Kruskal-Algorithm: 
 iteratively choose unused edge  
     with smallest weight, 
     if it does not lead to a circle! 

greedy <=> base choice on current state, 
                  (locally optimal choice) 
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Kruskal - Example 

Minimum spanning tree 
weight = 66 

Proof that there is no spanning tree 
with a lower weight? 



Bioinformatics 3 – WS 14/15 V 2  –  32 

Cone Layout 
Place the nodes according to their hierarchy 
starting from the root node 
 direction indicates lineage 

For arbitrary graphs 
 how to get weights? 
 which node is the root? 
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Exponential Room 

PhD thesis Tamara Munzner, chapter 3 

In Euklidian space:  circumference of a circle grows linear: 
U = 2πr 

In hyperbolic space: 
U = 2π sinh r 

 exponentially growing space 
     on the circle 

For (cone) graph layout 
 there is enough room  
     for yet another level 

Also: mappings of the  
complete hyperbolic space 
 finite volume of Euklidian space 
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Models of hyperbolic space 

PhD thesis Tamara Munzner, chapter 3 
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Visualization with H3 

PhD thesis Tamara Munzner, chapter 3 
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Visualization with H3 

PhD thesis Tamara Munzner, chapter 3 
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GIFs don't work here… 

http://www.caida.org/tools/visualization/walrus/gallery1/ 

H3:  + layout based on MST   fast 
       + layout in hyperbolic space   enough room 
       – how to get the MST for biological graphs???? 

http://www.caida.org/tools/visualization/walrus/gallery1/
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Summary 

What you learned today: 

Next lecture: 

 Local connectivity:  clustering 

 shortest path: Dijkstra algorithm 

 graph layout:  force-directed and embedding schemes 

 biological data to build networks from 

 spanning tree: Kruskal algorithm 


