
Bioinformatics 3

V 2 – Clusters,
Dijkstra, and Graph

Layout
Mon, Oct 27, 2014

Bioinformatics 3 – WS 14/15 V 2 – 2

Graph Basics
A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

Degree distribution P(k)

k 0 1 2 3 4

P(k) 0 3/7 1/7 1/7 2/7

Random network:
also called the "Erdös-Renyi model"
start from all nodes, add links randomly
P(k) = "Poisson"

Scale-free network:
grow with preferential attachment
P(k) = power law

Bioinformatics 3 – WS 14/15 V 2 –

Connected Components

3

Connected graph <=> there is a path between all pairs of nodes

In large (random) networks: complete {V} often not connected
 identify connected subsets {Vi} with {V} = U {Vi}
  connected components (CC)

#CC = 5
Nmax = 15
Nmin = 1

Bioinformatics 3 – WS 14/15 V 2 – 4

Connectivity of the Neighborhood
How many of the neighboring vertices are themselves neighbors?
=> clustering coefficient C(k)

Number of possible edges between k nodes:

nk is the actual number of edges between the neighbor nodes.

Fraction of actual edges  clustering coefficient

green: k = 2, nk = 1  C = 1

red: k = 4, nk = 2  C = 1/3

Note: clustering coeff. sometimes also defined via fraction of possible triangles

blue: k = 1, nk = ?  C is not defined

Bioinformatics 3 – WS 14/15 V 2 – 5

Clustering Coefficient of a Graph
Data: Ci for each node i  N values

Statistics:

average at fixed k



k

C
i,

C
(k

),
<C

>
average over all nodes



Note: it is also possible to average the C(k)
This yields a different value for <C> !!!
because no weighting is done for different occupancy of k’s.

Bioinformatics 3 – WS 14/15 V 2 – 6

C(k) for a Random Network

Probability to have exactly m edges between the k neighbors

Clustering coefficient when m edges exist between k neighbors

In this way, we pick the m start nodes for the m edges from the k nodes.

Average C(k) for degree k:

 C(k) is independent of k
 <=> same local connectivity throughout the network

Bioinformatics 3 – WS 14/15 V 2 – 7

The Percolation Threshold
Connected component = all vertices that are connected by a path

Very few edges
 only CCs
of size 2

Many edges
 graph is one CC

Percolation
transition at
λ = 2

Identify:
Ncc = number of connected
 components (clusters)
 (green)
Nmax = size of the largest
 cluster (red)

For λ > 2:
“giant component”
exists

average degree λ

Bioinformatics 3 – WS 14/15 V 2 – 8

"percolation"

Percolation Transition
Example: regular square lattice, N = 25 nodes, Lmax = 40 links between
 next neighbors

L = 3
λ = 0.24

Ncc = 22
Nmax = 2

L = 11
λ = 0.88

Ncc = 14
Nmax = 4

L = 22
λ = 1.76

Ncc = 3

Nmax = 15

L = 24
λ = 1.92

Ncc = 1

Nmax = 25

percolation = "spanning structure" emerges (long range connectivity)
 for an infinite square lattice: percolation transition at λ = 2
here: finite size effect <=> fewer possible links at the boundaries

Bioinformatics 3 – WS 14/15 V 2 – 9

Clusters in scale free graphs
Scale-free network <=> no intrinsic scale
  same properties at any k-level
  same local connectivity
  C(k) = const.

k

C
i,

C
(k

),
<C

>

"Real" biological data
 missing links
  multiple clusters

Is the metabolic
network of a cell
fully connected?

Bioinformatics 3 – WS 14/15 V 2 – 10

Algorithms on Graphs
How to represent a graph in the computer?

1. Adjacency list
=> list of neighbors for each node

1:
2:
3:
4:
5:
6:
7:

(3)
(3)
(1, 2, 4, 5)
(3, 5, 6)
(3, 4, 6, 7)
(4, 5)
(5)

Note: for weighted graphs store pairs of (neighbor label, edge weight)

+ minimal memory requirement
+ vertices can easily be added or removed

– requires O(λ) time to determine
 whether a certain edge exists

Bioinformatics 3 – WS 14/15 V 2 – 11

Graph Representation II
2. Adjacency matrix
 N x N matrix with entries Muv
 Muv = weight when edge between u and v exists,
 0 otherwise

1 2 3 4 5 6 7
1 – 0 1 0 0 0 0
2 0 – 1 0 0 0 0
3 1 1 – 1 1 0 0
4 0 0 1 – 1 1 0
5 0 0 1 1 – 1 1
6 0 0 0 1 1 – 0
7 0 0 0 0 1 0 –

 symmetric for undirected graphs

+ fast O(1) lookup of edges
– large memory requirements
– adding or removing nodes is expensive

Note: very convenient in programming
languages that support sparse multi-
dimensional arrays
=> Perl

Bioinformatics 3 – WS 14/15 V 2 – 12

Graph Representation III
3. Incidence matrix
 N x M matrix with entries Mnm
 Mnm = weight when edge m ends at node n
 0 otherwise

e1 e2 e3 e4 e5 e6 e7
1 1
2 1
3 1 1 1 1
4 1 1
5 1 1 1
6 1 1
7 1

e1

e2

e3

e4

e5

e6

e7

  for a plain graph there are
 two entries per column

 directed graph:
 indicate direction via sign (in/out)

The incidence matrix is a special
form of the stoichiometric matrix
of reaction networks.

Bioinformatics 3 – WS 14/15 V 2 – 13

The Shortest Path Problem

Edsger Dijkstra
(1930-2002):

Problem:
Find the shortest path from a given vertex
to the other vertices of the graph (Dijkstra 1959).

We need (input): • weighted graph G(V, E)
• start (source) vertex s in G

We get (output): • shortest distances d[v] between s and v
• shortest paths from s to v

Idea: Always proceed with
the closest node
  greedy algorithm

Real world application:
  GPS navigation devices

Bioinformatics 3 – WS 14/15 V 2 – 14

Dijkstra Algorithm 0
Initialization: for all nodes v in G:

 d[v] = oo
 pred[v] = nil
d[s] = 0 distance from source to source = 0

distance and path to all
other nodes is still
unknown

node 1 2 3 4 5 6 7

d 0 oo oo oo oo oo oo

pred – – – – – – –

In the example: s = 1

 d[v] = length of path from s to v
pred[v] = predecessor node on the shortest path

Bioinformatics 3 – WS 14/15 V 2 – 15

Dijkstra I

Iteration: Q = V
while Q is not empty:
 u = node with minimal d
 if d[u] = oo:
 break
 delete u from Q
 for each neighbor v of u:
 d_temp = d[u] + d(u,v)
 if d_temp < d[v]:
 d[v] = d_temp
 pred[v] = u
return pred[]C

Save {V} into working copy Q

choose node closest to s
exit if all remaining
nodes are inaccessible

calculate distance to u's
neighbors

if new path is shorter
=> update

Bioinformatics 3 – WS 14/15 V 2 – 16

Dijkstra-Example
1) Q = (1, 2, 3, 4, 5, 6, 7)

2) Q = (2, 3, 4, 5, 6, 7)

3) Q = (2, 3, 5, 6, 7)

4) Q = (2, 5, 6, 7)
node 1 2 3 4 5 6 7

d 0 26 21 12 30 37 42
pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 oo

pred – 3 4 1 4 4 –

node 1 2 3 4 5 6 7
d 0 oo 21 12 30 37 oo

pred – – 4 1 4 4 –

node 1 2 3 4 5 6 7
d 0 oo 23 12 oo oo oo

pred – – 1 1 – – –
Q = V
while Q is not empty:
 u = node with minimal d

 if d[u] = oo:
 break

 delete u from Q

 for each neighbor v of u:
 d_temp = d[u] + d(u,v)

 if d_temp < d[v]:
 d[v] = d_temp
 pred[v] = u

return pred[]C

Bioinformatics 3 – WS 14/15 V 2 – 17

Example contd.
Q = (2, 5, 6, 7) 4)

Q = (6, 7)

Q = (7) Final result:

d(1, 7) = 42 path = (1, 4, 3, 2, 7)

Q = (5, 6, 7) 5)

d(1, 6) = 37 path = (1, 4, 6) or (1,4,5,6)

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

Bioinformatics 3 – WS 14/15 V 2 – 18

Beyond Dijkstra

Graphs with positive and negative weights
 Bellman-Ford-algorithm

If there is a heuristic to estimate weights:
 improve efficiency of Dijkstra
  A*-algorithm

Dijkstra works for directed and undirected graphs with
 non-negative weights.

Straight-forward implementation: O(N2)

Bioinformatics 3 – WS 14/15 V 2 – 19

Graph Layout
Task: visualize various interaction data:
e.g. protein interaction data (undirected):
 nodes – proteins
 edges – interactions
metabolic pathways (directed)
 nodes – substances
 edges – reactions
regulatory networks (directed):
 nodes – transcription factors + regulated proteins
 edges – regulatory interaction
co-localization (undirected)
 nodes – proteins
 edges – co-localization information
homology (undirected/directed)
 nodes – proteins
 edges – sequence similarity (BLAST score)

Bioinformatics 3 – WS 14/15 V 2 – 20

Graph Layout Algorithms
Graphs encapsulate relationship between objects
 drawing gives visual impression of these relations

Good Graph Layout: aesthetic
• minimal edge crossing
• highlight symmetry (when present in the data)
• even spacing between the nodes

Many approaches in literature (and in software tools),
most useful ones usually NP-complete (exponential runtime)

Most popular for straight-edge-drawing:
 force-directed: spring model or spring-electrical model
 embedding algorithms like H3 or LGL

Bioinformatics 3 – WS 14/15 V 2 – 21

Force-Directed Layout
Peter Eades (1984): graph layout heuristic

 "Spring Embedder'' algorithm.

• edges  springs
 vertices  rings that connect the springs

• Layout by dynamic relaxation

  lowest-energy conformation

 "Force Directed'' algorithm

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html

Bioinformatics 3 – WS 14/15 V 2 – 22

Energy and Force
Height

Distance

Downhill force

Distance

Energy increases when
you go up the hill

Energy: describes the
altitude of the landscape

You need more force
for a steeper ascent

Force: describes the
change of the altitude,
points downwards.

Bioinformatics 3 – WS 14/15 V 2 – 23

Spring Embedder Layout
Springs regulate the mutual distance between the nodes
• too close  repulsive force
• too far  attractive force

Spring embedder algorithm:
• add springs for all edges
• add loose springs to all non-adjacent vertex pairs

Total energy of the system:

xi, xj = position vectors for nodes i and j
lij = rest length of the spring between i and j
R = spring constant (stiffness)

Problem: lij have to be determined a priori, e.g., from network distance

Bioinformatics 3 – WS 14/15 V 2 – 24

Spring Model Layout
Task: find configuration of minimal energy

In 2D/3D: force = negative gradient of the energy

 Iteratively move nodes "downhill" along the gradient of the energy
  displace nodes proportional to the force acting on them

Problems:
• local minima
• a priori knowledge of all spring lengths
  works best for regular grids

Bioinformatics 3 – WS 14/15 V 2 – 25

The Spring-Electrical-Model
More general model than spring embedder model: use two types of forces

1) attractive harmonic force between connected nodes (springs)

2) repulsive Coulomb-like force between all nodes
 "all nodes have like charges"  repulsion

one uses usually the same
spring constant k for all edges

either Qij = Q or, e.g., Qij = ki kj

Repulsion pushes all nodes apart, springs pull connected nodes together
 workhorse method for small to medium sized graphs

 Do-it-yourself in Assignment 2 <=

Bioinformatics 3 – WS 14/15 V 2 – 26

Spring-Electrical Example

http://www.it.usyd.edu.au/~aquigley/3dfade/

Bioinformatics 3 – WS 14/15 V 2 – 27

Force-Directed Layout: Summary
Analogy to a physical system
=> force directed layout methods tend to meet various aesthetic standards:

Side-effect: vertices at the periphery tend to be closer to each other
than those in the center…

• efficient space filling,
• uniform edge length (with equal weights and repulsions)
• symmetry
• smooth animation of the layout process (visual continuity)

Force directed graph layout  the "work horse" of layout algorithms.

Not so nice: the initial random placement of nodes and even very small
changes of layout parameters will lead to different representations.
(no unique solution)

Bioinformatics 3 – WS 14/15 V 2 – 28

Runtime Scaling
Force directed layout:

loop until convergence:
 calculate forces:
 L springs
 N(N­1)/2 charge pairs
 move vertices
 output positions

O(N2)!!!

Several possible
arrangements!!!
(local minima)

 force directed layout suitable for small to medium graphs (≤ O(1000) nodes?)

Speed up layout by:
• multi-level techniques to overcome local minima
• clustering (octree) methods for distant
groups of nodes  O(N log N)

Bioinformatics 3 – WS 14/15 V 2 – 29

H3 Algorithm

Tamara Munzner (1996-1998): H3 algorithm
  interactively visualize large data sets of 100.000 nodes.

Two problems of force directed layout:
• runtime scaling
• 2D space for drawing the graph

Spanning tree: connected acyclic subgraph that contains all the vertices of the
original graph, but does not have to include all the links

 find a minimum-weight spanning tree through a graph with weighted edges,
 where domain-specific information is used to compute the weights

• focusses on quasi-hierarchical graphs
  use a spanning tree as the backbone of a layout algorithm

• graph layout in exponential space (projected on 2D for interactive viewing)

Bioinformatics 3 – WS 14/15 V 2 – 30

Spanning Tree

Idea: remove links until graph has tree structure, keep all nodes connected
 spanning tree

Some algorithms work only/better on trees

Minimal spanning tree = spanning tree with the least total weight of the edges

Greedy Kruskal-Algorithm:
 iteratively choose unused edge
 with smallest weight,
 if it does not lead to a circle!

greedy <=> base choice on current state,
 (locally optimal choice)

Bioinformatics 3 – WS 14/15 V 2 – 31

Kruskal - Example

Minimum spanning tree
weight = 66

Proof that there is no spanning tree
with a lower weight?

Bioinformatics 3 – WS 14/15 V 2 – 32

Cone Layout
Place the nodes according to their hierarchy
starting from the root node
 direction indicates lineage

For arbitrary graphs
 how to get weights?
 which node is the root?

Bioinformatics 3 – WS 14/15 V 2 – 33

Exponential Room

PhD thesis Tamara Munzner, chapter 3

In Euklidian space: circumference of a circle grows linear:
U = 2πr

In hyperbolic space:
U = 2π sinh r

 exponentially growing space
 on the circle

For (cone) graph layout
 there is enough room
 for yet another level

Also: mappings of the
complete hyperbolic space
 finite volume of Euklidian space

Bioinformatics 3 – WS 14/15 V 2 – 34

Models of hyperbolic space

PhD thesis Tamara Munzner, chapter 3

Bioinformatics 3 – WS 14/15 V 2 – 35

Visualization with H3

PhD thesis Tamara Munzner, chapter 3

Bioinformatics 3 – WS 14/15 V 2 – 36

Visualization with H3

PhD thesis Tamara Munzner, chapter 3

Bioinformatics 3 – WS 14/15 V 2 – 37

GIFs don't work here…

http://www.caida.org/tools/visualization/walrus/gallery1/

H3: + layout based on MST  fast
 + layout in hyperbolic space  enough room
 – how to get the MST for biological graphs????

http://www.caida.org/tools/visualization/walrus/gallery1/

Bioinformatics 3 – WS 14/15 V 2 – 38

Summary

What you learned today:

Next lecture:

 Local connectivity: clustering

 shortest path: Dijkstra algorithm

 graph layout: force-directed and embedding schemes

 biological data to build networks from

 spanning tree: Kruskal algorithm

