Epigenetics refers to alternate phenotypic states that are
not based on differences in genotype,
and are potentially reversible,

but are generally stably maintained during cell division.

Examples: imprinting, twins, cancer vs. normal cells, differentiation, ...

Narrow interpretation of this concept : stable differential states of gene expression.

Laird, Hum Mol Gen 14, R65 (2005)
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A much more expanded view of epigenetics has recently emerged

in which multiple mechanisms interact to collectively establish

- alternate states of chromatin structure (open — packed/condensed),
- histone modifications,

- associated protein (e.g. histone) composition,

- transcriptional activity,

- activity of microRNAs, and

- in mammals, cytosine-5 DNA methylation at CpG dinucleotides.

Laird, Hum Mol Gen 14, R65 (2005)
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Basic principles of epigenetics:
DNA methylation and histone modfications

The human genome contains
23 000 genes that must be
expressed in specific cells at
precise times.

Cells manage gene expression
by wrapping DNA around
clusters (octamers) of globular
histone proteins to form
nucleosomes.

These nucleosomes of DNA
and histones are organized into
chromatin, the building block of
a chromosome.

Rodenhiser, Mann,
CMAJ 174, 341 (2006)
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Fig. 1. Carriers of epigenetic information: DNA and nucleosome.
The left panel shows a DNA double helix that 18 methylated
symmetrically on both strands (orange spheres) at its center CpG
(PDB structure: 329d). DNA methylation is the only epigenetic
mechanism that directly targets the DNA. The right panel shows a
nucleosome spindle consisting of eight histone proteins (center), around
which two loops of DNA are wound (PDB structure: 1KXS5).
The nucleosome 1s subject to covalent modifications of its histones
and to the binding of non-histone proteins.

Bock, Lengauer, Bioinformatics 24, 1 (2008)
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Acetylation
Methylation

Phosphorylation

Rodenhiser, Mann,
CMAJ 174, 341 (2006)

Chromosome DNA methylation

Reversible and site-specific histone modifications occur at multiple sites at the
unstructured histone tails through acetylation, methylation and phosphorylation.

DNA methylation occurs at 5-position of cytosine residues within CpG pairs
in a reaction catalyzed by DNA methyltransferases (DNMTSs).
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Observation: 3-6 % of all cytosines are methylated in human DNA.
This methylation occurs (almost) exclusively when cytosine is followed by a
guanine base -> CpG dinucleotide.

SAM

Cytosine \(L H3C\]\A 5-methyl-cytosine

Mammalian genomes contain much fewer (only 20-25 %)
of the CpG dinucleotide than is expected by the G+C content
(we expect 1/16 = 6% for any random dinucleotide).

This is typically explained in the following way:

As most CpGs serve as targets of DNA methyltransferases,

they are usually methylated.
Esteller, Nat. Rev. Gen. 8, 286 (2007)

www.wikipedia.org
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5-Methylcytosine can easily deaminate to thymine.

NH, O
H,C HsC
5-methyl-cytosine ’ \f\N +H,0 ’ \fl\NH thymine
- NH;
o Ao

If this mutation is not repaired, the affected CpG is permanently converted to TpG
(or CpAif the transition occurs on the reverse DNA strand).

Hence, methylCpGs represent mutational hot spots in the genome.
If such mutations occur in the germ line, they become heritable.

A constant loss of CpGs over thousands of generations
can explain the low frequency of this
special dinucleotide in the genomes of human and mouse.

Esteller, Nat. Rev. Gen. 8, 286 (2007)
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effects in chromatin organization affect gene expression
B

Gene “switched on”

« Active (open) chromatin

« Unmethylated cytosines
{white circles)

» Acetylated histones

Transcription possible l

Gene “switched off”
« Silent (condensed) chromatin
« Methylated cytosines
{red circles)
+ Deacetylated histones

T Transcription impeded

Schematic of the reversible changes in chromatin organization that influence
gene expression:

genes are expressed (switched on) when the chromatin is open (active), and they
are inactivated (switched off) when the chromatin is condensed (silent).

White circles = unmethylated cytosines;
red circles = methylated cytosines. Rodenhiser, Mann, CMAJ 174, 341 (2006)
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These dynamic chromatin states are controlled by reversible
epigenetic patterns of DNA methylation and histone modifications.

Enzymes involved in this process include
- DNA methyltransferases (DNMTs),

- histone deacetylases (HDACSs),

- histone acetylases,

- histone methyltransferases and the
-methyl-binding domain protein MECP2.

For example, repetitive genomic sequences
(e.g. human endogenous retroviral sequences
= HERVs) are heavily methylated,

ich means transcriptionally silen .
which means transcriptionally silenced. .o Mann, CMAJ 174, 341 (2006)

Feinberg AP & Tycko P (2004) Nature Reviews: 143-153
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Typically, unmethylated clusters of CpG pairs are located in
tissue-specific genes and in essential housekeeping genes.

(House-keeping genes are involved in routine maintenance roles and are expressed in most tissues.)

These clusters, or CpG islands, are targets for proteins
that bind to unmethylated CpGs and initiate gene transcription.

In contrast, methylated CpGs are generally associated with silent DNA,
can block methylation-sensitive proteins and can be easily mutated.

The loss of normal DNA methylation patterns is the
best understood epigenetic cause of disease.

In animal experiments, the removal of genes that encode DNMTs is lethal;
in humans, overexpression of these enzymes has been linked

to a variety of cancers.
Rodenhiser, Mann, CMAJ 174, 341 (2006)
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Differentiation linked to alterations of chromatin structure

A ‘ . Stem cells B Differentiated cells ~ Muscle cells (B ) U po n
.. differentiation,
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. Differentiation
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modifications.

O H3K9me3 @ H3K36me3 @ H3K27me3 @ H3K4me1,2,3 @ H3K27ac () Accessible chromatin  Methylated Cpem—unmethylaxed CpG ‘

(A) In pluripotent cells,
chromatin is hyperdynamic
and globally accessible.

ML Suva et al. Science 2013;
339:1567-1570
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Altered DNA methylation upon cancerogenesis

MNermal cell

MHH“-H- El E2 B3 El E2 —

» Turnour-suppressor gene with promoter CpG island » Locus with methylated 5-regulatory region, « Repetitive sequences,
+ ‘Open’ chromatin conformation e.g germline-specific gene eg. transposable elemnent
Cancer cell 1

m@_& E2 E3 El E2 E—E
+ CpGrisland hypermethylation » DMA hypomethylation

+ ‘Closed’ chromatin conformation « ‘Open’ or relaxed” chromatin conformation

| }

= Entry into cell cycle
= Avaidance of apoptosis
= Defects in DMNA repair

* Angiogenesis

» Loss of cell adhesion

» Loss of imprinting and overgrowth
» Inappropiate cell-ty pe expression
= Genome fragility

= Activation of endoparasitic sequences

\ Turnorigenasis /

Figure 1| Altered DNA-methylation patterns in tumorigenesis. The hypermethylation of CpG islands of tumour-
suppressor genes is a common alteration in cancer cells, and leads to the transcriptional inactivation of these genes
and the loss of their normal cellular functions. This contributes to many of the hallmarks of cancer cells. At the same
time, the genome of the cancer cell undergoes global hypomethylation at repetitive sequences, and tissue-specific
and imprinted genes can also show loss of DNA methylation. In some cases, this hypomethylation is known to
contribute to cancer cell phenotypes, causing changes such as loss of imprinting, and might also contribute to the

genomic instability that characterizes tumours. E, exon. Esteller Nat. Rev. Gen. 8. 286 (2007)
7 )
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DNA methylation is typically only weakly correlated
with gene expression!
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Left: different states of hematopoiesis (blood cell differentiation).
HSC: hematopoietic stem cell

MPP1/2: multipotent progenitor cell Bock et al. . Mol. Cell.

Right: skin cell differentiation 47,633 (2012)
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Detect DNA methylation by bisulfite conversion

Allele 1 (methylated) Allele 2 (unmethylated)

m
--=-ACTCCACGG---TCCATCGCT--- --=-ACTCCACGG---TCCATCGCT---
-=-TGAGGTGCC-~-AGGTAGCGA-~~ -—-TGAGGTGCC---AGGTAGCGA---

Bisulfite treament
Alkylation

Spontaneous denaturation
--=-AUTUUAUGG---TUUATCGUT-~-~ ---AUTUUAUGG---TUUATUGUT---
---TGAGGTGUU---AGGTAGCGA--- -——-TGAGGTGUU---AGGTAGUGA---

\/

Non-methylation-specific PCR .
Methylation-specific PCR Or NGS sequencing

:

Differentiation of bisulfite-generated polymorphisms

www.wikipedia.org
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Processing of DNA methylation data with RnBeads

b T > rnb.run.analysis()
L 5
HTML
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Left stages: processing of raw data (sequencing reads e.g. from bisulfite conversion)
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Assenov et al. Nature Methods 11,
1138-1140 (2014)
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DNA methylation analysis with RnBeads
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Assenov et al. Nature Methods 11,

1138-1140 (2014)
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http://rnbeads.mpi-inf.mpg.de/img/figure1.png

DNA fiber forms
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Hydration properties of methylated DNA

Hydration properties of natural and synthetic DNA sequences with
methylated adenine or cytosine bases in the R.Dpnl target and BDNF
promoter studied by molecular dynamics simulations

Siba Shanak and Volkhard Helms?/
Zentrum fiir Bioinformatik, Universitdit des Saarlandes, P.O. Box 15 11 50, 66123 Saarbriicken, Germany

THE JOURNAL OF CHEMICAL PHYSICS 141, 22D512 (2014)

(Received 10 July 2014; accepted 29 September 2014; published online 17 October 2014)

HaCar Methylation of
il adenine vs. cytosine
/N AN has very different
< | ) effects
N™ N
H
(b)

FIG. 1. A schematic representation of (a) C5-methylated cytosine and (b)
N6-methylated adenine. Partial atomic charges of the methyl carbon, methyl
hydrogens, and the atoms these are bonded to are marked in red.



Hydration properties of methylated DNA

-
A (J solvation]

Nucleic acid base,uum — Nuclcic+acid baseusier De-MethyIatlon of adenine is

isoenergetic in water and in gas.
A(;\'l'.'-li'H'Il’.l” A(;'IHIH'I."F'
ﬁG.\TJIIIIfI'HHi” D _M th | ti n f t in in
me.Nucleic acid baseyueum — me.Nucleic acid base,er © e ylation ot ¢y (?S ©
water is more energetically costly
-> methylated cytosine prefers to
FIG. 2. A scheme illustrating free energy calculations for the differential be solvated, acts against bmdmg

stability of the methylated and the nonmethylated form of the nucleic acid
base (NAB) upon solvation.

A AG.TrJ.l".‘df.‘rJir :A G.vrr."mufl'm.l ¥ 'ﬂG.mF vation. | :!ﬂG| Ui 'ﬂ G'aw.‘ur

TABLE . Results from free energy calculations (kcal/mol) (A) for perturbing the methylated adenine into non-methylated adenine in water and vacuum and
for the solvation free energies of 6-N-methyl-adenine and adenine, (B) for perturbing the methylated cytosine into non-methylated cytosine in water and vacuum
and for the solvation free energy of 5-methyl-cytosine and cytosine. In (A + B), the free energy of mutating the hydrogen atom to the methyl (—1.67 keal/mol)
residue cancels out in vacuum and water. Values in brackets are statistical errors reported by GROMACS.

(A) Adenine AGdi&'harging_- AGtuming LI off ‘é‘GlnlaI AAG

met. adel?inemuum — adfzninevmum 421 (x0.02) 4.26 (£ 0.01) 8.48 (= 0.02) 040 (+0.02)
met.adenine . — adenine 4.08 (+£0.02) 4.00 (£ 0.02) 8.08 (£0.03)

met. adenine,, . — mel. adeninemm_imum[i“g —22.82 (= 0.02) —0.80 (£ 0.02) —23.62 (£ 0.02) 052 (4 0.02)
adenine  — :-1deninerm_mwlr‘,l_\,[ing —22.15(£0.02) —0.95(£0.02) —23.10(£0.02) ' o
(B) Cytosine

met. cytosine . . — cylosine 0.00 (£ 0.00) 1.62 (£ 0.00) 1.62 (£ 0.0) 2673 (4 0.03)
mel.cylosine, — cylosine 26.82 (£ 0.02) 1.53 (£ 0.03) 28.35 (£ 0.03) o o
met.cytosine,, ., — met. c)-'tosi11erm_imrﬂi.[irlg 12.80 (£ 0.04) 0.00 (£ 0.08) 12.80 (£ 0.06) 26,16 (£ 0.11)
cytosine,,, . — cytosine ... 38.93 (= 0.16) 0.03(£0.12) 38.96 (£ 0.14)




Protein-DNAWMe jnteraction (R.Dpnl from E.coli)

A PD-(D/E)XK domain :

winged helix
domain

& Matthias Bochtler (Warsaw), Janus M. Bujnicki (Warsaw)

Siwek et al. Nucl. Acids Res. (2012) 40 (15): 7563-7572.
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Protein-DNAMe interaction (R.Dpnl from E.coli)
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PhD thesis Siba Shanak (2015)
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After analysis of raw sequencing data + filtering of problematic regions etc

the degree of methylation is typically expressed as
fractional beta value: %omCG(i) / ( %omCG(i) + %CG(i) )

A beta value for CpG position j takes on values between

0 (position i not methylated) and 1 (position i fully methylated)

WS 2014/15 - lecture 21 Bioinformatics Il
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- Observation: methylation levels of neighboring CpG positions within 1000 bp are
often correlated;
- distance between neighboring CpGs is ca. 100 bp (1% frequency)

- ldea: exploit this effect to ,smoothen” experimental data,
e.g. when this is obtained at low coverage

Master thesis of Junfang Chen (February 2014):

Journal of Biomformatics and Computational Biology @ Imperial College Press
Vol. 12, No. 6 (2014) 1442005 (16 pages) WWW.icpress.co.uk

¢ Imperial College Press
DOL: 10.1142/50219720014420050

AKSmooth: Enhancing low-coverage bisulfite sequencing
data via kernel-based smoothing

Junfang Chen* "+, Pavlo Lutsik", Ruslan Akulenko®,
Jorn Walter™ and Volkhard Helms*$
*Center for Bioinformatics, Saarland University
Saarbriicken 66123, Germany
"Department of Genetics, Saarland University
Saarbriicken 66123, Germany
tsOjuchen @stud. uni-saarland. de
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t: target CpG site

y, : methylation level of i-th CpG site
within window of given size

C(i): weighting factor to consider read
coverage of neighboring CpG sites
relative to that of target site (setto 1)

K.(t, i): Kernel function that considers
the distance between positions tand /.

-> more distant positions get smaller
weight.

Bioinformatics Il
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Choice of kernel function
The kernel K i — |
I{h(f") _D( ’ ] : )r
l

1s elther a standard (Gaussian function

1 2
D(p) = e 73
hv?2m
or the Epanechnikov kernel
S1—p?) i |yl < 1
— (L —p=) if |u :_
0 otherwise

or the tricubic kernel

70

— (1 —|u|®)? if |u] < 1:

0 otherwise.
WS 2014/15 - lecture 21 Bioinformatics IlI
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Correlation Scores

Three Cancer Samples on Autosome

1.00 1 Vioov2 Best results for window
+ hi C1 . .
. T b oo considering nearby 10-20
hg A C3
. he CpGs.
0.90 + hic
* & ‘ - )
- sh2, NER Gaussian kernel (,hg“)more
Iﬁﬁﬁfﬁﬁﬁﬁﬁﬁi ZZZIIIIIIIIIIZZZZIIIIIﬁiﬁﬁﬁIIIIIIIZZZIIIIIIIIIIZZZZZIIIIIIIIIIZIIIIIIIIIIZZZIIIIIIIIIIZZZIXIIIIIZZZZZIIIIIZZZZIIIIIIII rObUSt Wlth distance
21 a . 2 (exponential weighting).
0.75 — : x
) 4 f
8 Followed by tricubic kernel
| (,htc").
TR R R B L R R R G, GG %, Quadratic Epanechikov
Smoothing Methods
kernel (,ne") shows
Every method was tested for including neighboring strongest decrease for
5,10, 15, ... 70 CpGs. large windows.

,hl“ : low-coverage data (unsmoothened)
,hb“: low-coverage data processed with bsmooth-program
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DNA methylation in breast cancer

. = M
Infinium

RevB BeadChip Kits
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Normal cell

DNA methylation in cancer
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The Cancer Genome Atlas

ARTICLE

doi:10.1038/nature11412

Comprehensive molecular portraits of
human breast tumours

The Cancer Genome Atlas Network*

Mutations
Predicted somatic non-silent mutations M Truncation mutation Missense mutation Clinical data Copy number status per Mb
s} z O
} g s ) k) z n oo X ITm R _0
Q = Q
3383 E8333:8883¢8 3333835350, 3838¢8¢233
Subtype gaﬁﬁmmﬁzaqﬁmﬁa%qqmgmlmbmmﬂﬂzg%aﬁm Z 2o 50 100
Luminal A -:———
—— —_ —
-_— _— —_—
— — — —
HER2- - — e [—
enriched _
Basal-like - -
_______ Al 36%37% 8% 4% 11% 7% 7% 3% 3% 2% 4% 2% 3% 3% 3% 2% 2% 1% 2% 3% 3% 1% 2%
45% 12913% 7% 14% 8% 9% 4% 0.4% 4% 5% 2% 3% 5% 4% 2% 3% 1% 0.4% 1% 2% 0.4% 2%
29% 29% 5% 2% 15% 6% 5% 4% 2% 2% 2% 2% 4% 2% 2% 2% 0% 1% 3% 2% 4% 2% 4%
HERZ2-enriched 39% 72% 4% 2% 2% 7% 5% 2% 4% 2% 4% 2% 0% 0% 2% 2% 4% 2% 0% 5% 0% 5% 4%
IBEERRE 0% 80% 0% 0% 2% 5% 0% 1% 0% 0% 0% 0% 1% 2% 1% 0% 1% 0% 4% 4% 2% 0% 1%

Percentages of cases with mutation by expression subtype
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The Cancer Genome Atlas

DNA methylation

lNumina Infinium DNA methylation arrays were used to assay 802
breast tumours. Data from HumanMethylation27 (HM27) and
HumanMethylation450 (HM450) arrays were combined and filtered
to yield a common set of 574 probes used in an unsupervised clustering
analysis, which identified five distinct DNA methylation groups
(Supplementary Fig. 8). Group 3 showed a hypermethylated pheno-
type and was significantly enriched for luminal B mRNA subtype and
under-represented for PIK3CA, MAP3K1 and MAP2K4 mutations.
Group 5 showed the lowest levels of DNA methylation, overlapped
with the basal-like mRNA subtype, and showed a high frequency of
TP53 mutations. HER2-positive (HER2") clinical status, or the
HER2E mRNA subtype, had only a modest association with the
methylation subtypes.

A supervised analysis of the DNA methylation and mRNA expres-
sion data was performed to compare DNA methylation group 3
(N = 49) versus all tumours in groups 1, 2 and 4 (excluding group 5,
which consisted predominantly of basal-like tumours). This analysis
identified 4,283 genes differentially methylated (3,735 higher in group
3 tumours) and 1,899 genes differentially expressed (1,232 downregu-
lated); 490 genes were both methylated and showed lower expression
in group 3 tumours (Supplementary Table 4). A DAVID (database for
annotation, visualization and integrated discovery) functional annota-
tion analysis identified “extracellular region part’ and “Wnt signalling
pathway’ to be associated with this 490-gene set; the group 3 hyper-
methylated samples showed fewer PIK3CA and MAP3KI mutations,
and lower expression of Wnt-pathway genes.
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122 Normal Breast Tissues 466 Breast Tumors
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Supplemental Figure 8. DNA methylation subtypes and comparison to normal breast tissues. DNA methylation cluster member-
ship was determined by a Recursively Partitioned Mixture Model (RPMM) for 466 breast tumors using 574 selected probes and com-
pared to 122 breast normal samples in the same probe order. DNA methylation levels (beta value) are shown with a color spectrum;
blue, no methylation to yellow, full methylation. Cluster memberships are indicated by the horizontal color bar: black Cluster 1 (n=80);
red Cluster 2 (n=123); green Cluster 3 (n=44) blue Cluster 4 (n=128); cyan Cluster 5 (n=91). Molecular and clinical features as
indicated in the color key. P-values for association with molecular and clinical features were calculated using a Chi-square test or
Fisher’s exact test, wherever applicable.

Bioinformatics Il 29



Idea: identify co-methylation of genes in TCGA samples

A
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Co-methylation of genes 1 and 3 across samples
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Tumor data

M National Cancer Institute

The Cancer Genome Atlas @ Understanding genomics

Data Portal to improve cancer care

Data Type Level 1 Level 2 Level 3 Level 4
(Base- (Raw Data) (Normalized/ | (Segmented/ (Summary
Specific) Processed) Interpreted) Finding/ROlI)

DNA Raw signals Normalized Methylated Statistically
Methylation per probe signals per  sites/genes significant
probe or per sample methylated
probe set and sites/genes
allele calls across
samples

« 183 tumor samples deposited in Sept 2011 (tumor group 1);
« 134 tumor samples deposited in Oct 2011 (tumor group 2) and
« 27 matched normal samples from Oct 2011.
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Difficulties: batch effect

0,35
0,3

0,25
0,2

0,15
2
0,1 *»

ZNF143

0,05 | #ee

0,2 0,4
DLGAP5

0,6

beta =

M
M+U

+ tumor group 1 Sept. 2011
= tumor group 2 QOct. 2011
norm

Filter 1: delete genes affected by batch effect
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Difficulties: outliers

0,8

0,7
0,6

~ 0,5

* 0,4
003

+ tumor group 1

= tumor group 2

0,2
0,1

norm

o I3 |
0 05
YIPF5

Filter 2: require zero outliers
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Difficulties: low variance

0,25
L 4
0,2
8 0,15
= + tumor group 1
w 0,1
- = tumor group 2
0,05 - norm
0 = | |
0 0,1 0,2

CiR

Filter 3: delete genes with low variance

quartile3(beta;) — quartilel(beta;) = 0,1
i€T i€T
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Comparison against randomized data
o
10
o

10°

frequency

— 344 TCGA samples

— = randomply permutated 344
TCGA samples

10

-0,90 -0,70 -0,50 -0,30 -0,10 0,10 0,30 0,50 0,70 0,90

correlation of CpG methylation for pairs of genes
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Known breast cancer genes in OMIM: mostly unmethylated
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top 10 co-methylated gene pairs

First gene Second gene Pearson correlation

SPRRI1B SPRR1A 0,872
FCN2 FCNI1 0,870
CD244 CD48 0,866
SPRRI1B SPRR4 0,862
TAS2R13 PRB4 0,859
F7 TFF1 0,856
SH3TC2 SPARCL1 0,853
ABCEl SC4MOL 0,849
REGIB REGIP 0,846

SPRR3 SPRR4 0,843
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Are all co-methylated genes neighbors?

Less than half of all co-methylated gene pairs lie on the same chromosome
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Functional similarity of co-methylated genes
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Enriched pathways in co-methylated gene clusters

Cluster

1D KEGG pathways p-value | Genesinvolved in pathways | FDR
hsa04950:Maturity onset diabetes of

8 the young 0.003 HNF1B. FOXA2, NEURODI1 | 2.622

9 hsa04640:Hematopoietic cell lineage 0.009 |CDIA.CDIE.CDID 6.229

15 hsa04730:Long-term depression 0.004 GRMS5, C7TORF16, PRKG2 2.952
hsa04060:Cytokine-cytokine receptor

22 interaction 0.047 EGF, TNFSF18. IL20 31.263

27 hsa04512:ECM-receptor inferaction 0.005 COL5SA2. COL11ALl. SPPI 3.500

27 hsa04510:Focal adhesion 0.029 | COL5A2, COL11AL1l. SPP1 17.498

Table S2. The results of pathway enrichment analysis of 29 gene clusters obtained using DAVID.

These clusters were formed by applying Affinity Propagation clustering to 779 genes. which were left

after three-stage filtered of all 13.313 genes from methylation data samples.
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