Bioinformatics 3 V 3 – Data for Building Networks

Fri, Oct 31, 2014

Bioinformatics 3 – WS 14/15

Graph Layout 1

Requirements:

- fast and stable
- nice graphs
- visualize relations
- symmetry
- interactive exploration

Force-directed Layout:

based on energy minimization

- \rightarrow runtime
- \rightarrow mapping into 2D

- H3: for hierarchic graphs
- \rightarrow MST-based cone layout
- \rightarrow hyperbolic space

 \rightarrow efficient layout for **biological data???**

<u>Aim</u>: analyze and visualize **homologies** within the **protein universe** 50 genomes, 145579 proteins, 21×10^9 BLASTP pairwise sequence comparisons

Expectations:

- homologs will be close together
- fusion proteins ("Rosetta Stone proteins") will link proteins of related function.

 \rightarrow need to visualize an extremely large network!

 \rightarrow develop a stepwise scheme

LGL: stepwise scheme

(0) create network from BLAST E-score

145'579 proteins $E < 10^{-12} \rightarrow 1'912'684$ links , 30737 proteins in the largest cluster

(1) separate original network into connected sets

11517 connected components, 33975 proteins w/out links

(2) apply force directed **layout** to each **component independently**, based on a MST

(3) integrate connected sets into one coordinate system via a **funnel process**, starting from the largest set

The first connected set is placed at the bottom of a potential funnel. Other sets are placed one at a time on the rim of the potential funnel and allowed to fall towards the bottom where they are frozen in space upon collision with the previous sets.

Component layout I

For each component:

 \rightarrow start from the **root node** of the MST

Centrality: minimize total distance to all other nodes in the component

$$v_{root} = \min\left(\sum_{(v,u)\in V} d(v,u)\right)$$

Level *n*-nodes: nodes that are *n* links away from the root in the MST

Layout \rightarrow place **root** at the **center**

Component Layout II

- start with root node of the MST
- place level-1 nodes on circle (sphere) around root, add all links, relax springs (+ short-range repulsion)
- place level-2 nodes on circles (sphere) outside their level-1 descendants, add all links, relax springs
- place level-3 nodes on circles (sphere) outside their level-2 descendants,

Combining the Components

When the components are finished \rightarrow **assemble** using energy **funnel**

- place largest component at bottom
- place next smaller one somewhere on the rim, let it slide down
- \rightarrow freeze upon contact

No information in the relative positions of the components!!!

Adai et al. J. Mol. Biol. 340, 179 (2004)

8

Annotations in the Largest Cluster

Related functions in the same regions of the cluster \rightarrow predictions

Clustering of Functional Classes

Fusion Proteins

Fusion proteins connect two protein homology families

A, A', A", AB and B, B', AB

 \rightarrow historic genetic **events**: fusion, fission, duplications, ...

Also in the network:

homologies <=> edges

remote homologies <=> in the same cluster

non-homologous functional relations <=> adjacent, linked clusters

Functional Relations between Gene Families

Examples of spatial localization of protein function in the map

A: the linkage of the tryptophan synthase α family to the functionally coupled but non-homologous β family by the yeast tryptophan synthase $\alpha\beta$ fusion protein,

B: protein subunits of the pyruvate synthase and alpha-ketoglutarate ferredexin oxidoreductase complexes

C: metabolic enzymes, particularly those of acetyl CoA and amino acid metabolism

 \rightarrow DUF213 likely has metabolic function!

Bioinformatics 3 – WS 14/15

And the Winner iiiis...

Compare the layouts from

 A: LGL – hierarchic force-directed layout according to MST
→ structure from homology

B: **global force**-directed layout without MST \rightarrow no structure, no components visible

C: InterViewer – collapses similar nodes \rightarrow reduced complexity

Graph Layout: Summary

Approach	Idea		
Force-directed spring model	relax energy, springs		
Force-directed spring-electric model	relax energy, springs for links, Coulomb repulsion between all nodes		
H3	spanning tree in hyperbolic space		
LGL	hierarchic, force-directed algorithm for modules		

A "Network"

Bioinformatics 3 – WS 14/15

Protein Complexes

Complex formation may lead to increased diversity

Cooperation and allostery

Gel Electrophoresis

Electrophoresis: directed diffusion of charged particles in an electric field

Put proteins in a spot on a gel-like matrix, apply electric field

- \rightarrow separation according to size (mass) and charge
- \rightarrow identify constituents of a complex

Nasty details: protein charge vs. pH, cloud of counter ions, protein shape, denaturation, ...

SDS-PAGE

For better control: denature proteins with detergent

Often used: sodium dodecyl sulfate (SDS)

 \rightarrow denatures and coats the proteins with a negative charge

- \rightarrow charge proportional to mass
 - \rightarrow traveled distance per time

$$x \propto rac{1}{\log(M)}$$

 \rightarrow SDS-polyacrylamide gel electrophoresis

After the run: **staining** to make proteins visible

For "quantitative" analysis: compare to **marker** (set of proteins with known masses)

Image from Wikipedia, marker on the left lane

Protein Charge?

Protein charge at pH=7 $\cong \sum Lys + \sum Arg - \sum Asp - \sum Glu + \sum co - factors$

Main source for charge differences: pH-dependent protonation states

<=> Equilibrium between

- density (pH) dependent H⁺-binding and
- density independent H⁺-dissociation

Probability to have a proton:

$$P = \frac{1}{1 + 10^{pH - pK}}$$

pKa = pH value for 50% protonation

Asp 3.7–4.0 ... His 6.7–7.1 ... Lys 9.3-9.5

Each H⁺ has a +1e charge

 \rightarrow **Isoelectric point**: pH at which the protein is **uncharged**

 \rightarrow protonation state cancels permanent charges

2D Gel Electrophoresis

Two steps: i) separation **by isoelectric** point via pH-gradient ii) separation **by mass** with SDS-PAGE

 \rightarrow Most proteins differ in mass and isoelectric point (pl)

Mass Spectrometry

Identify constituents of a (fragmented) complex via their mass/charge patterns, detect by pattern recognition with machine learning techniques.

http://gene-exp.ipkgatersleben.de/body_methods.html

Tandem affinity purification

Yeast 2-Hybrid-method can only identify binary complexes.

In **affinity purification**, a protein of interest (bait) is tagged with a molecular label (dark route in the middle of the figure) to allow easy purification.

The tagged protein is then co-purified together with its interacting partners (W–Z). This strategy can also be applied on

a genome scale

Gavin *et al. Nature* 415, 141 (2002) V 3 - 22

TAP analysis of yeast PP complexes

Identify proteins by scanning yeast protein database for protein composed of fragments of suitable mass.

Here, the identified proteins are listed according to their localization (a). (b) lists the number of proteins per complex.

Gavin et al. Nature 415, 141 (2002)

Validation of TAP methodology

Check of the method:

can the same complex be obtained for different choices of the attachment point

(tag protein is attached to different components of complex)?

Yes, more or less (see gel in (a)).

Gavin et al. Nature 415, 141 (2002)

Bioinformatics 3 – WS 14/15

Pros and Cons of TAP-MS

Advantages:

- quantitative determination of complex partners *in vivo* without prior knowledge
- simple method, high yield, high throughput

Difficulties:

- tag may prevent binding of the interaction partners
- tag may change (relative) expression levels
- tag may be **buried** between interaction partners
 → no binding to beads

Yeast Two-Hybrid Screening

Discover binary protein-protein interactions via physical interaction

complex of binding domain (BD) + activator domain (AD)

Disrupt BD-AD protein; fuse bait to BD, prey to AD

→ expression only when bait:prey-complex formed

Reporter gene may be fused to green fluorescent protein.

Pros and Cons of Y2H

Advantages:

- *in vivo* test for interactions
- cheap + robust \rightarrow large scale tests possible

Problems:

investigates the interaction between `
(i) overexpressed
(ii) fusion proteins in the
(iii) yeast
(iv) nucleus

 \rightarrow many false positives (up to 50% errors)

spurious interactions via third protein /

Synthetic Lethality

Apply two mutations that are viable on their own, but lethal when combined.

In cancer therapy, this effect implies that inhibiting one of these genes in a context where the other is defective should be selectively lethal to the tumor cells but not toxic to the normal cells, potentially leading to a large therapeutic window.

Gene X	Gene Y	
+	+	No effect
_	+	No effect
÷	_	No effect
_	_	Death

http://jco.ascopubs.org/

Synthetic lethality may point to:

- physical interaction (building blocks of a complex)
- both proteins belong to the same pathway
- both proteins have the same function (redundancy)

Gene Coexpression

All constituents of a complex should be present at the same point in the cell cycle \rightarrow test for correlated expression

This is not a direct indication for complexes (there are too many co-regulated genes), but useful "filter"-criterion Standard tools: DNA micro arrays / WGS

DeRisi, Iyer, Brown, *Science* **278** (1997) 680:

Diauxic shift from fermentation (growth on sugar) to respiration (growth on ethanol) in *S. cerevisiae*

→ Identify groups of genes with similar expression profiles

DNA Microarrays

Fluorescence labeled DNA (cDNA) applied to micro arrays

- → hybridization with complementary library strand
- → fluorescence indicates relative cDNA amounts

A. Butte, Nature Reviews Drug Discovery 1, 951-960, 2002

http://intmedweb.wfubmc.edu/

two labels (red + green) for experiment and control Usually: red = signal green = control \rightarrow yellow = "no change"

Identify groups of genes with similar time courses = expression profiles \rightarrow "cause or correlation"? — biological significance?

DeRisi, Iyer, Brown, Science 278 (1997) 680

Interaction Databases

Bioinformatics: make use of existing databases

3.2 Experimental High-Throughput Methods for Detecting Protein-Protein Interactions

Table 3.1 Some public databases compiling data related to protein interactions: (P) and (D) stand for proteins and domains (the number of interactions reflects the status of June 2007).

	URL	Number of interactions	Туре	Proteins /domains
MIPS	mips.gsf.de/genre/proj/mpact	4300	curated	
BIND	bond.unleashedinformatics.com	200000	curated	Р
MINT	160.80.34.4/mint/	103800	curated	Р
DIP	dip.doe-mbi.ucla.edu	56000	curated	Р
PDB	www.rcsb.org/pdb	800 complexes	curated	
HPRD	www.hprd.org	37500	curated	P, D
Scoppi	www.scoppi.org	102000	automatic	D
UniHI	theoderich.fb3.mdc-berlin. de:8080/unihi/home	209000	integrated data	Р
STRING	string.embl.de	interactions of 1500000 proteins	integrated data from genomic context, high-throughput experiments, coexpression, previous knowledge	Р
iPfam	www.sanger.ac.uk/Software/ Pfam/iPfam	3019	data extracted from PDB	D
YEAST protein complex database	yeast.cellzome.com	232 complexes	experimental	Р
ABC	service.bioinformatik. uni-saarland.de/abc	13000 complexes	semiautomatic	Р

(low) Overlap of Results

For **yeast**: ~ 6000 proteins = ~18 million potential interactions rough estimates: \leq 100000 interactions occur

- \rightarrow 1 true positive for 200 potential candidates = **0.5%**
- \rightarrow decisive experiment must have accuracy << 0.5% false positives

Different experiments detect different interactions

For yeast: 80000 interactions known, 2400 found in > 1 experiment

Problems with experiments:

- i) incomplete coverage
- ii) (many) false positives
- iii) selective to type of interaction and/or compartment

Criteria for Reliability

Guiding principles (incomplete list!):

1) mRNA abundance:

most experimental techniques are biased towards high-abundance proteins

2) compartments:

- most methods have their "preferred compartment"
- proteins from same compartment => more reliable

3) co-functionality

complexes have a functional reason (assumption !?)

In-Silico Prediction Methods

Sequence-based:

- gene clustering
- gene neighborhood
- Rosetta stone
- phylogenetic profiling
- coevolution

- "Work on the parts list"
- \rightarrow fast
- \rightarrow unspecific
- → high-throughput methods for pre-sorting

Structure-based:

- interface propensities
- protein-protein docking
- spatial simulations

"Work on the parts"

- \rightarrow specific, detailed
- \rightarrow expensive
- \rightarrow accurate

Gene Clustering

Idea: functionally related proteins or parts of a complex are expressed simultaneously

Search for genes with a **common promoter**

 \rightarrow when activated, all are transcribed together as one operon

Example:

bioluminescence in *V. fischeri*, regulated via quorum sensing \rightarrow three proteins: I, AB, CDE

Gene Neighborhood

Hypothesis again: functionally related genes are expressed together

"functionally" = same {complex | pathway | function | ...}

 \rightarrow Search for **similar sequences** of genes in **different organisms**

(<=> Gene clustering: one species, promoters)

Rosetta Stone Method

Idea: find homologous genes ("words") in genomes of different organisms ("texts")

- check if fused gene pair exists in one organism
- \rightarrow May indicate that these 2 proteins form a complex

Multi-lingual stele from 196 BC, found by the French in 1799 \rightarrow key to deciphering hieroglyphs Enright, Ouzounis (2001): 40000 predicted pair-wise interactions from search across 23 species

Phylogenetic Profiling

- Idea: either all or none of the proteins of a complex should be present in an organism
- → compare presence of protein homologs across species (e.g., via sequence alignment)

Distances

Hamming distance between species: number of different protein occurrences

Two pairs with similar occurrence: P2-P7 and P3-P6

Coevolution

Idea: not only similar static occurence, but similar dynamic evolution

Interfaces of complexes are often better conserved than the rest of the protein surfaces.

Also: look for potential substitutes \rightarrow anti-correlated

- \rightarrow missing components of pathways
 - \rightarrow function prediction across species
 - \rightarrow novel interactions

i2h method

Schematic representation of the i2h method.

A: Family alignments are collected for two different proteins, 1 and 2, including corresponding sequences from different species (a, b, c,).

B: A virtual alignment is constructed, concatenating the sequences of the probable orthologous sequences of the two proteins. Correlated mutations are calculated.

Pazos, Valencia, Proteins 47, 219 (2002)

Correlated mutations at interface

Correlated mutations evaluate the similarity in variation patterns between positions in a multiple sequence alignment.

Similarity of those variation patterns is thought to be related to compensatory mutations.

Calculate for each positions *i* and *j* in the sequence a rank correlation coefficient (r_{ij}) : $\sum (S_{ikl} - \overline{S}_i)(S_{ikl} - \overline{S}_i)$

$$\Gamma_{ij} = \frac{\sum_{k,l} (\sigma_{ikl} - \sigma_{l}) (\sigma_{jkl} - \sigma_{l})}{\sqrt{\sum_{k,l} (S_{ikl} - \overline{S}_{i})^{2}} \sqrt{\sum_{k,l} (S_{jkl} - \overline{S}_{j})^{2}}}$$

where the summations run over every possible pair of proteins *k* and *l* in the multiple sequence alignment.

 S_{ikl} is the ranked similarity between residue *i* in protein *k* and residue *i* in protein *I*. S_{ikl} is the same for residue *j*.

 S_i and S_j are the means of S_{ikl} and S_{jkl} .

Pazos, Valencia, Proteins 47, 219 (2002)

Summary

What you learned today: how to get some data on PP interactions

type of interaction? — reliability? — sensitivity? — coverage? — ...

Next lecture: Mon, Nov. 3, 2014

- combining weak indicators: Bayesian analysis
- identifying communities in networks