
Bioinformatics 3 – WS 14/15 V 6  –  

Bioinformatics 3 

V6 – Biological PPI Networks  
- are they really scale-free? 

- network growth 
- functional annotation in the network 
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Jeong, Mason, Barabási, Oltvai,  Nature 411 (2001) 41 

→ "PPI networks 
     apparently are  
     scale-free…" 

"Are" they scale-free 
or 

"Do they look like" 
scale-free??? 

largest cluster of the yeast proteome (at 2001) 
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Partial Sampling 
Estimated for yeast:    6000 proteins,   30000 interactions 

Y2H covers only 3…9% of the complete interactome! 

Han et al,  Nature Biotech 23 (2005) 839 
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Nature Biotech 23 (2005) 839 

Generate networks of various types, 
sample sparsely from them 
→ degree distribution? 

• Random (ER / Erdös-Renyi) →  P(k) = Poisson 
• Exponential (EX)    →  P(k) ~ exp[-k] 
• scale-free / power-law (PL)   →  P(k) ~ k–γ  
• P(k) = truncated normal distribution (TN) 
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Sparsely Sampled random (ER) Network 
resulting P(k) for different coverages linearity between P(k) and power law 

→ for sparse sampling, even an ER networks "looks" scale-free 
     (when only P(k) is considered) 

Han et al,  Nature Biotech 23 (2005) 839 
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Anything Goes 

Han et al,  Nature Biotech 23 (2005) 839 
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Compare to Uetz et al. Data 

Sampling density affects observed degree distribution 
→ true underlying network cannot be identified from available data 

Han et al,  Nature Biotech 23 (2005) 839 
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Network Growth Mechanisms 
Given:   an observed PPI network → how did it grow (evolve)? 

Look at network motifs (local connectivity): 
compare motif distributions from various network prototypes to fly network 

Idea:  each growth mechanism leads to a typical motif distribution, 
          even if global measures are comparable 

PNAS 102 (2005) 3192 
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The Fly Network 
Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727] 

Confidence score [0, 1] for 
every observed interaction 
→ use only data with  
     p > 0.65 (0.5) 
→ remove self-interactions 
     and isolated nodes 

High confidence network 
with 3359 (4625) nodes 
and 2795 (4683) edges 

Use prototype networks 
of same size for training 

percolation events for p > 0.65 

Middendorf et al, PNAS 102 (2005) 3192 

Size of largest components. At p = 0.65, there is one large 
component with 1433 and the other 703 components contain at 
most 15 nodes. 
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Network Motives 
All non-isomorphic subgraphs that can be generated with a walk of length 8 

Middendorf et al, PNAS 102 (2005) 3192 
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Growth Mechanisms 

Generate 1000 networks, each, of the following 7 types 
(Same size as fly network, undefined parameters were scanned) 

DMC  Duplication-mutation, preserving complementarity 
DMR Duplication with random mutations 
RDS  Random static networks 
RDG Random growing network 
LPA  Linear preferential attachment network 
AGV Aging vertices network 
SMW Small world network 
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Growth Type 1:  DMC 
"Duplication – mutation with preserved complementarity" 

Evolutionary idea:  gene duplication, followed by a partial loss of 
     function of one of the copies, making the other copy essential 

Algorithm: 

• duplicate existing node with all interactions 

• for all neighbors: delete with probability qdel 
  either link from original node or from copy 

Start from two connected nodes, 
repeat N - 2 times: 
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Growth Type 2:  DMR 
"Duplication with random mutations" 

Gene duplication, but no correlation between original and copy 
(original unaffected by copy) 

Algorithm: 

• duplicate existing node with all interactions 

• for all neighbors: delete with probability qdel 
  link from copy 

Start from five-vertex cycle, 
repeat N - 5 times: 

• add new links to non-neighbors with  
  probability qnew/n 
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Growth Types 3–5: RDS, RDG, and LPA 
RDS = static random network 

Start from N nodes, add L links randomly 

LPA = linear preferential attachment 

Add new nodes similar to Barabási-Albert algorithm,  
but with preference according to (ki + α),  α = 0…5 
(BA for α = 0) 

RDG = growing random network 

Start from small random network, add nodes,  
then edges between all existing nodes 
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Growth Types 6-7:  AGV and SMW 
AGV = aging vertices network 

Like growing random network,  
but preference decreases with age of the node 
→ citation network:  more recent publications are cited more likely 

SMW = small world networks (Watts, Strogatz,  Nature 363 (1998) 202) 

Randomly rewire regular ring lattice 
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Alternating Decision Tree Classifier 
Trained with the motif counts from 1000 networks of each of the 7 types 
→ prototypes are well separated and reliably classified 

Prediction accuracy for networks 
similar to fly network with p = 0.5: 

Part of a trained ADT 
 
Decision  nodes count 
occurrence of motifs  

Middendorf et al, PNAS 102 (2005) 3192 
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Are They Different? 

Example DMR vs. RDG:  Similar global parameters,  
                                         but different counts of the network motifs 
 
-> networks can be perfectly separated by motif-based classifier 

Middendorf et al, PNAS 102 (2005) 3192 
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How Did the Fly Evolve? 

→ Best overlap with DMC (Duplication-mutation, preserved complementarity) 
→ Scale-free or random networks are very unlikely 
→ what about protein-domain-interaction network of  Thomas et al? 

Middendorf et al, PNAS 102 (2005) 3192 
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Motif Count Frequencies 

rank score:  fraction of test networks 
with a higher count than Drosophila 
(50%  =  same count as fly on avg.) 

Middendorf et al, PNAS 102 (2005) 3192 

-> DMC and DMR 
networks contain 
most subgraphs in 
similar amount as 
fly network. 



Bioinformatics 3 – WS 14/15 V 6  –  20 

Experimental Errors? 
Randomly replace edges in fly network and classify again: 

→ Classification unchanged for ≤ 30% incorrect edges 
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Summary (I) 
Sampling matters! 
→ "Scale-free" P(k) obtained by sparse sampling  
from many network types 

Test different hypotheses for 
• global features    
     → depends on unknown parameters and sampling 
          → no clear statement possible 
• local features (motifs) 
     → are better preserved 
          → DMC best among tested prototypes 
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What Does a Protein Do? 

Enzyme Classification scheme  
(from http://www.brenda-
enzymes.org/) 

http://www.brenda-enzymes.org
http://www.brenda-enzymes.org
http://www.brenda-enzymes.org
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Un-Classified Proteins? 

Many unclassified proteins:    
→ estimate: ~1/3 of the yeast proteome not annotated functionally 
→ BioGRID:  4495 proteins in the largest cluster of the yeast physical 
interaction map. 
                     2946 have a MIPS functional annotation 
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Partition the Graph 
Large PPI networks were built from: 
• HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, …) 
• predictions (gene profiling, gene neighborhood, phylogenetic profiles, …) 
→ proteins that are functionally linked 

genome 1 

genome 2 

genome 3 

sp 
1 

sp 
2 
sp 
3 

sp 
4 

sp 
5 

Identify unknown functions from clustering of these networks by, e.g.: 
• shared interactions (similar neighborhood →  power graphs) 
• membership in a community 
• similarity of shortest path vectors to all other proteins (= similar path into  
  the rest of the network) 
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Protein Interactions 
Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID) 
→ 4495 proteins and 12 531 physical interactions in the largest cluster 

http://www.thebiogrid.org/about.php 

http://www.thebiogrid.org
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Function Annotation 
Task:  predict function (= functional annotation) for a protein  
           from the available annotations 

Similar: 
How to assign colors to 
the white nodes? 

Use information on: 
• distance to colored nodes 
• local connectivity 
• reliability of the links 
• … 

<=> 
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Algorithm I:  Majority 
Schwikowski, Uetz, and Fields, " A network of protein–protein interactions in 
yeast" Nat. Biotechnol. 18 (2000) 1257 

Consider all neighbors and sum up how often a certain annotation occurs 
→ score for an annotation  =  count among the direct neighbors 
  → take the 3 most frequent functions 

Majority makes only limited 
use of the local connectivity 
→ cannot assign function to  
     next-neighbors 

For weighted graphs: 
→ weighted sum 
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Extended Majority:  Neighborhood 
Hishigaki, Nakai, Ono, Tanigami, and Takagi,  "Assessment of prediction 
accuracy of protein function from protein–protein interaction data", Yeast 18 
(2001) 523 

Look for overrepresented functions within a given radius of 1, 2, or 3 links 
→ use as function score  the  value of a 2–test 

Neighborhood does not 
consider local network topology 

? 
? 

Both examples are treated 
identically with r = 2 

Neighborhood can not (easily) 
be generalized to weighted 
graphs! 
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Minimize Changes:  GenMultiCut 

"Annotate proteins so as to minimize the number of times that different 
functions are associated with neighboring proteins" 

Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif,  "Whole-genome 
annotation by using evidence integration in functional-linkage networks"  
PNAS 101 (2004) 2888 

→ generalization of the multiway k-cut problem for weighted edges, 
     can be stated as an integer linear program (ILP) 

Multiple possible solutions →  scores from frequency of annotations 
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Nabieva et al:  FunctionalFlow 
Extend the idea of "guilty by association" 
→ each annotated protein is a source of "function"-flow 
      → simulate for a few time steps 
             → choose the annotation a with the highest accumulated flow 

Each node u has a reservoir Rt(u), each edge a capacity constraint (weight) wu,v 

Initially: 

Then: downhill flow with capacity constraints 

Score from accumulated in-flow: 

and 

Nabieva et al, Bioinformatics 21 (2005) i302 
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An Example 
accumulated 
flow 

thickness = current flow 

Sometimes different 
annotations for different 
number of steps 
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Comparison 

Change score threshold for accepting annotations → ratio  TP/FP 
→ FunctionalFlow performs best in the high-confidence region 
→ many false predictions!!! 

unweighted yeast map 

Nabieva et al, Bioinformatics 21 (2005) i302 

For FunctionalFlow: 
six propagation steps 
(diameter of the yeast 
network ≈ 12) 
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Comparison Details 

Neighborhood with r = 1 comparable to FunctionalFlow  
for high-confidence region, performance decreases with increasing r 
→ bad idea to ignore local connectivity 

Majority vs. Neighborhood @ r = 1 
→ counting neighboring  
     annotations is more effective  
     than χ2-test 

Multiple runs (solutions) of 
FunctionalFlow 
(with slight random perturbations 
of the weights) 
→ increases prediction accuracy 

Nabieva et al, Bioinformatics 21 (2005) i302 
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Weighted Graphs 

Compare: 
• unweighted 
• weight 0.5 per experiment 
• weight for experiments  
  according to (estimated)  
  reliability 

Largest improvement 
→ individual experimental  
     reliabilities 

Performance of FunctionalFlow with differently weighted data: 

Nabieva et al, Bioinformatics 21 (2005) i302 
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Additional Information 

Use genetic linkage to modify the edge weights 
→ better performance (also for Majority and GenMultiCut) 

Nabieva et al, Bioinformatics 21 (2005) i302 
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Summary:  Static PPI-Networks 
"Proteins are modular machines"  <=>  How are they related to each other? 

1) Understand "Networks" 
    prototypes (ER, SF, …) and their properties (P(k), C(k), clustering, …) 
2) Get the data 
    experimental and theoretical techniques (Y2H, TAP, co-regulation, …), 
    quality control and data integration (Bayes) 

3) Analyze the data 
    compare P(k), C(k), clusters, … to prototypes →  highly modular, clustered 
    with sparse sampling → PPI networks are not scale-free 

4) Predict missing information 
   network structure combined from multiple sources →  functional annotation 

Next step:  environmental changes,  cell cycle 
  → changes (dynamics) in the PPI network  –  how and why? 


