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Rates of mRNA transcription and protein translation 

Schwanhäuser et al. Nature 473, 337 (2011) 

Parallel quantification of mRNA and protein turnover 
and levels. Mouse fibroblasts were pulse-labelled 
with heavy amino acids (SILAC, left) and the 
nucleoside 4-thiouridine (4sU, right).  
Protein and mRNA turnover is quantified by mass 
spectrometry and next-generation sequencing, 
respectively. 

SILAC: „stable isotope labelling by 
amino acids in cell culture“ means that 
cells are cultivated in a medium 
containing heavy stable-isotope 
versions of essential amino acids.  
 
When non-labelled (i.e. light) cells are 
transferred to heavy SILAC growth 
medium, newly synthesized proteins 
incorporate the heavy label while pre-
existing proteins remain in the light 
form. 
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Schwanhäuser et al. Nature 473, 337 (2011) 

Mass spectra of peptides for 
two proteins. 
 
Top: high-turnover protein 
Bottom: low-turnover protein. 
 
Over time, the heavy to light 
(H/L) ratios increase. 
 
You should understand these 
spectra! 

84,676 peptide sequences were identified by MS and assigned to 6,445 unique proteins.  
 
5,279 of these proteins were quantified by at least three heavy to light (H/L) peptide ratios 

Rates of mRNA transcription and protein translation 
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The same is done to compute mRNA 
half-lives (not shown). 

Extract ratio r of protein with heavy amino  
acids (PH) and light amino acids (PL): 

Assume that proteins labelled with light 
amino acids decay exponentially with 
degradation rate constant kdp : 

Express (PH) as difference between total 
number of a specific protein Ptotal and PL: 

Assume that Ptotal doubles during duration of 
one cell cycle (which lasts t ): 

Consider m intermediate time points: 

Protein half-lifes and decay rates 

Since then 
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Schwanhäuser et al. Nature 473, 337 (2011) 

c, d, Although mRNA and protein levels 
correlated significantly, correlation of half-
lives was virtually absent 

a, b, Histograms of mRNA (blue) and 
protein (red) half-lives (a) and levels (b). 
 
Proteins were on average 5 times more 
stable (9h vs. 46h) and 900 times more 
abundant than mRNAs and spanned a 
higher dynamic range.  

mRNA and protein levels and half-lives 
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A widely used minimal description 
of the dynamics of transcription 
and translation includes the 
synthesis and degradation of 
mRNA and protein, respectively 

Schwanhäuser et al. Nature 473, 337 (2011) 

Mathematical model of transcription and translation 

The mRNA (R) is synthesized with a constant rate vsr and degraded proportional to their 
numbers with rate constant kdr.  
 
The protein level (P) depends on the number of mRNAs, which are translated with rate 
constant ksp. 
  
Protein degradation is characterized by the rate constant kdp.  
 
The synthesis rates of mRNA and protein are calculated from their measured half lives 
and levels. 



Average cellular transcription rates 
predicted by the model span two orders 
of magnitude. 
 
The median is about 2 mRNA 
molecules per hour (b).  
An extreme example is Mdm2  with 
more than 500 mRNAs per hour 
 
 
 
 
 
The median translation rate constant  
is about 40 proteins per mRNA 
per hour 
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Schwanhäuser et al. Nature 473, 337 (2011) 

Calculated 
translation rate 
constants are 
not uniform 

Computed transcription and translation rates 
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Schwanhäuser et al. Nature 473, 337 (2011) 

Abundant proteins are translated about 100 
times more efficiently than those of low 
abundance 
 
Translation rate constants of abundant proteins 
saturate between approximately 120 and 240 
proteins per mRNA per hour. 
 
The maximal translation rate constant in 
mammals is not known. 
 
The estimated maximal translation rate 
constant in sea urchin embryos is 140 copies 
per mRNA per hour, which is surprisingly close 
to the prediction of this model. 

Maximal translation constant 
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gene-regulatory networks 
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What are gene-regulatory networks (GRNs)? 
 
 - networks between genes coding for transcription factors and genes 
 
How does one generate GRNs? 
 
 - from co-expression + regulatory information (e.g. presence of  
 TF binding sites) 
 
What can these GRNs be used for? 
 
 functional interpretation of exp. data, guide inhibitor design etc. 
 
Limitations of current GRN models: 
 
 incomplete in terms of TF-interactions,  
 usually do not account for epigenetic effects and miRNAs 
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How does one generate GRNs? 
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… (1) „by hand“ based on individual experimental observations 
 

(2) Infer GRNs by computational methods from gene expression data (see 
reference below) 
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Unsupervised methods 

 
11 

Unsupervised methods are either based on correlation or on mutual 
information. 
 
Correlation-based network inference methods assume that correlated 
expression levels between two genes are indicative of a regulatory 
interaction. 
 
Correlation coefficients range from -1 to 1. 
 
 A positive correlation coefficient indicates an activating interaction,  
whereas a negative coefficient indicates an inhibitory interaction.  
 
The common correlation measure by Pearson is defined as 
 
 
 
where Xi and Xj are the expression levels of genes i and j,  
cov(.,.) denotes the covariance, and  is the standard deviation. 
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Rank-based unsupervised methods 
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Pearson’s correlation measure assumes normally distributed values. 
This assumption does not necessarily hold for gene expression data.  
 
Therefore rank-based measures are frequently used.  
The measures by Spearman and Kendall are the most common.  
 
Spearman’s method is simply Pearson’s correlation coefficient for the ranked 
expression values 
 
Kendall’s  coefficient : 
 
 
where Xr

i and Xr
j  are the ranked expression profiles of genes i and j.  

 
Con(.) denotes the number of concordant value pairs (i.e. where the ranks for 
both elements agree). dis(.)  is the number of disconcordant value pairs in Xr

i 
and Xr

j .  Both profiles are of length n. 
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WGCNA 
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WGCNA is a modification of correlation-based inference methods that 
amplifies high correlation coefficients by raising the absolute value to the 
power of  (‘softpower’). 
 
 
 
with   1.  
 
Because softpower is a nonlinear but monotonic transformation of the 
correlation coefficient, the prediction accuracy measured by AUC will be no 
different from that of the underlying correlation method itself. 
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Unsupervised methods based on 
mutual information 
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Relevance networks (RN) introduced by Butte and Kohane measure the 
mutual information (MI) between gene expression profiles to infer 
interactions.  
 
The MI I between discrete variables Xi and Xj  is defined as 
 
 
 
 
where p(xi , xj) is the joint probability distribution of Xi  and Xj   
    (both variables fall into given ranges) and  
p(xi ) and p(xi ) are the marginal probabilities of the two variables  
    (ignoring the value of the other one). 
 
Xi and Xj are required to be discrete variables. 
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Unsupervised methods: Z-score 
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Z-SCORE is a network inference strategy by Prill et al. that takes advantage 
of knockout data. 
 
It assumes that a knockout affects directly interacting genes more strongly 
than others.  
 
The z-score zij describes the effect of a knockout of gene i in the k-th 
experiment on gene j as the normalized deviation of the expression level Xjk 
of gene j for experiment k from the average expression  (Xj) of gene j: 
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supervised inference method: SVM 

 
16 

In contrast to unsupervised methods, e.g. correlation methods, the supervised 
approach does not directly operate on pairs of expression profiles but on 
feature vectors that can be constructed in various ways.  
 
E.g. one may use the outer product of two gene expression profiles Xi and Xj  
to construct feature vectors: 
 
 
A sample set for the training of the SVM is then composed of feature vectors 
xi  
that are labeled i = +1 for gene pairs that interact and i = -1 for those that do 
not interact. 
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Measure accuracy of GRNs 
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Inference methods (to infer = dt. aus etwas ableiten/folgern) aim to recreate 
the topology of a genetic regulatory network e.g. based on expression data 
only.  
 
The accuracy of a method is assessed by the extent to which the network it 
infers is similar to the true regulatory network. 
 
We quantify similarity e.g. by the area under the Receiver Operator 
Characteristic curve (AUC) 
 
 
where Xk is the false-positive rate and Yk is the true positive rate for the k-th 
output in the ranked list of predicted edge weights.  
 
An AUC of 1.0 indicates a perfect prediction, while an AUC of 0.5 indicates a 
performance no better than random predictions. 
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AUC 
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… 

www.wikipedia.org 

Divide data into bins. 
 
Measure value of function Y at 
midpoint of bin -> factor 0.5 

file://upload.wikimedia.org/wikipedia/commons/6/6b/Roccurves.png
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Summary 
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Network inference is a very important active research field. 
 
Inference methods allow to construct the topologies of gene-regulatory 
networks solely from expression data (unsupervised methods). 
 
Supervised methods show far better performance. 
 
Performance on real data is lower than on synthetic data  
because regulation in cells is not only due to interaction  
of TFs with genes,  
but also depends on epigenetic effects (DNA methylation,  
chromatin structure/histone modifications, and miRNAs). 
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Network Reconstruction 
Experimental data:  DNA microarray →  expression profiles 

Clustering →  genes that are regulated simultaneously 
→  Cause and action???   Are all genes known??? 

Shown below are 3 different networks that lead to the same expression profiles 
→ combinatorial explosion of number of compatible networks 
      → static information usually not sufficient 

Some formalism may help   
→  Bayesian networks (formalized conditional probabilities) 
      but usually too many candidates… 
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Network Motifs 

Nature Genetics 31 (2002) 64 

RegulonDB  +  their own hand-curated findings 
→ break down network into motifs 
    →  statistical significance of the motifs? 
         → behavior of the motifs  <=>  location in the network? 
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Motif 1:  Feed-Forward-Loop 

X  =  general transcription factor 
Y  =  specific transcription factor 
Z  =  effector operon(s) 

X and Y together regulate Z: 

"coherent",  if X and Y have the same effect on Z  (activation vs. 
repression), otherwise "incoherent" 

85% of the FFL in E coli are coherent 

Shen-Orr et al., Nature Genetics 31 (2002) 64 
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FFL dynamics 

In a coherent FFL: 
X and Y activate Z 

Delay between X and Y →  signal must persist longer than delay 
→ reject transient signal,  react only to persistent signals 
→ enables fast shutdown 

Dynamics: 
• input activates X 
• X activates Y (delay) 
• (X && Y) activates Z 

Helps with decisions based on fluctuating signals 

Shen-Orr et al., Nature Genetics 31 (2002) 64 
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Motif 2:  Single-Input-Module 

Set of operons controlled by a 
single transcription factor 
• same sign 
• no additional regulation 
• control is usually autoregulatory  
  (70% vs. 50% overall) 

Mainly found in genes that code for parts of a protein complex or 
metabolic pathway (here machinery for arginine biosynthesis) 
→ relative stoichiometries 

Shen-Orr et al., Nature Genetics 31 (2002) 64 
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SIM-Dynamics 

If different thresholds exist for each regulated operon: 
→ first gene that is activated is the last that is deactivated 
   → well defined temporal ordering (e.g. flagella synthesis) + stoichiometries 

Shen-Orr et al., Nature Genetics 31 (2002) 64 
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Motif 3:  Densely Overlapping Regulon 
Dense layer between groups of 
transcription factors and operons 
→ much denser than network  
     average (≈ community) 

Main "computational" units of the regulation system 

Usually each operon is 
regulated by a different 
combination of TFs. 

Sometimes:  same set of TFs for group of operons → "multiple input module" 

Shen-Orr et al., Nature Genetics 31 (2002) 64 
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Detection of motifs 
  Represent transcriptional network as a connectivity matrix M 

such that Mij = 1 if operon j encodes a TF that transcriptionally regulates 
operon i 
and Mij = 0 otherwise. 
 
Scan all n × n submatrices of M generated  
by choosing n nodes that lie in a connected  
graph, for n = 3 and n = 4. 
 
Submatrices were enumerated efficiently by  
recursively searching for nonzero elements.  
Compute a P value for submatrices representing each type of connected 
subgraph by comparing # of times they appear in real network vs. in random 
network. 
 
For n = 3, the only significant motif is the feedforward loop. 
For n = 4, only the overlapping regulation motif is significant. 
SIMs and multi-input modules were identified by searching for identical rows 
of M. Shen-Orr et al. Nature Gen. 31, 64 (2002) 

Connectivity matrix for causal regulation of transcription 
factor j (row) by transcription factor i (column). Dark fields 
indicate regulation. (Left) Feed-forward loop motif. TF 2 
regulates TFs 3 and 6, and TF 3 again regulates TF 6. 
(Middle) Single-input multiple-output motif. (Right) 

Densely-overlapping region.  
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Motif Statistics 

All motifs are highly overrepresented compared to randomized networks 

No cycles (X → Y → Z → X) were identified,   
but this was not statistically significant in 
comparison to to random networks 

Shen-Orr et al., Nature Genetics 31 (2002) 64 
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Network with Motifs 

• 10 global transcription factors regulate 
  multiple DORs 
• FFLs and SIMs at output 
• longest cascades: 5  
  (flagella and nitrogen systems) 

Shen-Orr et al., Nature Genetics 31 (2002) 64 
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Summary 
Today: 

• Gene regulation networks have hierarchies: 
 → global "cell states" with specific expression levels 

• Network motifs:  FFLs,  SIMs,  DORs are overrepresented 
 → different functions, different temporal behavior 


