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Gene Regulation Networks 
Biological regulation 

via proteins and metabolites 
Projected regulatory network <=> 

<=> 

Reconstruction of static networks? 
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Dynamic Reconstruction 
Different network topologies   →   different time series 

Model large networks efficiently →  simplified descriptions 
                                                       (processes + numerics) 
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Mathematical reconstruction of Gene 
Regulatory Networks 

Marbach et al. PNAS 107, 6286 (2010) 

DREAM: Dialogue on Reverse 
Engineerging Assessment and Methods 
 
Aim:  
systematic evaluation of methods for 
reverse engineering of network topologies 
(also termed network-inference methods). 
 
Problem:  
correct answer is typically not known for 
real biological networks 
 
Approach:  
generate synthetic data 
 
 

Gustavo Stolovitzky/IBM 
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Generation of Synthetic Data 

Marbach et al. PNAS 107, 6286 (2010) 

Transcriptional regulatory networks are modelled consisting of genes, mRNA, and 
proteins. 
 
Current state of network : 
vector of mRNA concentrations x and protein concentrations y.  
 
Considered is only transcriptional regulation, where regulatory proteins (TFs) control the 
transcription rate (activation) of genes (no epigenetics, microRNAs etc.). 
 
The gene network is modeled by a system of differential equations 

mi : maximum transcription rate,  
ri the translation rate,  
λi

RNA , λi
Prot : mRNA and protein degradation rates  

fi(.) is the so-called input function of gene i. 
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The input function fi() 

Marbach et al. PNAS 107, 6286 (2010) 

The input function describes the relative activation of the gene,  
which is between 0 (the gene is shut off) and 1 (the gene is maximally activated),  
given the transcription-factor (TF) concentrations y. 
 
We assume that binding of TFs to cis-regulatory sites on the DNA is in quasi-equilibrium, 
since it is orders of magnitudes faster than transcription and translation.  
 
In the most simple case, a gene i is regulated by a single TF j.  
 In this case, its promoter has only two states:  
 either the TF is bound (state S1) or it is not bound (state S0). 
 
The probability P(S1) that the gene i is in state S1 at a particular moment  
is given by the fractional saturation, which depends on the TF concentration yj 
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Excursion: the Hill equation 

Goutelle et al. Fundamental & Clinical Pharmacology 22 (2008) 633–648 

Let us consider the binding reaction of two molecules L and M: 

The dissociation equilibrium constant KD is defined as: 

where [L], [M], and [LM] are the molecular concentrations of L and M and of the complex. 
 
In equilibrium, we may take T as the total concentration of molecule L  

y   is the fraction of molecules L that have reacted 
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Excursion: the Hill equation 

Substituting [LM] by   [L] [M] / KD gives  ( rearranged from                                  )                                 

Back to our case about TF binding to DNA.   TF then takes the role of M.   Divide eq by 
KD. 
 
The probability P(S1) that the gene i is in state S1 at a particular moment is given by the  
fractional saturation, which depends on the TF concentration yj 

where kij is the dissociation constant for TF j at the promoter of gene i and is nij the Hill 
coefficient (that describes cooperativity) for this binding equilibrium. 

or 
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The input function fi() 

Marbach et al. PNAS 107, 6286 (2010) 

P(S1) is large if the concentration of the TF j is large  
and if the dissociation constant is small (strong binding). 
 
The bound TF activates or represses the expression of the gene.  
 
In state S0  the relative activation is α0 and in state S1 it is α1.  
 
Given P(S1) and its complement P(S0) , the input function fi(yj) is obtained,  
which computes the mean activation of gene i as a function of the TF concentration yj  
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The input function fi() 

Marbach et al. PNAS 107, 6286 (2010) 

This approach can be used for an arbitrary number of regulatory inputs.  
 
A gene that is controlled by N    TFs has 2N states: each of the TFs can be bound or not 
bound.  
 
Thus, the input function for N regulators would be 
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Synthetic gene expression data 

Marbach et al. PNAS 107, 6286 (2010) 

Gene knockouts were simulated by setting the maximum transcription  
rate of the deleted gene to 0, gene knockdowns by dividing it by 2.  
 
Time-series experiments were simulated by integrating the dynamic 
evolution of the network ODEs using different initial conditions.  
 
For networks of size 10, 50, and 100,  
4, 23, and 46 different time series were provided, respectively.  
For each time series, a different random initial condition was used for the mRNA and 
protein concentrations. Each time series consisted of 21 time points. 
  
Trajectories were obtained by integrating the networks from the  
given initial conditions using a Runge-Kutta solver. 
 
White noise with a standard deviation of 0.05 was added after the simulation  
to the generated gene expression data.  
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Synthetic networks 

Marbach et al. PNAS 107, 6286 (2010) 

The challenge was structured as 3separate subchallenges with networks of 10, 50, and 
100 genes, respectively. For each size, 5 in silico networks were generated.  
 
These resembled realistic network structures by extracting modules from the known 
transcriptional regulatory network for Escherichia coli (2x) and for yeast (3x). 
 
 
 Example network  E.coli   Example network yeast 
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Evaluation of network predictions 

Marbach et al. PNAS 107, 6286 (2010) 

(B) Example of a prediction by the best-performer team.  
The format is a ranked list of predicted edges, represented here by the vertical colored bar.  
White stripes : true edges of the target network. A perfect prediction would have all white 
stripes at the top of the list.  
Inset shows the first 10 predicted edges: the top 4 are correct, followed by an incorrect 
prediction, etc.  The color indicates the precision at that point in the list. E.g., after the first 10 
predictions, the precision is 0.7 (7 correct predictions out of 10 predictions).  

(A) True 
connectivity of 
one of the 
benchmark 
networks of  
size 10.  

(C) The network 
prediction is evaluated by 
computing a P-value that 
indicates its statistical 
significance compared to 
random network 
predictions. 
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Similar performance on different network sizes 

Marbach et al. PNAS 107, 6286 (2010) 

The method by Yip et al. (method A) gave the best results for all 3 network sizes.  
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Error analysis 

Marbach et al. PNAS 107, 6286 (2010) 

Left: 3 typical errors made in predicted networks. 
 
We will now discuss the best-performing method by Yip et al. 
Only this method gives stable results independent of the indegree of the target (right)  
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Synthetic networks 

Yip et al. PloS ONE 5:e8121 (2010) 

Best performing team in DREAM3 contest 
 
Applied a simple noise model and linear and sigmoidal ODE models. 
 
Predictions from the 3 models were combined. 
 
 
 
       Mark Gerstein/Yale  
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Cumulative distribution function 

www.wikipedia.org 

The cumulative distribution function (CDF) describes the probability that a 
real-valued random variable X with a given probability distribution P will be 
found at a value less than or equal to x.  

CDF of the normal distribution 

Different normal distributions 

The complementary cumulative 
distribution function (ccdf) or simply the 
tail distribution addresses the opposite 
question and asks how often the 
random variable is above a particular 
level. It is defined as 

file://upload.wikimedia.org/wikipedia/commons/7/74/Normal_Distribution_PDF.svg
file://upload.wikimedia.org/wikipedia/commons/c/ca/Normal_Distribution_CDF.svg


Bioinformatics 3 – WS 14/15 V 9  –  

Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

If we were given: 
xa

b : observed expression level of gene a in deletion strain of gene b, and  
xa

wt*:  real expression level of gene a in wild type xa
wt* (without noise) 

 
we would like to know whether the deviation xa

b - xa
wt* is merely due to noise.  

 

 Need to know the variance σ2 of the Gaussian,  
assuming the noise is non systematic so that the mean μ is zero. 
 
Later, we will discuss the fact that xa

wt*:  is also subject to noise so that we are 
only provided with the observed level xa

wt . 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

The probability for observing a deviation at least as large as xa
b - xa

wt* due to random 
chance is 
 
where Φ is the cumulative distribution function of the standard Gaussian distribution. 
 
-> The deviation is taken relative to the width (standard dev.) of the Gaussian which 
describes the magnitude of the „normal“ spread in the data. 
 
-> 1 - CDF measures the area in the tail of the distribution. 
 
-> The factor 2 accounts for the fact that we have two tails left and right. 
 
The complement of the above equation 
 
 
is the probability that the deviation is due to a real (i.e. non-random) regulation event. 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

One can then rank all the gene pairs (b,a) in descending order of pb a. 
 
For this we first need to estimate σ2  from the data. 
 
Two difficulties. 
(1) the set of genes a not affected by the deleted gene b is unknown. This is exactly what 
we are trying to learn from the data. 
(2) the observed expression value of a gene in the wild-type strain, xa

wt, is also subjected 
to random noise, and thus cannot be used as the gold-standard reference point xa

wt* in the 
calculations 

 
Use an iterative procedure to progressively refine the estimation of pb a.  
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

We start by assuming that the observed wild-type expression levels xa
wt  are reasonable 

rough estimates of the real wild type expression levels xa
wt*.  

 
For each gene a, our initial estimate for the variance of the Gaussian noise is set as the 
sample variance of all the expression values of a in the different deletion strains b1 - bn. 
 
Repeat the following 3 steps for a number of iterations: 
 
(1). Calculate the probability of regulation pb a for each pair of genes (b,a) based on the 
current reference points xa

wt.  
 
Then use a p-value of 0.05 to define the set of potential regulations:  
if the probability for the observed deviation from wild type of a gene a in a deletion strain b 
to be due to random chance only is less than 0.05, we treat b a as a potential regulation.  
 
Otherwise, we add (b,a) to the set P of gene pairs for refining the error model. 



Bioinformatics 3 – WS 14/15 V 9  –  

Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

(2) Use the expression values of the genes in set P to re-estimate the variance of the 
Gaussian noise. 
 
 
 
 
(3) For each gene a, we re-estimate its wild-type expression level by the mean of its 
observed expression levels in strains in which the expression level of a is unaffected by 
the deletion 
 
 
 
After the iterations, the probability of regulation pb a  is computed using the final estimate 
of the reference points xa

wt and the variance of the Gaussian noise σ2 . 
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Yip et al. PloS ONE 5:e8121 (2010) 

For time series data after an initial perturbation, we use differential equations to model the 
gene expression rates. The general form is as follows: 
 
 
 
with xi : expression level of gene i ,  
 
fi (…): function that explains how the expression rate of gene i is affected by the 
expression level of all the genes in the network, including the level of gene i itself. 

Learning ODE models from perturbation time series 
data 
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Learning ODE models from perturbation time series 
data 

Yip et al. PloS ONE 5:e8121 (2010) 

Various types of function fi have been proposed.  
 
We consider two of them. The first one is a linear model 
 
 
 
ai0 : basal expression rate of gene i in the absence of regulators,  
aii : decay rate of mRNA transcripts of i,  
S : set of potential regulators of i (we assume no self regulation, so i not element of S). 
 
For each potential regulator j in S, aij explains how the expression of i is affected by the 
abundance of j.  
 
A positive aij indicates that j is an activator of i , and a negative aij indicates that j is a 
suppressor of i . 
 
The linear model contains Ι S Ι + 2 parameters aij. 
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Yip et al. PloS ONE 5:e8121 (2010) 

The linear model assumes a linear relationship between the expression level of the 
regulators and the resulting expression rate of the target. 
 
But real biological regulatory systems seem to exhibit nonlinear characteristics. The 
second model assumes a sigmoidal relationship between the regulators and the target 
 
 
 
bi1 : maximum expression rate of i , bi2 : its decay rate 
 
The sigmoidal model contains Ι S Ι + 3 parameters. 
 
Try 100 random initial values and refine parameters by Newton minimizer so that the 
predicted expression time series give the least squared distance from the real time series. 
 
Score: negative squared distance 

Learning ODE models from perturbation time series 
data 
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Yip et al. PloS ONE 5:e8121 (2010) 

• Batch 1 contains the most confident predictions: all predictions with probability of regulation                   
pb a > 0.99 according to the noise model learned from homozygous deletion data 
 
• Batch 2: all predictions with a score two standard deviations below the average according to all types 
(linear AND sigmoidal) of differential equation models learned from perturbation data 
 
• Batch 3: all predictions with a score two standard deviations below the average according to all types 
of guided differential equation models learned from perturbation data, where the regulator sets contain 
regulators predicted in the previous batches, plus one extra potential regulator 
 
• Batch 4: as in batch 2, but requiring the predictions to be made by only one type (linear OR sigmoidal) 
of the differential equation models as opposed to all of them. 
 
• Batch 5: as in batch 3, but requiring the predictions to be made by only one type of the differential 
equation models as opposed to all of them 
 
• Batch 6: all predictions with pb a > 0.95 according to both the noise models learned from homozygous 
and heterozygous deletion data, and have the same edge sign predicted by both models 
 
• Batch 7: all remaining gene pairs, with their ranks within the batch determined by their probability of 
regulation according to the noise model learned from homozygous deletion data 

Learning ODE models from perturbation time series 
data 
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Yip et al. PloS ONE 5:e8121 (2010) 

Learning ODE models from perturbation time series 
data 
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Yip et al. PloS ONE 5:e8121 (2010) 

Interpretation: 
 
A network with 10 nodes has 10 x 9 possible edges 
 
Batch 1 already contains many of the correct edges (7/11 – 8/22). 
The majority of the high-confidence predictions are correct (7/11 – 
8/12). 
 
Batch 7 contains only 1 correct edge for the E.coli-like network, but 9 
or 10 correct edges for the Yeast-like network. 

Learning ODE models from perturbation time series 
data 
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Yip et al. PloS ONE 5:e8121 (2010) 

Not all regulation arcs can be detected from deletion data (middle): 
Left: G7 is suppressed by G3, G8 and G10 
Right: G8 and G10 have high expression levels in wt. 
Middle: removing the inhibition by G3 therefore only leads to small increase of G7 
which is difficult to detect. 
 
However the right panel suggests that the increased expression of G7 over time is  
anti-correlated with the decreased level of G3 
 This link was detected by the ODE-models in batch 2 

Learning ODE models from perturbation time series 
data 
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Yip et al. PloS ONE 5:e8121 (2010) 

Another case: 
Left: G6 is activated by G1 and suppressed by G5. G1 also  suppresses G5. 
G1 therefore has 2 functions on G6. When G1 is expressed, deleting G5 (middle) 
has no effect. 
 
Right: G6 appears anti-correlated to G1. Does not fit with activating role of G1. 
 
But G5 is also anti-correlated with G6  evidence for inhibitory role of G5. 

Learning ODE models from perturbation time series 
data 
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Summary : deciphering GRN topologies is hard 

Yip et al. PloS ONE 5:e8121 (2010) 

GRN networks are hot topic. 
 
They give detailed insight into the circuitry of cells. 
 
This is important for understanding the molecular causes e.g. of diseases. 
 
 
New data are constantly appearing. 
 
The computational algorithms need to be adapted. 
 
 
Perturbation data (knockouts and time series following perturbations) are 
most useful for mathematic reconstruction of GRN topologies. 
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Quorum sensing of Vibrio fischeri 
This luminescent bacterium exists in small amounts in the ocean and in large amount 
in isolated areas such as the light organs of squid.  
 
When in small concentrations of cells, V. fischeri does not give off light,  
but in high cell density these bacteria emit a blue-green light.  
 
This cell density-dependent control of gene expression is activated by auto-induction 
that involves the coupling of a transcriptional activator protein with a signal molecule 
(autoinducer) that is released by the bacteria into its surrounding environment.  
 
In the ocean, the population density of V. fischeri is only about 102 cells/ml.  
 
Exporting the autoinducer from the bacteria into this low concentration  
of cells is not enough to cause the luminescence genes to be activated.  
 
However, inside the light organ of a squid for example,  
the cell concentration is about 1010 cells/ml.  
 
At such high concentrations, the autoinducer causes the bacteria to emit light 

https://www.bio.cmu.edu/courses/03441/TermPapers/99TermPapers/Quorum/vibrio_fischeri.html 
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Quorum sensing of Vibrio fischeri 
V. fischeri has a microbial symbiotic relationship with the squid Euprymna scolopes.  
The light organ of the squid provides the bacteria all of the nutrients that they need to 
survive. The squid benefits from the bacteria's quorum sensing and bioluminescence 
abilities. 
  
During the day, the squid keeps the bacteria at lower concentrations by expelling some 
of them into the ocean during regular intervals.  
At night however, the bacteria are allowed to accumulate to about 1010 cells/ml so that 
they will emit blue-green light.  
 
This is perfect for the squid because it is a night feeder.  
 
In the moonlight, the swimming squid would normally cast a shadow beneath itself 
making it a perfect target for squid-eating organisms.  
 
However, the bacterial glow will counter the shadowing effect the moon makes and 
mask the squid from its predators.  
 
In the morning, the squid expels some bacteria into the ocean to a concentration where 
they will not generate light anymore so as to conserve energy. https://www.bio.cmu.edu/courses/03441/TermPapers/99TermPapers/Quorum/vibrio_fischeri.html 
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Quorum sensing of Vibrio fischeri 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxB

LuxA
LuxB
LuxALuxR
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Boolean Networks 

Densities of the species  

Progress in time 

Network of dependencies 

<=> discrete propagation steps 

<=> discrete states:  on/off,  1/0 

<=> condition tables 

Simplified mathematical description of the dependencies: 

"Blackboard explanations" often formulated as conditional transitions 

• "If LuxI is present, then AI will be produced…" 

• "If there is AI and there's no LuxR:AI bound to the genome, then 
LuxR will be expressed and complexes can form…" 

• "If LuxR:AI is bound to the genome, then LuxI is expressed…" 
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Boolean Networks II 
State of the system: described by vector of discrete values 

Si = {0, 1, 1, 0, 0, 1, …} 

Si = {x1(i),  x2(i),  x3(i), …} 

fixed number of species with finite number of states each 

Propagation: 

→ finite number of system states 
→ periodic trajectories 

with fi given by condition tables 

→ all states leading to an attractor = basin of attraction 

Si+1 = {x1(i+1),  x2(i+1),  x3(i+1),  …} 

x1(i+1) = f1(x1(i), x2(i), x3(i), …) 

→ periodic sequence of states = attractor 
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A Small Example 
State vector  S = {A, B, C} → 8 possible states 

Conditional evolution: 
A is on if C is on           A activates B            C is on if (B is on && A is off) 

Ai+1 Ci 

0 0 
1 1 

Bi+1 Ai 

0 0 
1 1 

Ci+1 Ai Bi 

0 0 0 
1 0 1 
0 1 0 
0 1 1 

assume here that 
inhibition through A  
is stronger than 
activation via B 

Start from {A, B, C} = {1, 0, 0} 

periodic orbit of length 3 

# Si A B C 
0 S0 1 0 0 
1 S1 0 1 0 
2 S2 0 0 1 
3 S3 = S0 1 0 0 
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Test the Other States 
Test the other states Ai+1 Ci 

0 0 
1 1 

Bi+1 Ai 

0 0 
1 1 

Ci+1 Ai Bi 

0 0 0 
1 0 1 
0 1 0 
0 1 1 

# A B C 
0 1 1 1 
1 1 1 0 
2 0 1 0 
3 0 0 1 
4 1 0 0 
5 0 1 0 

# A B C 
0 1 0 1 
1 1 1 0 # A B C 

0 0 1 1 
1 1 0 1 

Same attractor as before: 
100 → 010 → 001 → 100 

also reached from: 
110, 111, 101, 011 

→  Either all off or stable oscillations 

# A B C 
0 0 0 0 
1 0 0 0 
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A Knock-out Mutant 
Ai+1 Ci 

0 0 
1 1 

Bi+1 Ai 

0 0 
1 1 

Ci+1 Bi 

0 0 
1 1 

# A B C 
0 1 0 0 
1 0 1 0 
2 0 0 1 
3 1 0 0 

Attractors: 

# A B C 
0 1 1 0 
1 0 1 1 
2 1 0 1 
3 1 1 0 

# A B C 
0 1 1 1 
1 1 1 1 

# A B C 
0 0 0 0 
1 0 0 0 no feedback 

→ no stabilization, network just "rotates" 
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Boolean Network of QS 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxB

LuxA
LuxB
LuxALuxR

Minimum set of species: 

LuxR,  AI, LuxR:AI, LuxR:AI:genome, 
LuxI 
Here:  Light signal (LuxAB) α LuxI 

Condition tables:  

LuxI LuxR:AI:Genome 

0 0 
1 1 

LuxR:AI:Genome LuxR:AI 

0 0 
1 1 

How does LuxI depend 
on LuxR:AI:Genome? 

describe the state of a species in the next 
step given the current states of all relevant 
species.  

How does LuxR:AI:Genome depend 
on LuxR:AI? 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR
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Condition Tables for QS II 
LuxR LuxR AI LuxR:AI:Genom

e 
1 0 0 0 
1 1 0 0 
1 0 1 0 
1 1 1 0 
0 0 0 1 
1 1 0 1 
0 0 1 1 
0 1 1 1 

LuxR:AI LuxR AI LuxR:AI:Genome 
0 0 0 0 
0 1 0 0 
0 0 1 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 1 
1 1 1 1 

LuxR:AI LuxR AI LuxR:AI:Genome 

0 x x x 
1 1 1 x 

→ 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR

Note:  no dissociation 
           (LuxR:AI:Genome → LuxR:AI + Genome) 
only degradation of AI in this model 
           LuxR:AI:Genome → LuxR + Genome 

Comment: LuxR present, no AI available 
 
 
LuxR present, binds AI in next step, 
no LuxR is produced because 
LuxR:AI:Genome inhibits LuxR production  

When LuxR:AI:Genome is empty, 
LuxR is produced in next step 
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Condition tables for QS III 

AI LuxR AI LuxI 
0 0 0 0 
0 1 0 0 
1 0 1 0 
0 1 1 0 
1 0 0 1 
1 1 0 1 
1 0 1 1 
1 1 1 1 

AI LuxR AI LuxI 
1 x x 1 
0 x 0 0 
1 0 1 0 
0 1 1 0 

→ 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR
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Scanning for Attractors 
States of V. fischeri QS system mapped onto integers 

{LuxR (LR),  LuxR:AI (RA),  AI,  LuxR:AI:Genome (RAG),  LuxI (LI)}  
=  {1,  2,  4,  8,  16} - current state can be interpreted as binary number! 

For each attractor: 
• periodic orbit  and its length (period) 
• basin of attraction  and  its relative size  (32 states in total) 

Attractor 1: orbit:  1 → period 1 
states:  0, 1 → size 2,    2/32 = 6.25 % 

start from state 0: #   LR  RA  AI  RAG LI - state 
0    .      .     .      .      .  -   0 
1   X      .     .      .      .  -   1 
2   X      .     .      .      .  -   1 
 

<= attractor 

→ how likely will the system end in each of the attractors? 
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Scanning for Attractors II 
Attractor 2: orbit:  3, 9, 17, 5 → period 4 

states:   2, 3, 5, 8, 9, 16, 17 → size 7,    21.9 % 

start from state 8: #   LR  RA  AI  RAG LI  - state 
0    .      .     .       X    .   -   8 
1    .      .     .        .    X  -   16 
2    X     .     X      .     .   -   5 
3    X     X    .       .     .   -   3 
4    X      .    .       X    .   -   9 
5    X      .    .       .     X  -   17 
6    X      .   X       .     .   -   5 

attractor 

averaged occupancies in this periodic orbit:  

LR 

4/4 = 1 

RA 

1/4 = 0.25 

AI 

1/4 = 0.25 

RAG 

1/4 = 0.25 

LI 

1/4 = 0.25 
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Attractors III 

Attractor 3: 
#   LR  RA  AI  RAG LI – state0    
       .    X    X      .     .   -   61    
       .    X    X     X     .  -  142   
       .    .     X     X    X  -  283    
       .    .     X     .     X  -  20 

period 4,  basin of 16 states →  50 % 

Attractor 4: 
#   LR  RA  AI  RAG LI - state0    
      X    X    X      .     .  -   71    
      X    X     .      X    .  -  112    
      X     .     .      X   X  -  253    
      X     .     X     .    X  -  21 

period 4,  basin of 4 states →  12.5 % 

Attractor 5: 
#   LR  RA  AI  RAG LI - state0    
      X    .     X     X     .  -  131    
       .   X     .             X  -  18 

period 2,  basin of 3 states →  9.4 % 
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Classifying the Attractors 

Attractor period basin size <LuxR> <LuxR:AI> <AI> <LuxR:AI:Gen> <LuxI> 

1 1 6.25 % (2) 1 0 0 0 0 

2 4 21.9% (7) 1 0.25 0.25 0.25 0.25 

3 4 50 % (16) 0 0.5 1 0.5 0.5 

4 4 12.5 % (4)  1 0.5 0.5 0.5 0.5 

5 2 9.4% (3) 0.5 0.5 0.5 0.5 0.5 

Three regimes: 
dark: LuxI = 0 bright: LuxI = 0.5 intermediate: LuxI = 0.25 

free LuxR, no AI free LuxR + little AI little free LuxR (0.24) + 
much AI (0.85) 

→ Interpret the system's behavior from the properties of the attractors 
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The Feed-Forward-Loop 

Y X 
0 0 
1 1 

External signal determines state of X 
→ response Z for short and long signals X 

Y X 
1 0 
0 1 

Z X Y 
0 0 0 
0 0 1 
0 1 0 
1 1 1 

Z X Y 
0 0 0 
0 0 1 
1 1 0 
0 1 1 

X Y Z 
0 0 0 
1 0 0 
0 1 0 
0 0 0 
1 0 0 
1 1 0 
1 1 1 
0 1 1 
0 0 0 
0 0 0 

X Y Z 
0 1 0 
1 1 0 
0 0 0 
0 1 0 
1 1 0 
1 0 0 
1 0 1 
0 0 1 
0 1 1 
0 1 0 

condition tables: 

R
es

po
ns

e 
to

 s
ig

na
l X

(t)
 

Short 
Signal 
 
Long 
signal 

Signal propagation 
Left column: external signal 
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The A. thaliana Flowering Network 

images from wikimedia 

Model organism in genomics: 
• small, convenient to grow 
• completely sequenced (2000): 125 Mbp 
• can be easily mutated 
also see:  Arabidopsis Information Resource (TAIR)@ 
www.arabidopsis.org/ 

http://www.arabidopsis.org
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J. theor Biol.  193 (1998) 307 
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The ABC Model 
Coen, Meyerowitz (1991):  
 three different activities A, B, and C, active in two adjacent whorls,  
 mutual inhibition of A and C 
  → combinations determine fate of the tissue 

carpel stamen petal sepal 

Related genes: 
A: 

APETALA1 (AP1) 

B: 
APETALA3 (AP3), 

PISTILATA (PI) 

C: 
AGAMOUS (AG) 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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ABC Mutants 

se = sepals, 
pe = petals, 
st = stamens, 
ca = carpels, 
se* = se, pe, pe 

If any of the 3 functions 
(activities) is missing,  
the flowers have different 
tissue combinations. 
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The Network Model 
11 genes (including the four ABC genes) 

inequalities denote the 
relative weights of the 
interactions Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 



Bioinformatics 3 – WS 14/15 V 9  –  

Model Implementation 
Here:  Boolean model with weighted interactions  

Propagate state vector x = {x1, x2, … , x11} by: 

Heavyside step function: 

Weights wij and threshold θi are not known exactly 
→ choose integers for simplicity 
→ positive for activation, negative for inhibition 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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The Numbers 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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Synchronous vs.  Asynchronous 
Synchronous propagation (Kauffman (1969)):   
→ update all species simultaneously 

       → biological problem:  do all genes respond at exactly the same time? 

Asynchronous propagation (Thomas (1991)):   
→ update one species after the other in chosen order 
       → order of update may influence dynamic gene activation patterns 

Semi-synchronic propagation (Mendoza (1998)):   
→ split genes in groups: 
   → synchronous within group,  one group after the other 

       → base order of groups upon experimental data (it's still a "choice") 

EMF1, TFL1 LUG, UFO, BFU LFY, AP1, CAL → → AG, AP3, PI → → SUP 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 



Bioinformatics 3 – WS 14/15 V 9  –  

Some Example Patterns 

Exhaustive search: start from all 212 = 4096 possible initial states, 
     run for t = 200 steps 
      → six stationary patterns (attractors of size 1) 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 
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The Attractors 

From gene activation patterns in the attractors: 
→ identify the four floral tissue types of the ABC model 
→ one attractor with floral inhibitors EMF1, TFL1  
     (characteristic for cells that are not part of the flowers) 
→ one yet unidentified state 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

A B C 
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Possible Pathways 

Note: the model does not 
include temporal and spatial 
information required to 
predict where and when 
which genes are activated 
or repressed ("signals") 

→ these pathways are a  
     "proposal" only 

Mendoza et al, Bioinformatics  15 (1999) 593 
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Sophistication of Networks 
A few years later:  additional genes and predicted interactions (- - -) 

Espinosa-Soto, Padilla-Longoria,  Alvarez-
Buylla, The Plant Cell 16 (2004) 2923 

1998 
2004 

Mendoza,  Alvarez-Buylla,  
J. theor Biol.  193 (1998) 
307 
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Predictions for Petunia 

Espinosa-Soto, Padilla-Longoria,  Alvarez-
Buylla, The Plant Cell 16 (2004) 2923 

From A. thaliana 
predict/understand  
green petals mutant 
phenotype for petunia. 
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What is it Worth? 

"You get what you pay for" 

Generally: → quality of the results depends on the quality of the model 
→ quality of the model depends on the quality of the assumptions 

Assumptions for the Boolean network description: 

• only discrete density levels 

• discretized propagation steps 

• conditional yes–no causality 

(• subset of the species considered → reduced system state space) 

→ dynamic balances lost,  
      reduced to oscillations 

→ timing of concurrent paths? 

→ no continuous processes 


