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Gene Regulation Networks 
Biological regulation 

via proteins and metabolites 
Projected regulatory network <=> 

<=> 

Reconstruction of static networks? 

10. Lecture WS 2013/14 Bioinformatics III 
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Dynamic Reconstruction 
Different network topologies   →   different time series 

Model large networks efficiently →  simplified descriptions 
                                                       (processes + numerics) 

10. Lecture WS 2013/14 Bioinformatics III 
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Quorum sensing of Vibrio fischeri 

10. Lecture WS 2013/14 Bioinformatics III 

This luminescent bacterium can be found in small amounts in the ocean 
and in large amount in isolated areas such as the light organs of squid.  
 
When in small concentrations of cells, V. fischeri does not give off light, but 
in high cell density these bacteria emit a blue-green light.  
This cell density-dependent control of gene expression is activated by 
autoinduction that involves the coupling of a transcriptional activator 
protein with a signal molecule (autoinducer) that is released by the 
bacteria into its surrounding environment.  
 
In the ocean, the population density of V. fischeri is only about 102 cells/ml. 
The exportation of the autoinducer from the bacteria into this low 
concentration of cells is not enough to cause the luminescence genes to 
be activated. However, inside the light organ of a squid for example, the 
cell concentration is about 1010 cells/ml. At such high concentrations, the 
autoinducer causes the bacteria to emit light 

https://www.bio.cmu.edu/courses/03441/TermPapers/99TermPapers/Quorum/vibrio_fischeri.html 
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Quorum sensing of Vibrio fischeri 

10. Lecture WS 2013/14 Bioinformatics III 

V. fischeri has a microbial symbiotic relationship with the squid Euprymna 
scolopes. The light organ of the squid provides the bacteria all of the 
nutrients that they need to survive. The squid benefits from the bacteria's 
quorum sensing and bioluminescence abilities. 
  
During the day, the squid keeps the bacteria at lower concentrations by 
expelling some of them into the ocean during regular intervals. At night 
however, the bacteria are allowed to accumulate to about 1010 cells/ml so 
that they will emit blue-green light.  
 
This is perfect for the squid because it is a night feeder. In the moonlight, 
the swimming squid would normally cast a shadow beneath itself making it 
a perfect target for squid-eating organisms. However, the bacterial glow 
will counter the shadowing effect the moon makes and mask the squid 
from its predators. In the morning, the squid expels some bacteria into the 
ocean to a concentration where they will not generate light anymore so as 
to conserve energy. https://www.bio.cmu.edu/courses/03441/TermPapers/99TermPapers/Quorum/vibrio_fischeri.html 
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Quorum sensing of Vibrio fischeri 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxB

LuxA
LuxB
LuxALuxR

10. Lecture WS 2013/14 Bioinformatics III 
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Boolean Networks 

Densities of the species  

Progress in time 

Network of dependencies 

<=> discrete propagation steps 

<=> discrete states:  on/off,  1/0 

<=> condition tables 

Simplified mathematical description of the dependencies: 

"Blackboard explanations" often formulated as conditional transitions 

• "If LuxI is present, then AI will be produced…" 

• "If there is AI and there's no LuxR:AI bound to the genome, then 
LuxR will be expressed and complexes can form…" 

• "If LuxR:AI is bound to the genome, then LuxI is expressed…" 

10. Lecture WS 2013/14 Bioinformatics III 
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Boolean Networks II 
State of the system: described by vector of discrete values 

Si = {0, 1, 1, 0, 0, 1, …} 

Si = {x1(i),  x2(i),  x3(i), …} 

fixed number of species with finite number of states each 

Propagation: 

→ finite number of system states 
→ periodic trajectories 

with fi given by condition tables 

→ all states leading to an attractor = basin of attraction 

Si+1 = {x1(i+1),  x2(i+1),  x3(i+1),  …} 

x1(i+1) = f1(x1(i), x2(i), x3(i), …) 

→ periodic sequence of states = attractor 

10. Lecture WS 2013/14 Bioinformatics III 
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A Small Example 
State vector  S = {A, B, C} → 8 possible states 

Conditional evolution: 
A is on if C is on           A activates B            C is on if (B is on && A is off) 

Ai+1 Ci 

0 0 
1 1 

Bi+1 Ai 

0 0 
1 1 

Ci+1 Ai Bi 

0 0 0 
1 0 1 
0 1 0 
0 1 1 

assume that 
inhibition through A 
is stronger than 
activation via B 

Start from {A, B, C} = {1, 0, 0} 

periodic orbit of length 3 

# Si A B C 
0 S0 1 0 0 
1 S1 0 1 0 
2 S2 0 0 1 
3 S3 = S0 1 0 0 

10. Lecture WS 2013/14 Bioinformatics III 
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Test the Other States 
Test the other states Ai+1 Ci 

0 0 
1 1 

Bi+1 Ai 

0 0 
1 1 

Ci+1 Ai Bi 

0 0 0 
1 0 1 
0 1 0 
0 1 1 

# A B C 
0 1 1 1 
1 1 1 0 
2 0 1 0 
3 0 0 1 
4 1 0 0 
5 0 1 0 

# A B C 
0 1 0 1 
1 1 1 0 
2 0 1 0 

# A B C 
0 0 1 1 
1 1 0 1 

Same attractor as before: 
100 → 010 → 001 → 100 

also reached from: 
110, 111, 101, 011 

→  Either all off or stable oscillations 

# A B C 
0 0 0 0 
1 0 0 0 

10. Lecture WS 2013/14 Bioinformatics III 
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A Knock-out Mutant 
Ai+1 Ci 

0 0 
1 1 

Bi+1 Ai 

0 0 
1 1 

Ci+1 Bi 

0 0 
1 1 

# A B C 
0 1 0 0 
1 0 1 0 
2 0 0 1 
3 1 0 0 

Attractors: 

# A B C 
0 1 1 0 
1 0 1 1 
2 1 0 1 
3 1 1 0 

# A B C 
0 1 1 1 
1 1 1 1 

# A B C 
0 0 0 0 
1 0 0 0 no feedback 

→ no stabilization, network just "rotates" 

10. Lecture WS 2013/14 Bioinformatics III 
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LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxB

LuxA
LuxB
LuxALuxR

Boolean Network of QS 
Minimum set of species: 

LuxR,  AI, LuxR:AI, LuxR:AI:genome, 
LuxI 
Here:  Light signal (LuxAB) α LuxI 

Condition tables:  

LuxI LuxR:AI:Genome 

0 0 
1 1 

LuxR:AI:Genome LuxR:AI 

0 0 
1 1 

How does LuxI depend 
on LuxR:AI:Genome? 

describe the state of a species in the next 
step given the current states of all relevant 
species.  

How does LuxR:AI:Genome depend 
on LuxR:AI? 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR

10. Lecture WS 2013/14 Bioinformatics III 
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Condition Tables for QS II 
LuxR LuxR AI LuxR:AI:Genome 

1 0 0 0 
1 1 0 0 
1 0 1 0 
1 1 1 0 
0 0 0 1 
1 1 0 1 
0 0 1 1 
0 1 1 1 

LuxR:AI LuxR AI LuxR:AI:Genome 
0 0 0 0 
0 1 0 0 
1 0 1 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 1 
1 1 1 1 

LuxR:AI LuxR AI LuxR:AI:Genome 

0 x 0 x 
1 1 1 x 
1 0 1 0 
0 0 1 1 

→ 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR

Note:  no dissociation 
           (LuxR:AI:Genome → LuxR:AI + Genome) 
only degradation of AI 
           LuxR:AI:Genome → LuxR + Genome 10. Lecture WS 2013/14 Bioinformatics III 
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Condition tables for QS III 

AI LuxR AI LuxI 
0 0 0 0 
0 1 0 0 
1 0 1 0 
0 1 1 0 
1 0 0 1 
1 1 0 1 
1 0 1 1 
1 1 1 1 

AI LuxR AI LuxI 
1 x x 1 
0 x 0 0 
1 0 1 0 
0 1 1 0 

→ 

LuxR

LuxR

LuxI

AI

luxICDABEluxR

LuxR

10. Lecture WS 2013/14 Bioinformatics III 
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Scanning for Attractors 
States of V. fischeri QS system mapped onto integers 

{LuxR (LR),  LuxR:AI (RA),  AI,  LuxR:AI:Genome (RAG),  LuxI (LI)}  
=  {1,  2,  4,  8,  16} - current state is binary number! 

For each attractor: 
• periodic orbit  and its length (period) 
• basin of attraction  and  its relative size  (32 states in total) 

Attractor 1: orbit:  1 → period 1 
states:  0, 1 → size 2,    2/32 = 6.25 % 

start from state 0: #   LR  RA  AI  RAG LI - state 
0    .      .     .      .      .  -   0 
1   X      .     .      .      .  -   1 
2   X      .     .      .      .  -   1 
 

<= attractor 

→ how likely will the system end in each of the attractors? 

10. Lecture WS 2013/14 Bioinformatics III 
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Scanning for Attractors II 
Attractor 2: orbit:  3, 9, 17, 5 → period 4 

states:   2, 3, 5, 8, 9, 16, 17 → size 7,    21.9 % 

start from state 8: #   LR  RA  AI  RAG LI  - state 
0    .      .     .       X    .   -   8 
1    .      .     .        .    X  -   16 
2    X     .     X      .     .   -   5 
3    X     X    .       .     .   -   3 
4    X      .    .       X    .   -   9 
5    X      .    .       .     X  -   17 
6    X      .   X       .     .   -   5 

attractor 

averaged occupancies in this periodic orbit:  

LR 

4/4 = 1 

RA 

1/4 = 0.25 

AI 

1/4 = 0.25 

RAG 

1/4 = 0.25 

LI 

1/4 = 0.25 

10. Lecture WS 2013/14 Bioinformatics III 
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Attractors III 

Attractor 3: 
#   LR  RA  AI  RAG LI – state0    
       .    X    X      .     .   -   61    
       .    X    X     X     .  -  142   
       .    .     X     X    X  -  283    
       .    .     X     .     X  -  20 

period 4,  basin of 16 states →  50 % 

Attractor 4: 
#   LR  RA  AI  RAG LI - state0    
      X    X    X      .     .  -   71    
      X    X     .      X    .  -  112    
      X     .     .      X   X  -  253    
      X     .     X     .    X  -  21 

period 4,  basin of 4 states →  12.5 % 

Attractor 5: 
#   LR  RA  AI  RAG LI - state0    
      X    .     X     X     .  -  131    
       .   X     .             X  -  18 

period 2,  basin of 3 states →  9.4 % 

10. Lecture WS 2013/14 Bioinformatics III 



18 

Classifying the Attractors 

Attractor period basin size <LuxR> <LuxR:AI> <AI> <LuxR:AI:Gen> <LuxI> 

1 1 6.25 % (2) 1 0 0 0 0 

2 4 21.9% (7) 1 0.25 0.25 0.25 0.25 

3 4 50 % (16) 0 0.5 1 0.5 0.5 

4 4 12.5 % (4)  1 0.5 0.5 0.5 0.5 

5 2 9.4% (3) 0.5 0.5 0.5 0.5 0.5 

Three regimes: 
dark: LuxI = 0 bright: LuxI = 0.5 intermediate: LuxI = 0.25 

free LuxR, no AI free LuxR + little AI little free LuxR (0.24) + 
much AI (0.85) 

→ Interpret the system's behavior from the properties of the attractors 

10. Lecture WS 2013/14 Bioinformatics III 
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The Feed-Forward-Loop 

Y X 
0 0 
1 1 

External signal determines state of X 
→ response Z for short and long signals X 

Y X 
1 0 
0 1 

Z X Y 
0 0 0 
0 0 1 
0 1 0 
1 1 1 

Z X Y 
0 0 0 
0 0 1 
1 1 0 
0 1 1 

X Y Z 
0 0 0 
1 0 0 
0 1 0 
0 0 0 
1 0 0 
1 1 0 
1 1 1 
0 1 1 
0 0 0 
0 0 0 

X Y Z 
0 1 0 
1 1 0 
0 0 0 
0 1 0 
1 1 0 
1 0 0 
1 0 1 
0 0 1 
0 1 1 
0 1 0 

condition tables: 

R
es

po
ns

e 
to

 s
ig

na
l X

(t)
 

Short 
Signal 
 
Long 
signal 

Signal propagation 
Left column: external signal 

10. Lecture WS 2013/14 Bioinformatics III 



20 

The A. thaliana Flowering Network 

images from wikimedia 

Model organism in genomics: 
• small, convenient to grow 
• completely sequenced (2000): 125 Mbp 
• can be easily mutated 
also see:  Arabidopsis Information Resource (TAIR)@ 
www.arabidopsis.org/ 

10. Lecture WS 2013/14 Bioinformatics III 

http://www.arabidopsis.org
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J. theor Biol.  193 (1998) 307 10. Lecture WS 2013/14 Bioinformatics III 
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The ABC Model 
Coen, Meyerowitz (1991):  
 three different activities A, B, and C, active in two adjacent whorls,  
 mutual inhibition of A and C 
  → combinations determine fate of the tissue 

carpel stamen petal sepal 

Related genes: 
A: 

APETALA1 (AP1) 

B: 
APETALA3 (AP3), 

PISTILATA (PI) 

C: 
AGAMOUS (AG) 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

10. Lecture WS 2013/14 Bioinformatics III 
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ABC Mutants 

se = sepals, 
pe = petals, 
st = stamens, 
ca = carpels, 
se* = se, pe, pe 

If any of the 3 functions 
(activities) is missing,  
the flowers have different 
tissue combinations. 

10. Lecture WS 2013/14 Bioinformatics III 
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The Network Model 
11 genes (including the four ABC genes) 

inequalities denote the 
relative weights of the 
interactions Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

10. Lecture WS 2013/14 Bioinformatics III 
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Model Implementation 
Here:  Boolean model with weighted interactions  

Propagate state vector x = {x1, x2, … , x11} by: 

Heavyside step function: 

Weights wij and threshold θi are not known exactly 
→ choose integers for simplicity 
→ positive for activation, negative for inhibition 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

10. Lecture WS 2013/14 Bioinformatics III 
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The Numbers 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

10. Lecture WS 
2013/14 

Bioinformatics III 
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Synchronous vs.  Asynchronous 
Synchronous propagation (Kauffman (1969)):   
→ update all species simultaneously 

       → biological problem:  do all genes respond at exactly the same time? 

Asynchronous propagation (Thomas (1991)):   
→ update one species after the other in chosen order 
       → order of update may influence dynamic gene activation patterns 

Semi-synchronic propagation (Mendoza (1998)):   
→ split genes in groups: 
   → synchronous within group,  one group after the other 

       → base order of groups upon experimental data (it's still a "choice") 

EMF1, TFL1 LUG, UFO, BFU LFY, AP1, CAL → → AG, AP3, PI → → SUP 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

10. Lecture WS 2013/14 Bioinformatics III 
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Some Example Patterns 

Exhaustive search: start from all 212 = 4096 possible initial states, 
     run for t = 200 steps 
      → six stationary patterns (attractors of size 1) 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

10. Lecture WS 2013/14 Bioinformatics III 
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The Attractors 

From gene activation patterns in the attractors: 
→ identify the four floral tissue types of the ABC model 
→ one attractor with floral inhibitors EMF1, TFL1  
     (characteristic for cells that are not part of the flowers) 
→ one yet unidentified state 

Mendoza,  Alvarez-Buylla, J. theor Biol.  193 (1998) 307 

A B C 

10. Lecture WS 2013/14 Bioinformatics III 
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Possible Pathways 

Note: the model does not 
include temporal and spatial 
information required to 
predict where and when 
which genes are activated 
or repressed ("signals") 

→ these pathways are a  
     "proposal" only 

Mendoza et al, Bioinformatics  15 (1999) 593 

10. Lecture WS 2013/14 Bioinformatics III 
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Sophistication of Networks 
A few years later:  additional genes and predicted interactions (- - -) 

Espinosa-Soto, Padilla-Longoria,  Alvarez-
Buylla, The Plant Cell 16 (2004) 2923 

1998 
2004 

Mendoza,  Alvarez-Buylla,  
J. theor Biol.  193 (1998) 
307 

10. Lecture WS 2013/14 Bioinformatics III 
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Predictions for Petunia 

Espinosa-Soto, Padilla-Longoria,  Alvarez-
Buylla, The Plant Cell 16 (2004) 2923 

From A. thaliana 
predict/understand  
green petals mutant 
phenotype for petunia. 

10. Lecture WS 2013/14 Bioinformatics III 
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What is it Worth? 

"You get what you pay for" 

Generally: → quality of the results depends on the quality of the model 
→ quality of the model depends on the quality of the assumptions 

Assumptions for the Boolean network description: 

• only discrete density levels 

• discretized propagation steps 

• conditional yes–no causality 

(• subset of the species considered → reduced system state space) 

→ dynamic balances lost,  
      reduced to oscillations 

→ timing of concurrent paths? 

→ no continuous processes 

10. Lecture WS 2013/14 Bioinformatics III 
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Petri-Nets 
Bipartite graph of 
• places 
• transitions 
• directed weighted arcs 

two types of 
nodes } 

Metabolic reaction: 

place 
= 

metabolite 

transition 
= 

enzyme 

weighted arc 
= 

stoichiometries 

10. Lecture WS 2013/14 Bioinformatics III 
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Petri Nets:  More Accurate 
Places:  have a capacity (1 … ∞) 
→ max. number of tokens   (default: ∞) 

Arcs:  have costs (1 … ∞) 
→ number of tokens that are consumed/produced  (default: 1) 

Transitions:  can fire, when the conditions are fulfilled 
→ enough tokens on the in-places:       ≥ costs for in-arcs 
→ enough remaining capacity on the out-places:  ≥ costs for out-arcs 

Marking  =  state of the network  =  numbers of tokes on the places 

10. Lecture WS 2013/14 Bioinformatics III 
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Multiple Possibilities 

When multiple transitions may fire: 
• all are equal 
 → choose one randomly 
• if priorities are defined 
 → transition with highest priority fires 

10. Lecture WS 2013/14 Bioinformatics III 
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Platform Independent Petri Net Editor 

http://pipe2.sourceforge.net/ 
10. Lecture WS 2013/14 Bioinformatics III 

http://pipe2.sourceforge.net
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"Token Game" 

10. Lecture WS 2013/14 Bioinformatics III 
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Token Spread 

Run P1 P2 

 1 10 10 
 2 15 5 
 3 11 9 
 4 9 11 
 5 13 7 
 6 7 13 
 7 7 13 
 8 5 15 
 9 9 11 
 10 8 12 

<N> 9.4 10.6 
 σ 2.8 2.8 

for comparison:   
expected from Poisson distribution 

σ = λ1/2 ≈  3.2 
λ =  10 

Token Game  =  stochastic simulation 

10. Lecture WS 2013/14 Bioinformatics III 
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Inhibition 

10. Lecture WS 2013/14 Bioinformatics III 
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Time Consuming Transitions 
Until now:  every transition was instantaneous 

SPN (Stochastic Petri Net): 
 Each transition takes some time – exponentially distributed waiting times 

GSPN (Generalized Stochastic Petri Net): 
 Time-consuming and instantaneous transitions are mixed 

DSPN (Deterministic Stochastic Petri Net): 
 Waiting times are fixed or exponentially distributed 

General Petri nets:  all types of transitions may occur 

=> 

=> survival times distributed exponentially 

10. Lecture WS 2013/14 Bioinformatics III 
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Petri Nets for Gene Regulation 
To encode the dependencies of gene regulation we need: 
  activation,  inhibition,  logical and,  logical or 
 • transcription factors are not consumed → read arcs 
 • encode on/off states → capacity constraints on the places 

g1 = g2 or g3 

g1 = g2 and g3 

g2 activates g1 

g2 inhibits g1 

10. Lecture WS 2013/14 Bioinformatics III 



Introduce complementary places:  tokens on g1 plus on g1 = 1 
→ capacity constraints fulfilled automatically (when initial markings are okay) 
→ no inhibitory arcs required 
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Boolean Regulatory Petri Nets 

g1 g2 

g1 g2 

10. Lecture WS 2013/14 Bioinformatics III 
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Reverse Engineering Networks 
Problem:  "Find the network that explains the biological processes!" 
                  → usually too ambitious 

Experiments:  co-expression data 
                  → co-regulation of different genes (correlation or direct interaction?) 
                  → time-series of individual genes 

Strategies: "Find all networks that are compatible with the experiments" 
→ combinatorial explosion,  usually too many candidates 
      → does not work… 

"Find one network that is compatible with the experiments" 
→ solvable task, but how good is this network? 
        → does not work… 

"Find some networks that are compatible with the experiments" 
→ algorithms exist,  need heuristics (experience) to assess coverage 
     → does work… 

10. Lecture WS 2013/14 Bioinformatics III 
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Flowering in Arabidopsis 

Chaouiya et al., LNCS 3099 (2004) 137 

Minimal model of flower 
morphogenesis in  
A. thaliana 
→ only "red" genes 

Identify steady states of different parts of the flower 
→ find dead markings 

10. Lecture WS 2013/14 Bioinformatics III 
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Drosophila Cell Cycle 

Chaouiya et al., LNCS 3099 (2004) 137 

Minimal regulation network for the 
first cell cycles during  
D. melanogaster embryonic 
development 
(MPF = Mitosis Promoting Factor) 

Asynchronous graph of all possible states  
(and transitions) — MFWS 

Does the model reproduce oscillations? 
→ prove that the system is deadlock-free  
     (evaluate conditions that any of the transitions cannot fire any more) 

Note on a mutation:  when MPF inhibits Fizzy → dead markings → no stable oscillations 

10. Lecture WS 2013/14 Bioinformatics III 
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Summary 
Today: simplified modelling of gene regulation networks 

• Boolean Networks 
  genes are on/off,  propagation via condition tables 
 → direct implementation of experimentally found dependencies 
    → no real-time information 
        → steady states (attractors) — network reconstruction — mutations 

Next lecture: 

• graph connectivity 

• Petri nets 
  places, transitions, and arcs (plus capacities) 
 → more general,  more analysis tools,  but more complex 
   → can include real-time dynamics (via time-consuming transitions) 

10. Lecture WS 2013/14 Bioinformatics III 


