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V13 Network Flows 

This part follows closely chapter 12.1 in the book on the right 
on „Flows and Cuts in Networks and 
Chapter 12.2 on “Solving the Maximum-Flow Problem“ 

Flow in Networks can mean  
- flow of oil or water in pipelines, electricity 
- phone calls, emails, traffic networks ... 

Equivalences between  
max-flow min-cut theorem of Ford and Fulkerson 
& the connectivity theorems of Menger 
→ led to the development of efficient algorithms for a 
number of practical problems to solve scheduling and 
assignment problems.  
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Definition: A single source – single sink network is a connected digraph that 
has a distinguished vertex called the source with nonzero outdegree and a 
distinguished vertex called the sink with nonzero indegree. 

Such a network with source s and sink t is often referred to as a s-t network. 

Single Source – Single Sink Capacitated Networks 

Correspondingly, In(v) denotes the set of arcs that are directed to vertex v: 

Definition: A capacitated network is a connected digraph such that each arc e 
is assigned a nonnegative weight cap(e), called the capacity of arc e. 

Notation: Let v be a vertex in a digraph N. Then Out(v) denotes the set of all 
arcs that are directed from vertex v. That is, 
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Notation: For any two vertex subsets X and Y of a digraph N,  let 〈X,Y〉 denote 
the set of arcs in N that are directed from a vertex in X to a vertex in Y. 

Single Source – Single Sink Capacitated Networks 

Example: The figure shows a 5-vertex capacitated s-t-network. 
If X = {x,v} and Y = {w,t}, then the elements of arc set 〈X,Y〉 are the arc directed 
from vertex x to vertex w and the arc directed from vertex v to sink t. 

The only element in arc set 〈Y,X〉 is the arc directed from vertex w to vertex v. 

A 5-vertex capacitated network with 
source s and sink t. 
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Definition: Let N be a capacitated s-t-network.  
A feasible flow f in N is a function f:EN → R+ that assigns a nonnegative real number  
1.    (capacity constraints) f(e) ≤ cap(e), for every arc e in network N. 
2.    (conservation constraints) 

for every vertex v in network N, other than source s and sink t. 

Feasible Flows 

Property 2 above is called the conservation-of-flow condition. 
E.g. for an oil pipeline, the total flow of oil going into any juncture (vertex) in the 
pipeline must equal the total flow leaving that juncture. 

Notation: to distinguish visually between the flow and the capacity of an arc, we adopt 
the convention in drawings that when both numbers appear, the capacity will always 
be in bold and to the left of the flow. 
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Example: The figure shows a feasible flow for the previous network. 
Notice that the total amount of flow leaving source s equals 6, which is also the 
net flow entering sink t.  

Feasible Flows 

Definition: The maximum flow f* in a capacitated network N is a flow in N 
having the maximum value, i.e. val(f) ≤ val(f*), for every flow f in N. 

Definition: The value of flow f in a capacitated network N, denoted with val(f),  
is the net flow leaving the source s, that is  
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By definition, any nonzero flow must use at least one of the arcs in Out(s).  
In other words, if all of the arcs in Out(s) were deleted from network N,  
then no flow could get from source s to sink t. 

This is a special case of the following definition, which combines the concepts of 
partition-cut and s-t separating set. 

Cuts in s-t Networks 

From V11 
Definition: Let G be a graph, and let X1 and X2 form a partition of VG. 
The set of all edges of G having one endpoint in X1 and the other endpoint  
in X2 is called a partition-cut of G and is denoted 〈X1,X2〉. 

From V12 
Definition: Let u and v be distinct vertices in a connected graph G.  
A vertex subset (or edge subset) S is u-v separating (or separates u and v),  
if the vertices u and v lie in different components of the deletion subgraph G – S. 
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Definition: Let N be an s-t network, and let Vs and Vt form a partition of VG such 
that source s ∈ Vs and sink t ∈ Vt. 
Then the set of all arcs that are directed from a vertex in set Vs to a vertex in set 
Vt is called an s-t cut of network N and is denoted 〈Vs,Vt〉. 

Cuts in s-t Networks 

Remark: The arc set Out(s) for an s-t network N is the s-t cut 〈{s},VN – {s}〉, and  
In(t) is the s-t cut 〈VN – {t},{t}〉. 
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Example. The figure portrays the arc sets Out(s) and In(t) as s-t cuts, where 
Out(s) = 〈 {s}, {x,v,w,t} 〉 and In(t) = 〈 {s,x,v,w},{t} 〉. 

Cuts in s-t Networks 

Example: a more general s-t cut 〈 Vs,Vt 〉 is shown below, where Vs = {s,x,v} and  
Vt = {w,t}. 
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Proposition 12.1.1 Let 〈 Vs,Vt 〉 be an s-t cut of a network N.  
Then every directed s-t path in N contains at least one arc in 〈 Vs,Vt 〉. 

Cuts in s-t Networks 

Proof. Let P = 〈s = v0,v1,v2, …,vl = t〉 be the vertex sequence of a directed s-t 
path in network N.  
Since s ∈ Vs and t ∈ Vt, there must be a first vertex vj on this path that is in set Vt 
(see figure below).  
Then the arc from vertex vj-1 to vj is in 〈 Vs,Vt 〉. □ 
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Similar to viewing the set Out(s) of arcs directed from source s as the s-t cut 
〈 {s}, VN – {s} 〉, the set In(s) may be regarded as the set of „backward“ arcs 
relative to this cut, namely, the arc set 〈 VN – {s}, {s}, 〉. 

From this perspective, the definition of val(f) may be rewritten as 

Relationship between Flows and Cuts 
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Lemma 12.1.2. Let 〈 Vs,Vt 〉 be any s-t cut of an s-t network N. Then 

Relationship between Flows and Cuts 

Proof: For any vertex v ∈ Vs, each arc directed from v is either in 〈 Vs,Vs〉 or in  
〈Vs,Vt〉. The figure illustrates for a vertex v the partition of Out(v) into a 4-element 
subset of 〈 Vs,Vs〉 and a 3-element subset of 〈 Vs,Vt〉. 
Similarly, each arc directed to vertex v is either in 〈 Vs,Vs〉 or in 〈 Vt,Vs〉 . □ 

13. Lecture WS 2013/14 



Bioinformatics III 
12 

Proposition 12.1.3. Let f be a flow in an s-t network N, and let 〈 Vs,Vt 〉 be any s-t 
cut of N. Then 

Relationship between Flows and Cuts 

Proof: By definition,  

And by the conservation of flow 

By Lemma 12.1.2. 

(1) 

(2) 

Now enter the right hand sides of (2) into (1) and obtain the desired equality. □ 
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The flow f and cut 〈{s,x,v},{w,t}〉 shown in the figure illustrate Proposition 12.1.3. 

Example 

The next corollary confirms something that was apparent from intuition: 
the net flow out of the source s equals the net flow into the sink t. 

Corollary 12.1.4 Let f be a flow in an s-t network. Then 

Proof: Apply proposition 12.1.3 to the s-t cut In(t) = 〈 VN – {t}, {t} 〉. □ 
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Definition. The capacity of a cut 〈Vs,Vt〉 denoted cap〈Vs,Vt〉, is the sum of the 
capacities of the arcs in cut 〈Vs,Vt〉. That is 

Example 

Definition. The minimum cut of a network N is a cut with the minimum capacity. 

Example. The capacity of the cut shown in the previous figure is 13,  
And the cut 〈{s,x,v,w},{t}〉 with capacity 10, is the only minimum cut. 
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The problems of finding the maximum flow in a capacitated network N and 
finding a minimum cut in N are closely related. 

These two optimization problems form a max-min pair. 

The following proposition provides an upper bound for the maximum-flow 
problem. 

Maximum-Flow and Minimum-Cut Problems 
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Proposition 12.1.5 Let f be any flow in an s-t network, and let 〈Vs,Vt〉 be any s-t cut. 
Then  

Maximum-Flow and Minimum-Cut Problems 

Proof:  

 □ 
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Proof: Let f‘ be any feasible flow in network N.  
Proposition 12.1.5 and the premise give 

On the other hand, let 〈Vs,Vt〉 be any s-t cut. Proposition 12.1.5:  

Therefore, K is a minimum cut. □ 

Corollary 12.1.6 (Weak Duality) Let f* be a maximum flow in an s-t network N, 
and let K* be a minimum s-t cut in N. Then  

Maximum-Flow and Minimum-Cut Problems 

Proof: This follows immediately from proposition 12.1.5. 

Corollary 12.1.7 (Certificate of Optimality) Let f be a flow in an s-t network N and 
K an s-t cut, and suppose that val(f) = cap(K). 
Then flow f is a maximum flow in network N, and cut K is a minimum cut. 
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Example The flow for the example network shown in the figure has value 10, 
which is also the capacity of the s-t cut 〈{s,x,v,w},{t}〉. 
By corollary 12.1.7, both the flow and the cut are optimal for their respective 
problem. 

Example 

A maximum flow and minimum cut. 

Corollary 12.1.8 Let 〈Vs,Vt〉 be an s-t cut in a network N, and suppose that f is a 
flow such that  

Then f is a maximum flow in N, and 〈Vs,Vt〉 is a minimum cut.    
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We will present an algorithm that originated by Ford and Fulkerson (1962). 
Idea: increase the flow in a network iteratively until it cannot be increased any 
further → augmenting flow path. 

Solving the Maximum-Flow Problem 

Suppose that f is a flow in a capacitated s-t network N, and suppose that there 
exists a directed s-t path 
   P = 〈s,e1,v1,e2,...,ek,t〉 
in N, such that f(ei) < cap(ei) for i=1, ..., k. 

Then considering arc capacities only, the flow on each arc ei can be increased by 
as much as cap(ei) – f(ei). 

But to maintain the conservation-of-flow property at each of the vertices vi, the 
increases on all of the arcs of path P must be equal.  

Thus, if ΔP denotes this increase, then the largest possible value for ΔP is 
min{cap(ei} –f(ei)}. 
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Example: Left side: the value of the current flow is 6. 
Consider the directed s-t path P = 〈s,x,w,t〉. 
The flow on each arc of path P can be increased by ΔP = 2. 
The resulting flow, which has value 8, is shown on the right side. 

Solving the Maximum-Flow Problem 

Using the directed path 〈s,v,t〉, the flow can be 
increased to 9. The resulting flow is shown right. 

At this point, the flow cannot be increased any 
further along directed s-t paths, because each 
such path must either use the arc directed from s 
to x or from v to t. Both arcs have flow at capacity. 
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However, the flow can be increased further. 

E.g. increase the flow on the arc from  
source s to vertex v by one unit,  
decrease the flow on the arc from w to v  
by one unit, and increase the flow on the  
arc from w to t by one unit. 

Solving the Maximum-Flow Problem 
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Definition: An s-t quasi-path in a network N is an alternating sequence 
  〈s = v0,e1,v1,...,vk-1,ek,vk = t〉 
of vertices and arcs that forms an s-t path in the underlying undirected graph of N. 

f-Augmenting Paths 

Terminology For a given s-t quasi-path 
  Q = 〈s = v0,e1,v1,...,vk-1,ek,vk = t〉 
arc ei is called a forward arc if it is directed from vertex vi-1  to vertex vi  and  
arc ei is called a backward arc if it is directed from vi to vi-1. 

Clearly, a directed s-t path is a quasi-path whose arcs are all forward. 

Example. On the s-t quasi-path shown below, arcs a and b are backward, and the 
three other arcs are forward. 
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Notation For each arc e on a given f-augmenting path Q, let Δe be the quantity 
given by 

Terminology The quantity Δe is called the slack on arc e. Its value on a forward arc 
is the largest possible increase in the flow, and on a backward arc, the largest 
possible decrease in the flow, disregarding conservation of flow. 

Definition: Let f be a flow in an s-t  network N. An f-augmenting path Q is an s-t 
quasi path in N such that the flow on each forward arc can be increased, and the 
flow on each backward arc can be decreased. 

f-Augmenting Paths 

Thus, for each arc e on an f-augmenting path Q, 

 f(e) < cap(e), if e is a forward arc 
 f(e) > 0  if e is a backward arc. 
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Remark Conservation of flow requires that the change in the flow on the arcs of an 
augmenting flow path be of equal magnitude. 
Thus, the maximum allowable change in the flow on an arc of quasipath Q is ΔQ, 
where 

f-Augmenting Paths 

Example For the example network shown below, the current flow f has value 9, 
and the quasi-path Q = 〈s,v,w,t〉 is an f-augmenting path with ΔQ = 1. 
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Proposition 12.2.1 (Flow Augmentation) Let f be a flow in a network N, and let Q be 
an f-augmenting path with minimum slack ΔQ on its arcs. 
Then the augmented flow f‘ given by 

flow augmentation 

is a feasible flow in network N and val(f‘) = val(f) + ΔQ. 

Proof. Clearly, 0 ≤ f‘(e) ≤ cap(e), by the definition of ΔQ. 

The only vertices through which the net flow may have changed are those vertices 
on the augmenting path Q. Thus, to verify that f‘ satisfies conservation of flow, only 
the internal vertices of Q need to be checked. 
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For a given vertex v on augmenting path Q, the two arcs of Q that are incident on v 
are configured in one of four ways, as shown below. In each case, the net flow into 
or out of vertex v does not change, thereby preserving the conservation-of-flow 
property. 

f-Augmenting Paths 

It remains to be shown that the flow has increased by ΔQ. 
The only arc incident on the source s whose flow has changed is the first arc e1 of 
augmenting path Q.  
If e1 is a forward arc, then f‘(e1) = f(e1) + ΔQ, and  
if e1 is a backward arc, then f‘(e1) = f(e1) - ΔQ. In either case,  

□ 
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Proof: Necessity (⇒) Suppose that f is a maximum flow in network N. 
Then by Proposition 12.2.1, there is no f-augmenting path. 

Proposition 12.2.1 (Flow Augmentation) Let f be a flow in a network N, and let Q be an f-augmenting 
path with minimum slack ΔQ on its arcs. Then the augmented flow f‘ given by 

is a feasible flow in network N and val(f‘) = val(f) + ΔQ. 

→ assuming an f-augmenting path existed, we could construct a flow f‘ with 
val(f‘) > val(f) contradicting the maximality of f. 

Max-Flow Min-Cut 
Theorem 12.2.3 [Characterization of Maximum Flow] 
Let f be a flow in a network N.  
Then f is a maximum flow in network N if and only if there does not exist an 
f-augmenting path in N. 
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Let Vs be the union of the vertex-sets of these quasi-paths. 
Since there is no f-augmenting path, it follows that sink t ∉ Vs. 
Let Vt = VN – Vs. 
Then 〈Vs,Vt〉 is an s-t cut of network N. Moreover, by definition of the sets  
Vs and Vt , 

(if the flow along these edges e were not cap(e) or 0, these edges would belong to Vs!) 

Hence, f is a maximum flow, by Corollary 12.1.8. □ 

Max-Flow Min-Cut 
Sufficiency (⇐) Suppose that there does not exist an f-augmenting path in 
network N. 
Consider the collection of all quasi-paths in network N that begin with source s,  
and have the following property: each forward arc on the quasi-path has positive 
slack, and each backward arc on the quasi-path has positive flow.  
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Max-Flow Min-Cut 
Theorem 12.2.4 [Max-Flow Min-Cut] For a given network, the value of a 
maximum flow is equal to the capacity of a minimum cut. 

Proof: The s-t cut 〈Vs,Vt〉 that we just constructed in the proof of Theorem 12.2.3 
(direction ⇐) has capacity equal to the maximum flow. □ 

The outline of an algorithm  
for maximizing the flow in 
a network emerges from 
Proposition 12.2.1 and 
Theorem 12.2.3. 
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Finding an f-Augmenting Path 

The idea is to grow a tree of quasi-paths, each starting at source s. 

If the flow on each arc of these quasi-paths can be increased or decreased, 
according to whether that arc is forward or backward, then an f-augmenting 
path is obtained as soon as the sink t is labelled. 

The discussion of f-augmenting paths culminating in the flow-augmenting 
Proposition 12.2.1 provides the basis of a vertex-labeling strategy due to Ford 
and Fulkerson that finds an f-augmenting path, when one exists. 

Their labelling scheme is essentially basic tree-growing. 
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Finding an f-Augmenting Path 

A frontier arc is an arc e directed from a labeled endpoint v to an unlabeled 
endpoint w. 

For constructing an f-augmenting path, the frontier path e is allowed to be 
backward (directed from vertex w to vertex v), and it can be added to the tree as 
long as it has slack Δe > 0. 
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Terminology: At any stage during tree-growing for constructing an f-augmenting 
path, let e be a frontier arc of tree T, with endpoints v and w. 
The arc e is said to be usable if, for the current flow f, either 

 e is directed from vertex v to vertex w and f(e) < cap(e), or 
 e is directed from vertex w to vertex v and f(e) > 0. 

    Frontier arcs e1 and e2 are usable if 

    f(e1) < cap(e1) and f(e2) > 0 

Finding an f-Augmenting Path 

Remark From this vertex-labeling scheme, any of the existing f-augmenting paths 
could result. But the efficiency of Algorithm 12.2.1 is based on being able to find 
„good“ augmenting paths.  
If the arc capacities are irrational numbers, then an algorithm using the 
Ford&Fulkerson labeling scheme might not terminate (strictly speaking, it would 
not be an algorithm).  
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Finding an f-Augmenting Path 
Even when flows and capacities are restricted to be integers,  
problems concerning efficiency still exist. 

E.g., if each flow augmentation were to increase the flow by only one unit,  
then the number of augmentations required for maximization would equal  
the capacity of a minimum cut. 

Such an algorithm would depend on the size of the arc capacities  
instead of on the size of the network. 
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Finding an f-Augmenting Path 
Example: For the network shown below, the arc from vertex v to vertex w has 
flow capacity 1, while the other arcs have capacity M, which could be made 
arbitrarily large. 

If the choice of the augmenting flow path at each iteration were to alternate 
between the directed path 〈 s,v,w,t 〉 and the quasi path 〈 s,w,v,t 〉, then the flow 
would increase by only one unit at each iteration. 

Thus, it could take as many as 2M iterations to obtain the maximum flow. 
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Finding an f-Augmenting Path 
Edmonds and Karp avoid these 
problems with this algorithm. 

It uses breadth-first search 
to find an f-augmenting path 
with the smallest number  
of arcs. 
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FFEK algorithm: Ford, Fulkerson, Edmonds, and Karp 
Algorithm 12.2.3 combines Algorithms 12.2.1 and 12.2.2 
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Example: the figures illustrate algorithm 12.2.3. 

<{s, x, y, z, v}, {w, a, b, c, t}>  is the s-t cut with capacity equal to the current flow, 
establishing optimality. 

FFEK algorithm: Ford, Fulkerson, Edmonds, and Karp 
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FFEK algorithm: Ford, Fulkerson, Edmonds, and Karp 
At the end of the final iteration, the two arcs from source s to vertex w and the arc 
directed from vertex v to sink t form the minimum cut 〈 {s,x,y,z,v }, {w,a,b,c,t} 〉. 
Neither of them is usable, i.e. the flow(e) = cap(e). 

This illustrates the s-t cut that was constructed in the proof of theorem 12.2.3. 
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