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V14 Graph connectivity – Metabolic networks 
In the first half of this lecture section, we use the theory of network flows to give 
constructive proofs of Menger‘s theorem. 
 
These proofs lead directly to algorithms for determining the edge-connectivity 
and vertex-connectivity of a graph. 
 
The strategy to prove Menger‘s theorems is based on properties of certain 
networks whose arcs all have unit capacity. 
 
These 0-1 networks are constructed from the original graph.  
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Determining the connectivity of a graph 
Lemma 12.3.1. Let N be an s-t network such that  
 outdegree(s) > indegree(s), 
 indegree(t) > outdegree (t), and 
 outdegree(v) = indegree(v) for all other vertices v. 
Then, there exists a directed s-t path in network N. 

Proof. Let W be a longest directed trail (trail = walk without repeated edges; path = trail 
without repeated vertices) in network N that starts at source s, and let z be its terminal 
vertex. 
If vertex z were not the sink t, then there would be an arc not in trail W that is directed from 
z (since indegree(z) = outdegree(z) ). 
But this would contradict the maximality of trail W. 
Thus, W is a directed trail from source s to sink t. 
If W has a repeated vertex, then a part of W determines a directed cycle, which can be 
deleted from W to obtain a shorter directed s-t trail. 
This deletion step can be repeated until no repeated vertices remain, at which point, the 
resulting directed trail is an s-t path. □ 
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Determining the connectivity of a graph 
Proposition 12.3.2. Let N be an s-t network such that  
 outdegree(s) – indegree(s) = m = indegree(t) – outdegree (t), 
and  outdegree(v) = indegree(v) for all vertices v  s,t. 
Then, there exist m disjoint directed s-t path in network N. 

Proof. If m = 1, then there exists an open eulerian directed trail T from  
source s to sink t by Theorem 6.1.3. 
 
Review: An eulerian trail in a graph is a trail that visits every edge of that graph exactly once. 
 
Theorem 6.1.3. A connected digraph D has an open eulerian trail from vertex x to vertex y if and only if 
indegree(x) + 1 = outdegree(x), indegree(y) = outdegree(y) + 1, and all vertices except x and y have equal 
indegree and outdegree. 
Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph 
have an even degree. 
 
Theorem 1.5.2. Every open x-y walk W is either an x-y path or can be reduced to an x-y path. 
 

Therefore, trail T is either an s-t directed path or can be reduced to an s-t path. 
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Determining the connectivity of a graph 
By way of induction, assume that the assertion is true for m = k, for some k  1, 
and consider a network N for which the condition holds for m = k +1. 
There does exist at least one directed s-t path P by Lemma 12.3.1. 
 
If the arcs of path P are deleted from network N, then the resulting network N - P 
satisfies the condition of the proposition for m = k. 
 
By the induction hypothesis, there exist k arc-disjoint directed s-t paths in network  
N - P. These k paths together with path P form a collection of k + 1 arc-disjoint 
directed s-t paths in network N. □ 
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Basic properties of 0-1 networks 
Definition A 0-1 network is a capacitated network whose arc capacities  
are either 0 or 1. 
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Proposition 12.3.3. Let N be an s-t network such that cap(e) = 1 for every arc e. 
Then the value of a maximum flow in network N equals the maximum number of 
arc-disjoint directed s-t paths in N. 

Proof: Let f* be a maximum flow in network N, and let r be the maximum number of 
arc-disjoint directed s-t paths in N. 
Consider the network N* obtained by deleting from N all arcs e for which f*(e) = 0. 
Then f*(e) = 1 for all arcs e in network N*. 
It follows from the definition that for every vertex v in network N*, 
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Basic properties of 0-1 networks 
Thus by the definition of val(f*) and by the conservation-of-flow property, 
 
 outdegree(s) – indegree (s) = val(f*) = indegree(t) – outdegree(t) 
and outdegree(v) = indegree(v), for all vertices v  s,t. 
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Then f is a feasible flow in network N, with val(f) = r. 
It follows that val(f*)  r. □ 

By Proposition 12.3.2., there are val(f*) arc-disjoint s-t paths in network N*, and 
hence, also in N, which implies that val(f*)  r. 

To obtain the reverse inequality, let {P1,P2, ..., Pr} be the largest collection of arc-
disjoint directed s-t paths in N, and consider the function f: EN  R+ defined by  
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Separating Sets and Cuts 
Review from §5.3 
Let s and t be distinct vertices in a graph G. An s-t separating edge set in G is a 
set of edges whose removal destroys all s-t paths in G. 
 
Thus, an s-t separating edge set in G is an edge subset of EG that contains at least 
one edge of every s-t path in G. 

Definition: Let s and t be distinct vertices in a digraph D. 
An s-t separating arc set in D is a set of arcs whose removal destroys all directed 
s-t paths in D. 
 
Thus, an s-t separating arc set in D is an arc subset of ED that contains at least one 
arc of every directed s-t path in digraph D. 

Remark: For the degenerate case in which the original graph or digraph has no  
s-t paths, the empty set is regarded as an s-t separating set. 
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Separating Sets and Cuts 
Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e. 
Then the capacity of a minimum s-t cut in network N equals the minimum number of 
arcs in an s-t separating arc set in N. 

Proof: Let K* = Vs ,Vt  be a minimum s-t cut in network N, and let q be the 
minimum number of arcs in an s-t separating arc set in N. 
Since K* is an s-t cut, it is also an s-t separating arc set. Thus cap(K*)  q. 

To obtain the reverse inequality, let S be an s-t separating arc set in network N 
containing q arcs, and let R be the set of all vertices in N that are reachable from 
source s by a directed path that contains no arc from set S. 

Then, by the definitions of arc set S and vertex set R, t  R, which means that 
 R, VN - R  is an s-t cut.  
 
Moreover,  R, VN - R   S. Therefore 
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Separating Sets and Cuts 

which completes the proof. □ 
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Proof: Let N be the s-t network obtained by assigning a unit capacity to each arc of 
digraph D. Then the result follows from Propositions 12.3.3. and 12.3.4., together 
with the max-flow min-cut theorem. □ 

Arc and Edge Versions of Menger’s Theorem Revisited 
Theorem 12.3.5 [Arc form of Menger‘s theorem] 
Let s and t be distinct vertices in a digraph D. Then the maximum number of arc-
disjoint directed s-t paths in D is equal to the minimum number of arcs in an s-t 
separating set of D. 

Theorem 12.2.4 [Max-Flow Min-Cut] For a given network, the value of a maximum flow is equal to the 
capacity of a minimum cut. 

Proposition 12.3.3. Let N be an s-t network such that cap(e) = 1 for every arc e. Then the value of a 
maximum flow in network N equals the maximum number of arc-disjoint directed s-t paths in N. 

Proposition 12.3.4 Let N be an s-t network such that cap(e) = 1 for every arc e. Then the capacity of a 
minimum s-t cut in network N equals the minimum number of arcs in an s-t separating arc set in N. 

14. Lecture WS 2013/14 



 
Bioinformatics III 

 
11 

Metabolic Networks - Introduction 
There exist different levels of computational methods for  
describing metabolic networks: 
 
- stoichiometry/kinetics of classical biochemical pathways (glycolysis, TCA cycle, ... 
 
- stoichiometric modelling (flux balance analysis): theoretical capabilities of an  
integrated cellular process, feasible metabolic flux distributions 
 
- automatic decomposition of metabolic networks  
(elementary nodes, extreme pathways ...) 
 
- kinetic modelling of coupled cellular pathways (E-Cell ...)  
General problem: lack of kinetic information  
on the dynamics and regulation of cellular metabolism 
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KEGG database 

The KEGG PATHWAY 
database (http://www.genome. 

jp/kegg/pathway.html) is a collection 
of graphical diagrams (KEGG 
pathway maps) representing 
molecular interaction networks 
in various cellular processes.  
Each reference pathway is 
manually drawn and updated 
with the notation shown left.  
 
Organism-specific pathways 
(green-colored pathways) are 
computationally generated 
based on the KO assignment 
in individual genomes.  
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Citrate Cycle (TCA cycle) in E.coli 
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Citrate Cycle (TCA cycle) in different organisms 

  Citrate cycle (TCA cycle) - Escherichia coli K-12 MG1655 Citrate cycle (TCA cycle) - Helicobacter pylori 26695   
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EcoCyc Database 
E.coli genome contains 4.7 million DNA bases. 
How can we characterize the functional complement of E.coli and according to 
what criteria can we compare the biochemical networks of two organisms? 
 
EcoCyc contains the metabolic map of E.coli defined as the set of all known  
pathways, reactions and enzymes of E.coli small-molecule metabolism. 
 
Analyze  
- the connectivity relationships of the metabolic network 
- its partitioning into pathways 
- enzyme activation and inhibition 
- repetition and multiplicity of elements such as enzymes, reactions, and substrates. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Glycolysis in E.coli 
Blue arrows: biochemical reactions 
clicking on arrow shows responsible enzyme 
 
+ and - : activation and inhibition of enzymes 
 
 

www.ecocyc.org 
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Regulation of Glycolysis in E.coli 
Boxed genes on the left are enzymes of glycolysis 
pathway 
 
pgi: phosphoglucose isomerase 
pgk: phosphoglycerate kinase 
pfk: 6-phosphofructo kinase ... 
 
Circled FruR, CRP etc. on the right : transcription 
factors 
 
Green pointed arrows: activation of transcription;  
 
Violet blunt arrow : repression;  
 
Brown circle-ended arrow indicates that the factor 
can activate or repress, depending on circumstances. 
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Pentose Phosphate pathway 
Blue arrows: biochemical reactions 
clicking on arrow shows responsible enzyme 
 
+ and - : activation and inhibition of enzymes 
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Regulation of Pentose Phosphate Pathway 
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TCA cycle 
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Regulation of TCA cycle 
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EcoCyc Analysis of E.coli Metabolism 
In 2000, E.coli genome contained 4391 predicted genes, of which 4288 coded for 
proteins (4503 genes in Dec. 2011, 209 RNAs). 
 
676 of these genes form 607 enzymes of the E.coli small-molecule metabolism. 
 
Of those enzymes, 311 are protein complexes, 296 are monomers. 

Organization of protein complexes.  
Distribution of subunit counts for all 
EcoCyc protein complexes.  
The predominance of monomers, 
dimers, and tetramers is obvious  

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Reactions 
EcoCyc describes 905 metabolic reactions that are catalyzed by E. coli.  
(1991 in Dec. 2011) 
 
Of these reactions, 161 are not involved in small-molecule metabolism, 
e.g. they participate in macromolecule metabolism such as DNA replication and 
tRNA charging. 
 
Of the remaining 744 reactions, 569 have been assigned to at least one pathway. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Reactions 
The number of reactions (744) and the number of enzymes (607) differ ... 
WHY?? 

(1) there is no one-to-one mapping between enzymes and reactions – 
some enzymes catalyze multiple reactions, and some reactions are catalyzed 
by multiple enzymes. 

(2) for some reactions known to be catalyzed by E.coli, the enzyme has not yet 
been identified. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Compounds 
The 744 reactions of E.coli  small-molecule metabolism involve a total of 791 
different substrates.  
 
On average, each reaction contains 4.0 substrates, (think of A + B <-> C + D) 

Number of reactions 
containing varying 
numbers of substrates 
(reactants plus 
products).  

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Ouzonis, Karp, Genome Res. 10, 568 (2000) 

Each distinct substrate occurs in an average of 2.1 reactions. 

Compounds 
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Pathways 
EcoCyc describes 131 pathways (347 in Dec. 2011): 
 energy metabolism 
 nucleotide and amino acid biosynthesis 
 secondary metabolism 
 
Pathways vary in length from a  
single reaction step to 16 steps  
with an average of 5.4 steps. 

Length distribution of 
EcoCyc pathways  

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Pathways 
However, there is no precise 
biological definition of a pathway. 
 
The partitioning of the metabolic 
network into pathways (including 
the well-known examples of 
biochemical pathways) is 
somehow arbitrary. 
 
These decisions of course also 
affect the distribution of pathway 
lengths. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Enzyme Modulation 
An enzymatic reaction is a type of EcoCyc object that represents the pairing 
of an enzyme with a reaction catalyzed by that enzyme. 
 
EcoCyc contains extensive information on the modulation of E.coli enzymes with 
respect to particular reactions:  
- activators and inhibitors of the enzyme,  
- cofactors required by the enzyme 
- alternative substrates that the enzyme will accept. 
 
Of the 805 enzymatic-reaction objects within EcoCyc, physiologically relevant 
activators are known for 22, physiologically relevant inhibitors are known for 80. 
 
327 (almost half) require a cofactor or prosthetic group. 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Enzyme Modulation 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Reactions catalyzed by more than one enzyme 
Diagram showing the number of reactions  
that are catalyzed by one or more enzymes.  
Most reactions are catalyzed by one enzyme,  
some by two, and very few by more than two  
enzymes.  
 
 
For 84 reactions, the corresponding enzyme is not yet encoded in EcoCyc. 
 
What may be the reasons for isozyme redundancy? 

(2) the reaction is easily „invented“; therefore, there is more than one protein family 
that is independently able to perform the catalysis (convergence). 

(1) the enzymes that catalyze the same reaction are paralogs (homologs) and 
have duplicated (or were obtained by horizontal gene transfer), 
acquiring some specificity but retaining the same mechanism (divergence) 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Enzymes that catalyze more than one reaction 
Genome predictions usually assign a single enzymatic function. 
However, E.coli is known to contain many multifunctional enzymes. 
Of the 607 E.coli enzymes, 100 are multifunctional, either having the same active 
site and different substrate specificities or different active sites. 
 
Number of enzymes that catalyze one or  
more reactions. Most enzymes catalyze  
one reaction; some are multifunctional. 
 
 
 
The enzymes that catalyze 7 and 9 reactions are purine nucleoside phosphorylase 
and nucleoside diphosphate kinase. 
 
The high proportion of multifunctional enzymes implies that the genome projects 
may significantly underpredict multifunctional enzymes! 

Ouzonis, Karp, Genome Res. 10, 568 (2000) 
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Reactions participating in more than one pathway 
     
 
 
 
 
 
 
 
 
 
The 99 reactions belonging to multiple  
pathways appear to be the intersection 
points in the complex network of chemical 
processes in the cell. 
 
E.g. the reaction present in 6 pathways corresponds to the reaction catalyzed by 
malate dehydrogenase, a central enzyme in cellular metabolism. 

Ouzonis, Karp,  
Genome Res. 10, 568 (2000) 
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Large-scale structure: Metabolic networks are scale-free  
Attributes of generic network structures. 
a, Representative structure of the 
network generated by the Erdös–Rényi 
network model. b, The network 
connectivity can be characterized by the 
probability, P(k), that a node has k links. 
For a random network P(k) peaks 
strongly at k =  <k>  and decays 
exponentially for large k (i.e., P(k)   e-k 
for k  >>  <k>  and k <<   <k> ).  
c, In the scale-free network most nodes 
have only a few links, but a few nodes, 
called hubs (dark), have a very large 
number of links.  
d, P(k) for a scale-free network has no 
well-defined peak, and for large k it 
decays as a power-law, P(k)  k-, 
appearing as a straight line with slope -  
on a log–log plot.  Jeong et al. Nature 407, 651 (2000) 
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Connectivity distributions P(k) for substrates 
a, Archaeoglobus fulgidus (archae);  
b, E. coli (bacterium);  
c, Caenorhabditis elegans (eukaryote) 
d, The connectivity distribution 
averaged over 43 organisms.  
 
x-axis: metabolites participating in k 
reactions 
y-axis (P(k)): number/frequency of 
such metabolites 
 
log–log plot, counts separately the 
incoming (In) and outgoing links (Out) 
for each substrate. kin (kout) 
corresponds to the number of 
reactions in which a substrate 
participates as a product (educt).  Jeong et al. Nature 407, 651 (2000) 
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Properties of metabolic networks 
a, The histogram of the biochemical pathway 
lengths, l, in E. coli.  
b, The average path length (diameter) for each 
of the 43 organisms.  
N : number of metabolites in each organism 
 
c, d, Average number of incoming links (c) or 
outgoing links (d) per node for each organism.  
 
e, The effect of substrate removal on the 
metabolic network diameter of E. coli.  
 
In the top curve (red) the most connected 
substrates are removed first. In the bottom 
curve (green) nodes are removed randomly. 
M  = 60 corresponds to  8% of the total number 
of substrates in found in E. coli.  

Jeong et al. Nature 407, 651 (2000) 
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Interpretation of metabolic network connectivity 
Despite significant variations in their individual constituents and pathways,  
 
the metabolic networks of 43 organisms representing all 3 domains of life  
 
have the same topological scaling properties and show striking similarities  
 
to the inherent organization of complex non-biological systems.  

Jeong et al. Nature 407, 651 (2000) 
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Development of the network-based pathway paradigm 

Papin et al. TIBS 28, 250 (2003)  

(a) With advanced biochemical tech-
niques, years of research have led to the 
precise characterization of individual 
reactions. As a result, the complete 
stoichiometries of many metabolic 
reactions have been characterized.  
(b) Most of these reactions have been 
grouped into `traditional pathways' (e.g. 
glycolysis) that do not account for 
cofactors and byproducts in a way that 
lends itself to a mathematical description. 
However, with sequenced and annotated 
genomes, models can be made that 
account for many metabolic reactions in 
an organism.  

(c) Subsequently, network-based, 
mathematically defined pathways 
can be analyzed that account for a 
complete network (black and gray 
arrows correspond to active and 
inactive reactions).  
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Stoichiometric matrix 
Stoichiometric matrix:  
A matrix with reaction stochio-
metries as columns and 
metabolite participations as 
rows.  
The stochiometric matrix is an 
important part of the in silico 
model.  
With the matrix, the methods of 
extreme pathway and 
elementary mode analyses can 
be used to generate a unique 
set of pathways P1, P2, and P3 
(see future lecture). 

Papin et al. TIBS 28, 250 (2003)  
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