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V15 Flux Balance Analysis – Extreme Pathways 
Stoichiometric matrix S:  
m × n matrix with stochiometries of 
the n reactions as columns and 
participations of m metabolites as 
rows.  

The stochiometric matrix is an 
important part of the in silico model. 

15. Lecture WS 2013/14 

Papin et al. TIBS 28, 250 (2003)  

With the matrix, the methods of 
extreme pathway and elementary 
mode analyses can be used to 
generate a unique set of pathways 
P1, P2, and P3 that allow to 
express all steady-state fluxes as 
linear combinations of P1 – P3. 



Bioinformatics III 
2 

Flux balancing 
Any chemical reaction requires mass conservation. 
Therefore one may analyze metabolic systems  
by requiring mass conservation.  
Only required: knowledge about stoichiometry of metabolic pathways. 

For each metabolite Xi : 

dXi /dt =    Vsynthesized    – Vused  

 + Vtransported_in – Vtransported_out 

15. Lecture WS 2013/14 
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Flux balancing 
Under steady-state conditions, the mass balance constraints in a metabolic 
network can be represented mathematically by the matrix equation: 

S · v = 0 

where the matrix S is the stoichiometric matrix and the vector v represents all 
fluxes in the metabolic network, including the internal fluxes, transport fluxes and 
the growth flux. 

15. Lecture WS 2013/14 
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Flux balance analysis 
Since the number of metabolites is generally smaller than the number of reactions 
(m < n) the flux-balance equation is typically underdetermined.  

Therefore there are generally multiple feasible  
flux distributions that satisfy the mass balance constraints. 
The set of solutions are confined to the nullspace of matrix S. 

S          .    v   =   0 

15. Lecture WS 2013/14 
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Null space: space of feasible solutions 

15. Lecture WS 2013/14 
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Feasible solution set for a metabolic reaction network 

The steady-state operation of the 
metabolic network is restricted to the 
region within a pointed cone, defined 
as the feasible set.  

The feasible set contains all flux vectors 
that satisfy the physicochemical 
constrains.  

Thus, the feasible set defines the 
capabilities of the metabolic network.  
All feasible metabolic flux distributions 
lie within the feasible set. 

Edwards & Palsson PNAS 97, 5528 (2000)  
15. Lecture WS 2013/14 
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True biological flux 
To find the „true“ biological flux in cells (→ e.g. Heinzle, UdS) one needs additional 
(experimental) information, 
or one may impose constraints 

on the magnitude of each individual metabolic flux. 

The intersection of the nullspace and the region  
defined by those linear inequalities defines a  
region in flux space = the feasible set of fluxes. 

In the limiting case, where all constraints 
on the metabolic network are known, such 

as the enzyme kinetics and gene 
regulation, the feasible set may be reduced 
to a single point. This single point must lie 

within the feasible set.  
15. Lecture WS 2013/14 
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E.coli in silico 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

Best studied cellular system: E. coli. 

In 2000, Edwards & Palsson constructed an in silico representation of  
E.coli metabolism.  

There were 2 good reasons for this: 

(1)  genome of E.coli MG1655 was already completely sequenced, 

(2)  Because of long history of E.coli research, biochemical literature, genomic 
information, metabolic databases EcoCyc, KEGG contained biochemical or 
genetic evidence for every metabolic reaction included in the in silico 
representation. In most cases, there existed both. 

15. Lecture WS 2013/14 
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Edwards & Palsson  

PNAS 97, 5528 (2000)  

Genes included in in silico model of E.coli 

15. Lecture WS 2013/14 
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E.coli in silico – Flux balance analysis 

Edwards & Palsson, PNAS 97, 5528 (2000)  

Define  αi = 0 for irreversible internal fluxes,  
 αi = -∞ for reversible internal fluxes (use biochemical literature) 

Transport fluxes for PO4
2-, NH3, CO2, SO4

2-, K+, Na+ were unrestrained. 

For other metabolites                          except for those that are able to leave the 
metabolic network (i.e. acetate, ethanol, lactate, succinate, formate, pyruvate etc.) 

When written in this way, the flux balance analysis (FBA) method finds the 
solution that maximizes the sum of all fluxes = gives maximal biomass. 

Find particular metabolic flux distribution in feasible set by linear programming. 
LP finds a solution that minimizes a particular metabolic objective –Z  
(subject to the imposed constraints) where e.g. 

15. Lecture WS 2013/14 
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E.coli in silico 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

Examine changes in the metabolic capabilities caused by hypothetical gene 
deletions. 

To simulate a gene deletion, the flux through the corresponding enzymatic 
reaction was restricted to zero. 

Compare optimal value of mutant (Zmutant) to the „wild-type“ objective Z  

to determine the systemic effect of the gene deletion. 

15. Lecture WS 2013/14 
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Rerouting of metabolic fluxes 
(Black) Flux distribution for the wild-type. 

(Red) zwf- mutant. Biomass yield is 99% of 
wild-type result.  

(Blue) zwf- pnt- mutant. Biomass yield is 
92% of wildtype result.  

Note how E.coli in silico circumvents 
removal of one critical reaction (red arrow) 
by increasing the flux through the 
alternative G6P → P6P reaction. 

Edwards & Palsson PNAS 97, 5528 (2000)  
15. Lecture WS 2013/14 
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Gene deletions in central intermediary metabolism 

The results were generated in a simulated aerobic environment with glucose as the carbon 
source. The transport fluxes were constrained as follows:  glucose = 10 mmol/g-dry weight 
(DW) per h;  oxygen = 15 mmol/g-DW per h.  

The maximal yields were calculated by using FBA with the objective of maximizing growth.  

Yellow bars: gene deletions that reduced the maximal biomass yield of Zmutant to less than 
95% of the in silico wild type Zwt.  

Edwards & Palsson PNAS 97, 5528 (2000)  

Maximal biomass yields 
on glucose for all 
possible single gene 
deletions in the central 
metabolic pathways 
(gycolysis, pentose 
phosphate pathway 
(PPP), TCA, respiration).  

15. Lecture WS 2013/14 
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Interpretation of gene deletion results 
The essential gene products were involved in the 3-carbon stage of glycolysis,  
3 reactions of the TCA cycle, and several points within the pentose phosphate 
pathway (PPP). 

The remainder of the central metabolic genes could be removed while E.coli in 
silico maintained the potential to support cellular growth. 

This suggests that a large number of the central metabolic genes can be removed 
without eliminating the capability of the metabolic network to support growth under 
the conditions considered. 

Edwards & Palsson PNAS 97, 5528 (2000)  
15. Lecture WS 2013/14 
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E.coli in silico – validation 

Edwards & Palsson  

PNAS 97, 5528 (2000)  

+ and – means growth or no growth. 
± means that suppressor mutations have 
been observed that allow the mutant 
strain to grow. 

4 virtual growth media: 
glc: glucose,  gl: glycerol, succ: 
succinate, ac: acetate. 

In 68 of 79 cases, the prediction was 
consistent with exp. predictions. 

Red and yellow circles: predicted 
mutants that eliminate or reduce growth. 

15. Lecture WS 2013/14 



Bioinformatics III 
16 

Summary - FBA 
FBA analysis constructs the optimal network utilization simply using the 
stoichiometry of metabolic reactions and capacity constraints. 

Edwards & Palsson PNAS 97, 5528 (2000)  

For E.coli the in silico results are mostly consistent with experimental data. 

FBA shows that the E.coli metabolic network contains relatively few critical gene 
products in central metabolism. 
However, the ability to adjust to different environments (growth conditions) may be 
diminished by gene deletions. 

FBA identifies „the best“ the cell can do, not how the cell actually behaves under a 
given set of conditions. Here, survival was equated with growth. 

FBA does not directly consider regulation or regulatory constraints on the 
metabolic network. This can be treated separately (see future lecture). 

15. Lecture WS 2013/14 
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Idea – extreme pathways 

A torch is directed at an open door 
and shines into a dark room ... 

What area is lighted ? 

Instead of marking all lighted points 
individually,  
it would be sufficient to characterize 
the „extreme rays“ that go through the 
corners of the door. 

The lighted area is the area between 
the extreme rays = linear 
combinations of the extreme rays. 

15. Lecture WS 2013/14 
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 Extreme Pathways 
introduced into metabolic analysis by the lab of Bernard Palsson  
(Dept. of Bioengineering, UC San Diego). The publications of this lab  

are available at http://gcrg.ucsd.edu/publications/index.html 

The extreme pathway 
technique is based 
on the stoichiometric 
matrix representation 
of metabolic networks. 

All external fluxes are 
defined as pointing outwards. 

Schilling, Letscher, Palsson, 
J. theor. Biol. 203, 229 (2000) 

15. Lecture WS 2013/14 
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Idea – extreme pathways 

Edwards & Palsson PNAS 97, 5528 (2000)  

Either S . x ≥ 0  
(S acts as rotation matrix) 

Shaded area: 
x ≥ 0 

Shaded area: 
x1 ≥ 0 ∧ x2 ≥ 0  

S 

Shaded area: 
r1 ≥ 0 ∧ r2 ≥ 0  

Duality of two matrices 
S and R. 

or find optimal vectors  
 change coordinate system 
from x1, x2 to r1, r2.  

15. Lecture WS 2013/14 
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Extreme Pathways – algorithm - setup 

The algorithm to determine the set of extreme pathways for a reaction network 
follows the pinciples of algorithms for finding the extremal rays/ generating 
vectors of convex polyhedral cones. 

Combine n × n identity matrix (I) with the transpose of the stoichiometric 
matrix ST. I serves for bookkeeping. 

Schilling, Letscher, Palsson, 
J. theor. Biol. 203, 229 (2000) 

S 

I ST 

15. Lecture WS 2013/14 



Bioinformatics III 
21 

separate internal and external fluxes 
Examine constraints on each of the exchange fluxes as given by 
 αj ≤ bj ≤ βj 

If the exchange flux is constrained to be positive → do nothing. 
If the exchange flux is constrained to be negative → multiply the 
corresponding row of the initial matrix by -1. 
If the exchange flux is unconstrained → move the entire row to a temporary 
matrix T(E). This completes the first tableau T(0).  

T(0) and T(E) for the example reaction system are shown on the previous slide. 

Each element of these matrices will be designated Tij. 

Starting with i = 1 and T(0) = T(i-1) the next tableau is generated in the following 
way: 

Schilling, Letscher, Palsson, 
J. theor. Biol. 203, 229 (2000) 

15. Lecture WS 2013/14 
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idea of algorithm 
(1) Identify all metabolites that do not have an unconstrained exchange flux 
associated with them.  
The total number of such metabolites is denoted by µ. 
The example system contains only one such metabolite, namely C (µ = 1). 

Schilling, Letscher, Palsson,  
J. theor. Biol. 203, 229 (2000) 

What is the main idea? 
- We want to find balanced extreme pathways  
that don‘t change the concentrations of  
metabolites when flux flows through 
(input fluxes are channelled to products not to 
accumulation of intermediates). 
- The stochiometrix matrix describes the coupling of each reaction to the 
concentration of metabolites X. 
- Now we need to balance combinations of reactions that leave concentrations 
unchanged. Pathways applied to metabolites should not change their 
concentrations → the matrix entries 
need to be brought to 0. 

15. Lecture WS 2013/14 
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keep pathways that do not change  
concentrations of internal metabolites 

(2) Begin forming the new matrix T(i) by copying 
all rows from T(i – 1) which already contain a zero in   
the column of ST that corresponds to the first  
metabolite identified in step 1, denoted by index C. 
(Here 3rd column of ST.) 

Schilling, Letscher, Palsson, J. theor. Biol. 203, 229 (2000) 

1 -1 1 0 0 0 

1 0 -1 1 0 0 

1 0 1 -1 0 0 

1 0 0 -1 1 0 

1 0 0 1 -1 0 

1   0 0 -1 0 1 

1 -1 1 0 0 0 

T(0) = 

T(1) = 

+ 

A     B   C     D    E 

15. Lecture WS 2013/14 
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balance combinations of other pathways 
(3) Of the remaining rows in  T(i-1) add together 
all possible combinations of rows which contain 
values of the opposite sign in column C, such that 
the addition produces a zero in this column. 

Schilling, et al. 
JTB 203, 229 

1 -1 1 0 0 0 

1 0 -1 1 0 0 

1 0 1 -1 0 0 

1 0 0 -1 1 0 

1 0 0 1 -1 0 

1 0 0 -1 0 1 

T(0) = 

T(1) = 

1 0 0 0 0 0 -1 1 0 0 0 

0 1 1 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 -1 0 1 0 

0 1 0 0 0 1 0 -1 0 0 1 

0 0 1 0 1 0 0 1 0 -1 0 

0 0 0 1 1 0 0 0 0 0 0 

0 0 0 0 1 1 0 0 0 -1 1 

    1       2        3      4       5       6       7        8       9      10     11 15. Lecture WS 2013/14 



Bioinformatics III 
25 

remove “non-orthogonal” pathways 

(4) For all rows added to T(i) in steps 2 and 3 check that no row exists that is a 
non-negative combination of any other rows in T(i) . 

One method for this works as follows: 
let A(i) = set of column indices j for which the elements of row i = 0. 

For the example above   Then check to determine if there exists 
A(1) = {2,3,4,5,6,9,10,11}   another row (h) for which A(i) is a  
A(2) = {1,4,5,6,7,8,9,10,11}  subset of A(h). 
A(3) = {1,3,5,6,7,9,11} 
A(4) = {1,3,4,5,7,9,10}  If A(i) ⊆ A(h), i ≠ h 
A(5) = {1,2,4,6,7,9,11}  where 
A(6) = {1,2,3,6,7,8,9,10,11}  A(i) = { j : Ti,j = 0, 1 ≤ j ≤ (n+m) } 
A(7) = {1,2,3,4,7,8,9}  then row i must be eliminated from T(i) 

Schilling et al. 
JTB 203, 229 

15. Lecture WS 2013/14 
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repeat steps for all internal metabolites 

(5) With the formation of T(i) complete steps 2 – 4 for all of the metabolites that do 
not have an unconstrained exchange flux operating on the metabolite, 
incrementing i by one up to µ. The final tableau will be T(µ). 

Note that the number of rows in T(µ) will be equal to k, the number of extreme 
pathways. 

Schilling et al. 
JTB 203, 229 

15. Lecture WS 2013/14 
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balance external fluxes 

(6) Next we append T(E) to the bottom of T(µ). (In the example here µ = 1.) 
This results in the following tableau: 

Schilling et al. 
JTB 203, 229 

T(1/E) = 

1 -1 1 0 0 0 

1 1 0 0 0 0 0 

1 1 0 -1 0 1 0 

1 1 0 -1 0 1 0 

1 1 0 1 0 -1 0 

1 1 0 0 0 0 0 

1 1 0 0 0 -1 1 

1 -1 0 0 0 0 

1 0 -1 0 0 0 

1 0 0 0 -1 0 

1 0 0 0 0 -1 

15. Lecture WS 2013/14 
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balance external fluxes 

(7) Starting in the n+1 column (or the first non-zero column on the right side),  
if Ti,(n+1) ≠ 0 then add the corresponding non-zero row from T(E) to row i so as to 
produce 0 in the n+1-th column. 
This is done by simply multiplying the corresponding row in T(E) by Ti,(n+1) and 
adding this row to row i . 

Repeat this procedure for each of the rows in the upper portion of the tableau so 
as to create zeros in the entire upper portion of the (n+1) column. 

When finished, remove the row in T(E) corresponding to the exchange flux for the 
metabolite just balanced. 

Schilling et al. 
JTB 203, 229 

15. Lecture WS 2013/14 
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balance external fluxes 

(8) Follow the same procedure as in step (7) for each of the columns on the right 
side of the tableau containing non-zero entries.  

(In our example we need to perform step (7) for every column except the middle 
column of the right side which correponds to metabolite C.) 

The final tableau T(final) will contain the transpose of the matrix P containing the 
extreme pathways in place of the original identity matrix. 

Schilling et al. 
JTB 203, 229 

15. Lecture WS 2013/14 
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pathway matrix 

 T(final) = 

 PT = 

Schilling et al. 
JTB 203, 229 

1 -1 1 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 1 -1 1 0 0 0 0 0 0 

1 1 -1 1 0 0 0 0 0 0 

1 1 1 -1 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 1 -1 1 0 0 0 0 0 0 

1 0 0 0 0 0 -1 1 0 0 

0 1 1 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 -1 1 0 

0 1 0 0 0 1 0 -1 0 1 

0 0 1 0 1 0 0 1 -1 0 

0 0 0 1 1 0 0 0 0 0 

0 0 0 0 1 1 0 0 -1 1 

v1    v2   v3   v4    v5   v6    b1   b2    b3   b4 

p1     
p7    
p3   
p2    
p4    
p6     
p5 

15. Lecture WS 2013/14 
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Extreme Pathways for model system 

  

  

Schilling et al. 
JTB 203, 229 

1 0 0 0 0 0 -1 1 0 0 

0 1 1 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 -1 1 0 

0 1 0 0 0 1 0 -1 0 1 

0 0 1 0 1 0 0 1 -1 0 

0 0 0 1 1 0 0 0 0 0 

0 0 0 0 1 1 0 0 -1 1 

v1    v2   v3   v4    v5   v6    b1   b2    b3   b4 

p1     
p7    
p3   
p2    
p4    
p6     
p5 

2 pathways p6 and p7  are not shown in the bottom fig.  
because all exchange fluxes with the exterior are 0. 
Such pathways have no net overall effect on the  
functional capabilities of the network. 
They belong to the cycling of reactions v4/v5 and v2/v3. 

15. Lecture WS 2013/14 
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How reactions appear in pathway matrix 

In the matrix P of extreme pathways, each column is an EP and each row 
corresponds to a reaction in the network. 
The numerical value of the i,j-th element corresponds to the relative flux level 
through the i-th reaction in the j-th EP. 

Papin, Price, Palsson,  
Genome Res. 12, 1889 (2002) 

15. Lecture WS 2012/13 
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Papin, Price, Palsson, Genome Res. 12, 1889 (2002) 

After normalizing P to a matrix with entries 0 or 1,  
the symmetric Pathway Length Matrix PLM can be calculated: 

where the values along the diagonal correspond to the length of the EPs. 

Properties of pathway matrix 

The off-diagonal terms of PLM are the number of reactions that a pair of extreme 
pathways have in common. 

15. Lecture WS 2012/13 
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Papin, Price, Palsson, Genome Res. 12, 1889 (2002) 

One can also compute a reaction participation matrix PPM from P: 

where the diagonal correspond to the number of pathways in which the given 
reaction participates. 

Properties of pathway matrix 

15. Lecture WS 2012/13 
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EP Analysis of H. pylori and H. influenza 

Amino acid synthesis in Heliobacter pylori vs. 
Heliobacter influenza studied by EP analysis. 

Papin, Price, Palsson, Genome Res. 12, 1889 (2002) 
15. Lecture WS 2013/14 
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Extreme Pathway Analysis 
Calculation of EPs for increasingly large networks is computationally intensive and 
results in the generation of large data sets. 

Even for integrated genome-scale models for microbes under simple conditions,  
EP analysis can generate thousands or even millions of vectors! 

Papin, Price, Palsson, Genome Res. 12, 1889 (2002) 

It turned out that the number of reactions that participate in EPs that produce a 
particular product is usually poorly correlated to the product yield and the molecular 
complexity of the product. 

Possible way out? 

Matrix diagonalisation – eigenvectors: only possible for quadratic n × n  matrices 
with rank n. 

15. Lecture WS 2013/14 
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Quasi-diagonalisation of pathway matrix by SVD 
Suppose M is an m × n matrix with real or complex entries.  
Then there exists a factorization of the form 
          M = U Σ V*   where  
           U : m × m unitary matrix, (U*U = UU* = I) 
           Σ : is an m × n matrix with nonnegative numbers on the diagonal and zeros off 
the diagonal,  
           V* : the transpose of V, is an n × n unitary matrix of real or complex numbers.  
Such a factorization is called a singular-value decomposition of M. 

U describes the rows of M with respect to the base vectors associated with the 
singular values. 

V describes the columns of M with respect to the base vectors associated with the 
singular values. Σ contains the singular values. 

One commonly insists that the values Σi,i be ordered in non-increasing fashion.  
Then, the diagonal matrix Σ is uniquely determined by M (but not U and V). 

15. Lecture WS 2013/14 
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Single Value Decomposition of EP matrices 
For a given EP matrix P ∈ℜ n×p, SVD decomposes P into 3 matrices 

Price et al. Biophys J 84, 794 (2003) 

where U ∈ℜ n×n : orthonormal matrix of the left singular vectors,  
           V ∈ℜp×p  : an analogous orthonormal matrix of the right singular vectors,   
           Σ ∈ℜr×r   :a diagonal matrix containing the singular values σi=1..r arranged in  
                          descending order where r is the rank of P. 

The first r columns of U and V, referred to as the left and right singular vectors, or 
modes, are unique and form the orthonormal basis for the column space and row 
space of P. 
The singular values are the square roots of the eigenvalues of  PTP.  
The magnitudes of the singular values in Σ indicate the relative contribution of the 
singular vectors in  U and V in reconstructing P.  
E.g. the second singular value contributes less to the construction of P than  
the first singular value etc.  

15. Lecture WS 2013/14 
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Single Value Decomposition of EP: Interpretation 

Price et al. Biophys J 84, 794 (2003) 

The first mode (as the other modes) corresponds to a valid biochemical pathway 
through the network.  

The first mode will point 
into the portions of the 
cone with highest density 
of EPs. 

15. Lecture WS 2013/14 
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SVD applied for Heliobacter systems 

Price et al. Biophys J 84, 794 (2003) 

Cumulative fractional 
contributions for the  
SVD of the EP matrices of  
H. influenza and H. pylori. 

This plot represents the 
contribution of the first 
n modes to the overall 
description of the system. 

Ca. 20 modes allow  
describing most of the 
metabolic activity in the 
Network. 

Cumulative fractional contribution : sum of the first n fractional 
singular values. This value represents the contribution of the first n 
modes to the overall description of the system. The rank of the 
respective extreme pathway matrix is shown for nonessential amino 
acids. Scrit: number of singular values that account for 95% of the 
variance in the matrices. Entries with ‘‘- - -’’ correspond to essential 
amino acids. 

15. Lecture WS 2013/14 
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Summary – Extreme Pathways 
Extreme Pathway Analysis is a standard technique for analysis of metabolic 
networks. 

Number of EPs can become extremely large – hard to interpret. 

EP is an excellent basis for studying systematic effects of reaction cut sets. 

SVD could facilitate analysis of EPs. Has not been widely used sofar. 

It will be very important to consider the interplay of metabolic and regulatory 
networks. 

15. Lecture WS 2013/14 


