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Noisy Data — Clear Statements? 
For yeast:  ~ 6000 proteins   →   ~18 million potential interactions 
   rough estimates:          ≤ 100000 interactions occur 

→  1 true positive for 200 potential candidates  = 0.5% 
    →  decisive experiment must have accuracy <<  0.5% false positives 

Different experiments detect different interactions 
For yeast:   80000 interactions known, 
               only 2400 found in > 1 experiment 

TAP 

HMS-PCI 

Y2H 

annotated: septin 
complex 

see: von Mering (2002) 

Y2H:  → many false positives 
     (up to 50% errors) 

Co-expression: → gives indications at best 

Combine weak indicators = ??? 
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Conditional Probabilities 
Joint probability for "A and B": 

P(A) 

P(B) 

P(A ⋂ B)  Solve for conditional probability for "A when B is true" 
→ Bayes' Theorem: 

P(A) = prior probability (marginal prob.) for "A"   → no prior knowledge about A 

P(B) = prior probability for "B"   → normalizing constant 

P(B | A) = conditional probability for "B given A" 

P(A | B) = posterior probability for "A given B" 

→  Use information about B to improve knowledge about A 
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What are the Odds? 
Express Bayes theorem 

in terms of odds: 

• Also Consider case "A does not apply": 

• odds for A when we know about B  
(we will interpret B as information or features): 

posterior odds for A prior odds for A likelihood ratio 

Λ(A | B) →  by how much does our knowledge about A improve? 

P(A) 

P(B) 

P(A ⋂ B) 
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2 types of Bayesian Networks 
Encode conditional dependencies between evidences 

=  "A depends on B"  
    with the conditional probability P(A | B) 

(1) Naive Bayesian network 
→ independent odds 

(2) Fully connected Bayesian network 
→ table of joint odds 

B !B 

C 0.3 0.16 

!C 0.4 0.14 

Evidence nodes can have a variety of types:  numbers, categories, … 
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Bayesian Analysis of Complexes 

Science 302 (2003) 449 
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Improving the Odds 
Is a given protein pair AB a complex (from all that we know)? 

prior odds for a 
random pair AB to be 

a complex 

likelihood ratio: 
improvement of the odds when 

we know about features f1, f2, 
… 

Features used by Jansen et al (2003): 
• 4 experimental data sets of complexes 
• mRNA co-expression profiles 
• biological functions annotated to the proteins (GO, MIPS) 
• essentiality for the cell 

Idea: determine from known complexes 
and use for prediction of new complexes estimate (somehow) 
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Gold Standard Sets 
To determine 

Requirements for training data: 
i) independent of the data serving as evidence 
ii) large enough for good statistics 
iii) free of systematic bias 

Gold Standard Negative Set (GN): 
2708746 (non-)complexes formed by proteins from different cellular 
compartments (assuming that such protein pairs likely do not interact) 

Gold Standard Positive Set (GP): 
8250 complexes from the hand-curated MIPS catalog of protein complexes 
 (MIPS stands for Munich Information Center for Protein Sequences) 

→  use two data sets with known features f1, f2, … for training 
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Prior Odds 

Jansen et al: 
• estimated ≥ 30000 existing complexes in yeast 
• 18 Mio. possible complexes →  P(Complex) ≈ 1/600 

→  The odds are  600 : 1  against picking a complex at random 

→  Oprior = 1/600 

Note: Oprior is mostly an educated guess 

→  expect 50% good hits (TP > FP) with  ≈ 600  
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Essentiality 
Test whether both proteins are essential (E) for the cell or not (N) 
→ for protein complexes, EE or NN should occur more often 
 
pos/neg: # of gold standard positives/ 
negatives with essentiality information 

Essentiality pos neg P(Ess|pos) P(Ess|neg) L(Ess) 
EE 1114 81924 5,18E-01 1,43E-01 3,6 
NE 624 285487 2,90E-01 4,98E-01 0,6 
NN 412 206313 1,92E-01 3,60E-01 0,5 
sum 2150 573724 1,00 1,00 

possible 
values of the 

feature 

probabilities for each 
feature value 

likelihood 
ratios 

= 0,5 
0.19 
0.36 

overlap of gold 
standard sets with 

feature values 
1114 
2150 = 0,518 
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mRNA Co-Expression 
Publicly available expression data from 
• the Rosetta compendium 
• the yeast cell cycle 

Correlation between the data sets 
→ use principal component ) 

Jansen et al, Science 302 (2003) 449 



Bioinformatics 3 – WS 13/14 V 4  –  12 

Biological Function 
Use MIPS function catalog and Gene Ontology function annotations 
• determine functional class shared by the two proteins; small values (1-9) 
Indicate highest MIPS function or GO BP similarity 
• count how many of the 18 Mio potential pairs share this classification 

Jansen et al, Science 302 (2003) 449 
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Experimental Data Sets 
In vivo pull-down: 

HT-Y2H: 

Gavin et al, Nature 415 (2002) 141 
Ho et al,  Nature 415 (2002) 180 

Uetz et al, Nature 403 (2000) 623 
Ito et al,  PNAS 98 (2001) 4569 

31304 pairs 
25333 pairs 

981 pairs 
4393 pairs 

4 experiments on overlapping PP pairs  
→  24 = 16 categories   —  fully connected Bayes network 

Jansen et al, Science 302 (2003) 449 
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Statistical Uncertainties 

1)  L(1111) < L(1001) 

statistical uncertainty: 

Overlap with all experiments is smaller →  larger uncertainty 

2)  L(1110) = NaN? 

Use conservative lower bound → assume 1 overlap with GN 
 → L(1110) ≥ 1970 

Jansen et al, Science 302 (2003) 449 
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Overview 

Jansen et al, Science 302 (2003) 449 
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Performance of complex prediction 

Re-classify Gold standard complexes: 
Ratio of true positives to false positives 
→ None of the evidences alone was enough 

Jansen et al, Science 302 (2003) 449 
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Coverage 

Jansen et al, Science 302 (2003) 449 

Predicted set covers 27% of the GP 
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Verification of Predicted Complexes 

Jansen et al, Science 302 (2003) 449 

Compare predicted 
complexes with available 
experimental evidence 
and directed new TAP-
tag experiments 

→ use directed 
experiments to verify  
new predictions 
(more efficient) 
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Consider Connectivity 
Only take proteins e.g. with ≥ 20 links 
 
→ This preserves links inside the complex,  
     filter false-positive links to heterogeneous groups outside the complex 

Jansen et al, Science 302 (2003) 449 
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Follow-up work: PrePPI (2012) 

Given a pair of query proteins that potentially interact (QA, QB), representative structures for the individual 
subunits (MA, MB) are taken from the PDB, where available, or from homology model databases.  
 
For each subunit we find both close and remote structural neighbours. A ‘template’ for the interaction exists 
whenever a PDB or PQS structure contains a pair of interacting chains (for example, NA1–NB3) that are 
structural neighbours of MA and MB, respectively. A model is constructed by superposing the individual 
subunits, MA and MB, on their corresponding structural neighbours, NA1 and NB3.  
 
We assign 5 empirical-structure-based scores to each interaction model and then calculate a likelihood for 
each model to represent a true interaction by combining these scores using a Bayesian network trained on 
the HC and the N interaction reference sets.  
We finally combine the structure-derived score (SM) with non-structural evidence associated with the query 
proteins (for example, co-expression, functional similarity) using a naive Bayesian classifier. 

Zhang et al, Nature (2012) 490, 556–560 
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Results of PrePPI 
Receiver-operator characteristics 
(ROC) for predicted yeast complexes. 
 
Examined features:  
- structural modeling (SM),  
- GO similarity,  
- protein essentiality (ES) relationship,  
- MIPS similarity,  
- co‐expression (CE),  
- phylogenetic profile (PP) similarity. 
 
Also listed are 2 combinations:   
- NS for the integration of all 
non‐structure clues, i.e. GO, ES, 
MIPS, CE, and PP, and  
- PrePPI for all structural and 
non‐structure clues).  
 

Jansen et al, Science 302 (2003) 449 

This gave 30.000 high-confidence PP 
interactions for yeast and 300.000 for 
human. 
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Summary:  Bayesian Analysis 
Combination of weak features yields powerful predictions 
• boosts odds via Bayes' theorem 
• Gold standard sets for training the likelihood ratios 

Bayes vs. other machine learning techniques: 
(voting, unions, SVM, neuronal networks, decision trees, …) 

→ arbitrary types of data can be combined 
→ weight data according to their reliability 
→ include conditional relations between evidences 
→ easily accommodates missing data (e.g., zero overlap with GN) 
→ transparent procedure 
→ predictions easy to interpret 
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Connected Regions 
Observation:  more interactions inside a complex than to the outside 

→ how can one identify highly connected regions in a network? 

1) Fully connected region:  Clique 

clique := G' = (V', E' = V'(2)) 

Problems with cliques: 
• finding cliques is NP-hard 
  (but "works" O(N2) for the sparsely  
  connected biological networks) 
• biological protein complexes are not  
  always fully connected 
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Communities 
Community :=  subset of vertices, for which the internal connectivity is  

denser than to the outside 

Aim:  map network onto tree that reflects the community structure 

<=> 
??? 

Radicchi et al,  PNAS 101 (2004) 2658: 
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Hierarchical Clustering 
1)  Assign a weight Wij to each pair of vertices i, j that measures  
    how "closely related" these two vertices are. 
2) Iteratively add edges between pairs of nodes with decreasing Wij 

Measures for Wij: 

1) Number of vertex-independent paths between vertices i and j 
    (vertex-independent paths between i and j:  no shared vertex except i and j) 

2) Number of edge-independent paths between i and j 

Menger (1927):  the number of vertex-independent paths equals the  
number of vertices that have to be removed to cut all paths between i and j 
→ measure for network robustness 

3) Total number of paths L between i and j 
    but L = 0 or ∞  →  weight paths with their length αL with α < 1 

Problem:  vertices with a single link are separated from the communities 
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Vertex Betweenness 
Freeman (1927):  count on how many shortest paths a vertex is visited 

For a graph  G = (V, E)  with  |V| = n 

Betweenness for vertex ν: 

Alternative:  edge betweenness 
→ to how many shortest paths does  
     this edge belong 
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Girvan-Newman Algorithm 
Girvan, Newman,  PNAS 99 (2002) 7821: 

1)  Calculate betweenness for all m edges  (takes O(mn) time) 

For a graph  G = (V, E)  with  |V| = n,  |E| = m 

2)  Remove edge with highest betweenness 
3)  Recalculate betweenness for all affected nodes 
4)  Repeat from 2) until no more edge is left  (at most n iterations) 
5)  Build up tree from V by reinserting vertices in reverse order 

Works well, but slow: O(mn2) ≈ O(n3) for scale-free networks  (|E| = 2 |V|) 
 
Reason for complexity: compute shortest paths (n2) for m edges 
 
→ recalculating a global property is expensive for larger networks 
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Zachary's Karate Club 
• observed friendship relations of 34 members over two years 
• correlate fractions at break-up with calculated communities 

administrator's 
faction 

instructor's 
faction 

with edge betweenness: 

with number of edge-independent paths: 

Girvan, Newman,  PNAS 99 (2002) 7821 
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Collaboration Network 

Girvan, Newman,  PNAS 99 (2002) 7821 

The largest component of the 
Santa Fe Institute collaboration 
network, with the primary 
divisions detected by the GN 
algorithm indicated by different 
vertex shapes. 
 
Edge: two authors have co-
authored a joint paper. 
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Determining Communities Faster 
Radicchi et al,  PNAS 101 (2004) 2658: 

Determine edge weights via edge-clustering coefficient 
→ local measure 
    → much faster, esp. for large networks 

Modified edge-clustering coefficient: 
→ fraction of potential triangles  
     with edge between i and j 

k = 5 k = 4 

C(3) = (2+1) / 3 = 1 
Here, zi,j

(3) is the number of triangles,  
ki and kj are the degrees of nodes i and j. 
 
Note:  "+ 1" to remove degeneracy for zi,j(3)  = 0 



Bioinformatics 3 – WS 13/14 V 4  –  31 

Performance 
Instead of triangles:  cycles of higher order g 
→ continuous transition to a global measure 

Radicchi et al-algorithm:  O(N2) for large networks 

Radicchi et al,  PNAS 101 (2004) 2658: 
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Comparison of algorithms 

Girven-Newman algorithm Radicchi with g = 4 

→ very similar communities 

Data set: football teams from US colleges; different symbols = different 
conferences, teams played ca. 7 intraconference games and 4 inter-
conference games in 2000 season. 
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Strong Communities 
"Community :=  subgraph with more interactions inside than to the outside" 

…strong sense when: 

 → Check every node individually 

A subgraph V is a community in a… 

…weak sense when: 

→ allow for borderline nodes 

• Σ kin = 2,  Σ kout = 1 
   {kin, kout} = {1,1}, {1,0} 
 → community in a weak sense 

• Σ kin = 10,  Σ kout = 2 
   {kin, kout} = {2,1}, {2, 0}, {3, 1},  {2,0}, {1,0} 
 → community in a strong and weak sense 

Radicchi et al, PNAS 101 (2004) 
2658 
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Summary 
What you learned today: 

Next lecture:      Mon, Nov 4, 2013 

• Modular decomposition 
• Robustness 

Short Test #1:  Fri, Nov. 8 

• how to combine a set of noisy evidences into a powerful prediction tool 
 → Bayes analysis 

• how to find communities in a network efficiently 
 → betweenness,  edge-cluster-coefficient 


