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Network Robustness

Network = set of connections

Failure events: - loss of edges
* loss of nodes (together with their edges)

— loss of connectivity
 paths become longer (detours required)
» connected components break apart
— network characteristics change

Y- =3k

— Robustness = how much does the network (not)
change when edges/nodes are removed
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Error and attack tolerance
of complex networks

Réka Albert, Hawoong Jeong & Albert-Laszlé Barabasl

Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, Indiana 46556, USA

against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to
i the robustness of the underlying metabolic network'. Complex
communication networks’ display a surprising degree of robust-
ness: although key components regularly malfunction, local fail-
] ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex
- systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,
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Random vs. Scale-Free
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Exponential

Scale-free

130 nodes, 215 edges

The top 5 nodes with the highest kK connect to...

... 27% of the network ... 60% of the network

Albert, Jeong, Barabasi, Nature 406 (2000)
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Failure vs. Attack

Failure: remove randomly
selected nodes
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Attack: remove nodes with
highest degrees

SF: scale-free network -> attack

E: exponential (random) network
-> failure / attack

SF: failure

N = 10000, L = 20000, but effect is size-independent;

SF network diameter increases strongly when network is attacked but not when

nodes fail randomly
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Two VINs

Scale-free: - very stable against random failure ("packet re-rooting")
* very vulnerable against dedicated attacks ("9/11")
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http://moat.nlanr.net/Routing/rawdatal : WWW-sample containing 325729

6209 nodes and 12200 links (2000) nodes and 1498353 links
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Network Fragmentation
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Random network:

Relative size of the
largest clusters S

Average size of the
Isolated clusters <s>
(except the largest
one)

* no difference between attack and failure (homogeneity)
 fragmentation threshold at fc = 0.28 (S =0)

Scale-free network: ° delayed fragmentation and isolated nodes for failure
« critical breakdown under attack at fc = 0.18
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Mesoscale properties of networks
- identify cligues and highly connected clusters

Most relevant processes in biological networks correspond to the
mesoscale (5-25 genes or proteins) not to the entire network.

However, it is computationally enormously expensive to study mesoscale
properties of biological networks.

e.g. a network of 1000 nodes contains 1 x 1023 possible 10-node sets.

Spirin & Mirny analyzed combined network of protein interactions with data
from CELLZOME, MIPS, BIND: 6500 interactions.
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ldentify connected subgraphs

The network of protein interactions is typically presented as an undirected
graph with proteins as nodes and protein interactions as undirected edges.

Aim: identify highly connected subgraphs (clusters) that have more
interactions within themselves and fewer with the rest of the graph.

A fully connected subgraph, or clique, that is not a part of any other clique
IS an example of such a cluster. The ,maximum clique problem” — finding

the largest clique in a given graph is known be NP-hard.

In general, clusters need not to be fully connected.

Measure density of connections by (= n(iml)

where nis the number of proteins in the cluster Spirin, Mirny,
and m is the number of interactions between them. PNAS 100, 12123 (2003)
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Cligue and Maximal Clique

A clique is a fully connected sub-graph, that is, a
set of nodes that are all neighbors of each other.

In this example, the whole graph is a clique and
consequently any subset of it is also a clique, for
example {a,c,d,e}or {b,e}.

A maximal clique is a clique that is not contained
in any larger clique. Here only {a,b,c,d,e}is a
maximal clique.

Gagneur et al. Genome Biology 5, R57 (2004)
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(method |) Identify all fully connected subgraphs (cliques)

The general problem - finding all cliques of a graph - is very hard.
Because the protein interaction graph is sofar very sparse (the number of interactions
(edges) is similar to the number of proteins (nodes), this can be done quickly.

To find cliques of size n one needs to enumerate only the cliques of size n-1.

The search for cliques starts with n = 4, pick all (known) pairs of edges

(6500 x 6500 protein interactions) successively.

For every pair A-B and C-D check whether there are edges between Aand C, Aand D,
B and C, and B and D. If these edges are present, ABCD is a clique.

For every clique identified, ABCD, pick all known proteins successively.
For every picked protein E, if all of the interactions E-A, E-B, E-C, and E-D exist,
then ABCDE is a clique with size 5.

Continue forn=6, 7, ...
The largest clique found in the protein-interaction network has size 14.

Spirin, Mirny, PNAS 100, 12123 (2003)
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(I) Identify all fully connected subgraphs (cliques)

These results include, however, many redundant cliques.
For example, the cliqgue with size 14 contains 14 cliques with size 13.

To find all nonredundant subgraphs, mark all proteins comprising the clique
of size 14, and out of all subgraphs of size 13 pick those that have at least
one protein other than marked.

After all redundant cliques of size 13 are removed, proceed to remove
redundant twelves efc.

In total, only 41 nonredundant cliques with sizes 4 - 14 were found by Spirin
& Mirny.

Spirin, Mirny, PNAS 100, 12123 (2003)
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Statistical significance of cliques

A 5000 . .

Number of complete cliques (Q= 1) as o]
a function of clique size enumerated in 2000. 0 |
the network of protein interactions (red) 3500/
: : <}
and in randomly rewired graphs (blue, 230001
averaged >1,000 graphs where number 325001
. . U S 0 5 10 H
of interactions for each protein is .
'2150
preserved). 3
1000f
50
Inset shows the same plot in log-normal . . . )
o) 5
scale. Note the dramatic enrichment in Size of complex (n)

the number of cliques in the protein-
interaction graph compared with the
random graphs. Most of these cliques
are parts of bigger complexes and

modules.
Spirin, Mirny, PNAS 100, 12123 (2003)
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(method Il) Monte Carlo Simulation
Use MC to find a tight subgraph of a predetermined number of M nodes.

At time t = 0, a random set of M nodes is selected.

For each pair of nodes i,j from this set, the shortest path L; between jand j
on the graph is calculated.

Define L, :=sum of all shortest paths L; from this set.

At every time step one of the M nodes is picked at random, and one node is
picked at random out of all its neighbors.

Calculate the new sum of all shortest paths, L., if the original node were to
ne replaced by this neighbor.
f L, <L, accept replacement with probability 1. -1

f L, > L, accept replacement with probability exXp !
where T is the effective temperature.

Spirin, Mirny, PNAS 100, 12123 (2003)
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(method |I) Monte Carlo Simulation

Every tenth time step an attempt is made to replace one of the nodes from
the current set with a node that has no edges to the current set to avoid
getting caught in an isolated disconnected subgraph.

This process is repeated

(1) until the original set converges to a complete subgraph, or

(i1) for a predetermined number of steps,

after which the tightest subgraph (the subgraph corresponding to the
smallest L,) is recorded.

The recorded clusters are merged and redundant clusters are removed.

Spirin, Mirny, PNAS 100, 12123 (2003)
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Merging Overlapping Clusters

A simple statistical test shows that nodes which have only one link to a cluster are
statistically insignificant. Clean such statistically insignificant members first.

Then merge overlapping clusters:
For every cluster A, find all clusters A, that overlap with this cluster by at least one
protein.

For every such found cluster calculate Q value of a possible merged cluster
A, U A, . Record cluster A, (i) which gives the highest Q value if merged with A,

After the best match is found for every cluster, every cluster A, is replaced by a merged
cluster A, U A, (i) unless A; U A,_.(i) is below a certain threshold value for Q.

This process continues until there are no more overlapping clusters or until merging any
of the remaining clusters will make a cluster with Q value lower than Q.

Spirin, Mirny, PNAS 100, 12123 (2003)
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Statistical significance of complexes and modules

Distribution of Q of clusters found by the MC
search method.

Red bars: original network of protein
interactions.

Blue curves: randomly rewired graphs.

-> Clusters in the protein network have many

more interactions than their counterparts in the
random graphs.
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Architecture of protein network

Fragment of the protein network.
Nodes and interactions in discovered
clusters are shown in bold.

Nodes are colored by functional
categories in MIPS:

red, transcription regulation;
blue, cell-cycle/cell-fate control;
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, RNA processing; and
, protein transport.

Complexes shown are the
SAGA/TFIID complex (red), the
anaphase-promoting complex (blue),
and the TRAPP complex (yellow).

Spirin, Mirny, PNAS 100, 12123 (2003)
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Discovered functional modules
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Examples of discovered functional modules. sl

(A) A module involved in cell-cycle regulation. This module consists of cyclins (CLB1-4 and
CLN2) and cyclin-dependent kinases (CKS1 and CDC28) and a nuclear import protein
(NIP29). Although they have many interactions, these proteins are not present in the cell at

the same time.

(B) Pheromone signal transduction pathway in the network of protein—protein interactions.
This module includes several MAPK (mitogen-activated protein kinase) and MAPKK (mitogen-
activated protein kinase kinase) kinases, as well as other proteins involved in signal
transduction. These proteins do not form a single complex; rather, they interact in a specific
order. Spirin, Mirny, PNAS 100, 12123 (2003)
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Analysis of identified Complexes

Comparison of discovered complexes and
modules with complexes derived
experimentally (BIND and Cellzome) and
complexes catalogued in MIPS.

Discovered complexes are sorted by the
overlap with the best-matching experimental
complex.

The overlap is defined as the number of
common proteins divided by the number of
proteins in the best-matching experimental
complex.

0.5

o BIND
LAMMAAAAAL o Cellzome |
A MIPS
A
A
_N
1 AA AA |
2 0.8} s
> A
@) [ "
0.6}
0 5 10 15
Size n

10

20 30 40 50
Number of complexes

-> The first 31 complexes match exactly, and another 11 have overlap above 65%.

Inset shows the overlap as a function of the size of the discovered complex. Note that
discovered complexes of all sizes match very well with known experimental complexes.
Discovered complexes that do not match with experimental ones constitute our predictions.

Bioinformatics 3 — WS 13/14
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Robustness of clusters found

Model effect of false positives in Noise in the form of removal or
experimental data: additions of links has less deteriorating
randomly reconnect, remove or add  effect than random rewiring. About
10-50% of interactions in network. 75% of clusters can still be found when

10% of links are rewired.
Recovery probabillity plotted as a

function of the fraction of altered links.

I

0.8 r

Black: links are rewired.
Red, links are removed;

0.6 1

Recovery probability

, links are added. 0'4'
Circles: probability to recover 75% 02|
of the original cluster; N
Triangles: probability to recover 50%. M et i

Spirin, Mirny, PNAS 100, 12123 (2003)
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Summary

Analysis of meso-scale properties demonstrated the presence of highly
connected clusters of proteins in a network of protein interactions ->
strongly supports suggested modular architecture of biological networks.

There exist 2 types of clusters: protein complexes and dynamic
functional modules. Both have more interactions among their members
than with the rest of the network.

Dynamic modules cannot be purified in experiments because they are not
assembled as a complex at any single point in time.

Computational analysis allows detection of such modules by integrating
pairwise molecular interactions that occur at different times and places.
However, computational analysis alone does not allow to distinguish
between complexes and modules or between transient and simultaneous
interactions.
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Reducing Network
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* Modular Decomposition (Gagneur, ..., Casari, 2004)
* Network Compression (Royer, ..., Schroder, 2008)
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Method

Modular decomposition of protein-protein interaction networks
Julien Gagneur™, Roland Krause®, Tewis Bouwmeester” and Georg Casari”

Addresses: "Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. "Laboratoire de Mathématiques Appliquées aux Systémes, Ecole
Centrale Paris, Grande Voie des Vignes, 92295 Chitenay-Malabry cedex, France.

Abstract

We introduce an algorithmic method, termed modular decomposition, that defines the
organization of protein-interaction networks as a hierarchy of nested modules. Modular
decomposition derives the logical rules of how to combine proteins into the actual functional
complexes by identifying groups of proteins acting as a single unit (sub-complexes) and those that
can be alternatively exchanged in a set of similar complexes. The method is applied to experimental
data on the pro-inflammatory tumor necrosis factor-a (TNF-o)/NFkB transcription factor
pathway.

R ———
Genome Biology 5 (2004) R57
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Shared Components

Shared components = proteins or groups of proteins occurring in different complexes
are fairly common. A shared component may be a small part of many complexes,
acting as a unit that is constantly reused for its function.

Also, it may be the main part of the complex e.g. in a family of variant complexes that
differ from each other by distinct proteins that provide functional specificity.

Aim: identify and properly represent the modularity of protein-protein interaction
networks by identifying the shared components and the way they are arranged to

generate complexes.

Gagneur et al. Genome Biology 5, R57 (2004)

Georg Casari, Cellzome (Heidelberg)
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Modular Decomposition of a Graph

Module ;= set of nodes that have the same neighbors
outside of the module

trivial modules:

{a}, {b}, ..., {9}
{a, b, ..., g}

non-trivial modules:
{a, b}, {a, ¢}, {b, c}
{a, b, ¢}
{e, f}

Quotient: representative node for a module

Iterated quotients — labeled tree representing the original network
— "modular decomposition”

Gagneur et al, Genome Biology 5 (2004)
Bioinformatics 3 — WS 13/14 R57 V5 - 26



Quotients

Series: all included nodes are direct neighbors (= clique)
T e )
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Parallel: all included nodes are non-neighbors
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A Simple Recursive Example

series
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Gagneur et al, Genome Biology 5 (2004)
Bioinformatics 3 — WS 13/14 R57

V5 - 28



Results from protein complex
purifications (PCP), e.g. TAP

Different types of data:
« Y2H: detects direct physical interactions between proteins

« PCP by tandem affinity purification with mass-spectrometric identification of the
protein components identifies multi-protein complexes

— Molecular decomposition will have a different meaning due to different
semantics of such graphs.

Here, we focus analysis on PCP content.

PCP experiment: select bait protein where TAP-label is attached — Co-purify protein
with those proteins that co-occur in at least one complex with the bait protein.

Gagneur et al. Genome Biology 5, R57 (2004)
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Data from Protein Complex Purification

Graphs and module labels from

. . (a) (b)
SyStematIC PCP experlments Frotein complex purification Series = combined
o
(a) Two neighbors in the network are (-.0 @}Q’@@
proteins occurring in a same complex. 5 @a ) /o
¥ o qo
(b) Several potential sets of complexes e
can be the origin of the same observed ® @
network. Restricting interpretation to the
. . : () (d)
simplest model (top right), the series i) Parallel - akematives B) Prime
module reads as a logical AND between @) 6('. 3 g g
its members. z 3
(¢) A module labeled “parallel” @ @
corresponds to proteins or modules AN S AN
. . . . .-"f- ““‘x .”'------ ’ : g L
working as strict alternatives with x‘ .; . e .

respect to their common neighbors.

(d) The “prime” case is a structure
where none of the two previous cases
OCCuUrs.
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Real World Examples

Two examples of modular decompositions of protein-protein
Interaction networks.

In each case from top to bottom: schemata of the complexes,
the corresponding protein-protein interaction network as
determined from PCP experiments, and its modular
decomposition (MOD).

(a) Protein phosphatase 2A.

Parallel modules group proteins that do not interact but
are functionally equivalent.

PCP Pn::-.tn.ain u;nrnplex
V' purification

Here these are the catalytic proteins Pph21
and Pph22 (module 2) and the regulatory

‘MOD » Modular decomposition

@ Protein
proteins Cdc55 and Rts1 (module 3), Series module
connected by the Tpd3 ,backbone”. @ Parallel module

(a)

-]

Poh22
L

His1 [ s Ldchh

Pph21

Notes:* Graph does not show functional alternatives!!!
 other decompositions also possible

1
EE Tpd3

Ris1 Cdcbs Pph21 Pph22
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Rpo21
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Summary

Modular decomposition of graphs is a well-defined concept.

* One can proof thoroughly for which graphs a modular decomposition
exists.

 Efficient O(m + n) algorithms exist to compute the decomposition.

However, experiments have shown that biological complexes are not
strictly disjoint. They often share components

— separate complexes do not always fulfill the strict requirements of
modular graph decomposition.

Also, there exists a ,danger” of false-positive or false-negative interactions.

— other methods, e.g., for detecting communities (Girven & Newman) or
clusters (Spirin & Mirny) are more suitable for identification of complexes
because they are more sensitive.

Bioinformatics 3 — WS 13/14 V5 - 33



Power Graph Analysis

OPEN G ACCESS Freely available online PI.OS computaTionaL BIOLOGY

Unraveling Protein Networks with Power Graph Analysis

Loic Royer, Matthias Reimann, Bill Andreopoulos, Michael Schroeder*

Biotechnology Center, Technische Universitdt Dresden, Germany

R —

PLoS Comp Biol 4 (2008) e1000108

Lossless compact abstract representation of graphs:
* Power nodes = set of nodes (criterion for grouping?)
* Power edges = edges between power nodes

Exploit observation that cliques and bi-cliques are abundant in real networks
— explicitly represented in power graphs

Bioinformatics 3 — WS 13/14 V5 - 34



Power Nodes

In words: "... if two power nodes are connected by a power edge in
G', this means in G that all nodes of the first power node are
connected to all nodes of the second power node.

Similarly, if a power node is connected to itself by a power
edge in G', this means that all nodes in the power node are
connected to each other by edges in G.

With: "real-world" graph G ={V, E}
power graph G'={V', E}
Star motif Clique motif Biclique motif

- % -

Royer et al, PLoS Comp Biol 4 (2008) e1000108
Bioinformatics 3 — WS 13/14 V5 - 35



Power Graph Analysis Algorithm

Two conditions:

» power node hierarchy condition:

two power nodes are either disjoint, or one is included in the other one
» power edge disjointness condition: each edge of the original graph is
represented by one and only one power edge

Algorithm:

1) identify potential power nodes with hierarchical clustering based
on neighborhood similarity

2) greedy power edge search

() identical neighborhoods
similar neighborhoods

Neighborhood- Power edge search
similarity clustering

Royer et al, PLoS Comp Biol 4 (2008) e1000108
Bioinformatics 3 — WS 13/14 V5 - 36



Complex = Star or Clique?

Corresponding

Motifs Power Graphs Biological examples
Star motif Spoke model Hub proteins
bait
— jhub
preys
Cligue motif Matrix model Protein Complexes
bait ckal ckb
LN
o o0
o9 cka2 ckb?2
preys
Bicliqgue motif Domain induced interactions

% - e -

[ClE] ]

Figure 1. The Three Basic Motifs: Star, Biclique, and Clique.
Stars often occur because of hub proteins or when affinity purification
complexes are interpreted using the spoke model. Bicliques often arise
because of domain-domain or domain-motif interactions inducing
protein interactions [25]). Power nodes are sets of nodes and power
edges connect power nodes. A power edge between two power nodes
signifies that all nodes of the first set are connected to all nodes of the
second set. Note that nodes within a power node are not necessarily
connected to each other.

doi:10.1371/journal.pchi.1000108.g001

In pull-down experiments:
Bait is used to capture
complexes of prey proteins
— do they all just stick to
the bait or to each other?

spoke model
— underestimates
connectivity

matrix model
— overestimates
connectivity

Rovyer et al, PLoS Comp Biol 4 (2008) e1000108
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Casein Kinase || Complex

elF3 sub-complex

.\v/
I &/
Z/p 0N

DS

PAF1 complex
A B

Figure 2. Casein Kinase Il Complex. Two catalytic alpha subunits (CKA1, CKA2) and two regulatory beta subunits (CKB1, CKB2) interacting with
the FACT complex, with sub-complex NIP1-RPG-PRT1, and with the PAF1 complex. The graph representation (A) consists of 80 edges whereas the
power graph representation (B) has 30 power edges, thus an edge reduction of 62%. This simplification of the representation makes the separation of
the regulatory subunits from the catalytic subunits immediately apparent without loss of information on individual interactions.
doi:10.1371/journal.pcbi.1000108.g002

— Power graph: compressed and cleaner representation

Royer et al, PLoS Comp Biol 4 (2008) e1000108
Bioinformatics 3 — WS 13/14 V5 —
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Various Similarities

Phylogenetic tree according

@ SH3-domain protein to SH3 domain sequences

@ Motif class 1 proteins - l

o Motif class 2 proteins

ABP1

i GO
I =
- PSET
sSEEES
= O L ;
oE-m: m: > > =

j:%f =

B

Meighborhood similarity
tree of interaction partners

A B

Figure 4. Interactions of SH3 Carrying Proteins. (A) Protein interaction network showing the 105 interaction partners of the 5H3 domain
carrying proteins: SHO1, ABP1, MYQS5, BOI1, BOI2, RVS167, YHROM6C and YFRO24. The underlying network consists of 182 interactions represented
here as 36 power edges—a reduction of 80%-leaving all but only the core information. Class 1 matif (ReoPxxP) proteins are shown in black. Class 2
motif (PxxPxR) proteins are shown in light grey [15]. Note how power graphs group proteins having similar binding motifs together. (B) Phylogeny
and interaction profiles. Comparison of the phylogenetic tree of the SH3 domains sequences with the neighbourhood similarity tree of interaction
partners. The neighbourhood similarity implied by the power graph reflects the sequence similarity of the SH3 domains.
doin10.1371/journal.pcbi. 10001 08.g004

Royer et al, PLoS Comp Biol 4 (2008) e1000108
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Network Compression

Power graph analysis: group nodes with similar neighborhood
— often functionally related proteins end up in one power node

Protein Interaction Avg.
. Network # Nodes 3# Edges Degree e.sr. Gr
LOSSIeSS CompreSSIOn Lim et al. (2006) [46] 571 701 2.45 85% 12.1
Of graphs Hazbun et al. (2003) [47] 2243 3130 2.79 79% 13
. Kim et al. (2006) [48] 577 1090 3.78 67/% 4.1
38' - '85% edge redUCtIon Gunsalus et al. (2004) [49] 281 514 3.6 65% 4.6
for bIOlOg ical networks Gavin et al. (2006) [4] 1462 6042 0.4 64% 7.2
Ewing et al. (2007) [50] 2294 6449 5.62 54% 6.6
Ito et al. (2001) [51] 3243 4367 2.69 53% 53
Rual et al. (2005) [12] 1527 2529 3.31 50% 4.5
Krogan et al. (2006) [6] 2708 7123 5.26 49% 4.5
Stanyon et al. (2004) [9] 478 1778 743 48% 5.3
Stanyon et al. (2004) [9] 478 1778 743 48% 5.3
Butland et al. (2005) [52] 1277 5324 8.33 43% 6.0
Arifuzzaman et al. (2006) 2457 8663 7.05 399% 5.4
[53]
Lacount et al. (2005) [13] 1272 2643 4.16 38% 3.8

Average degree, edge reduction (e.r.}, and edge to power node conversion rate

Royer et al, PLoS Comp Biol 4 (2008) e1000108 (c.r.).
doi:10.1371/journal.pchi.1000108.1001
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Some PPl Networks

For some time: "Biological networks are scale-free..."
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Y2H PPI network from Uetz etal, Nature 403 (2003) 623 P(k) compared to a power law

However, there are some doubts... — next lecture
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Summary

What you learned today:

* Network robustness

1 scale-free networks are failure-tolerant, but fragile to attacks
<=> the few hubs are important

=> Immunize hubs!

 Modules in networks
=> modular decomposition
=> power graph analysis

Next lecture:

* Are biological networks scale-free? (other models?)
* Network growth mechanisms

Short Test #1: Mon, Nov. 11
(covers lectures V2-V6)
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