Bioinformatics 3 V6 – Biological PPI Networks - are they really scale-free? - network growth - functional annotation in the network

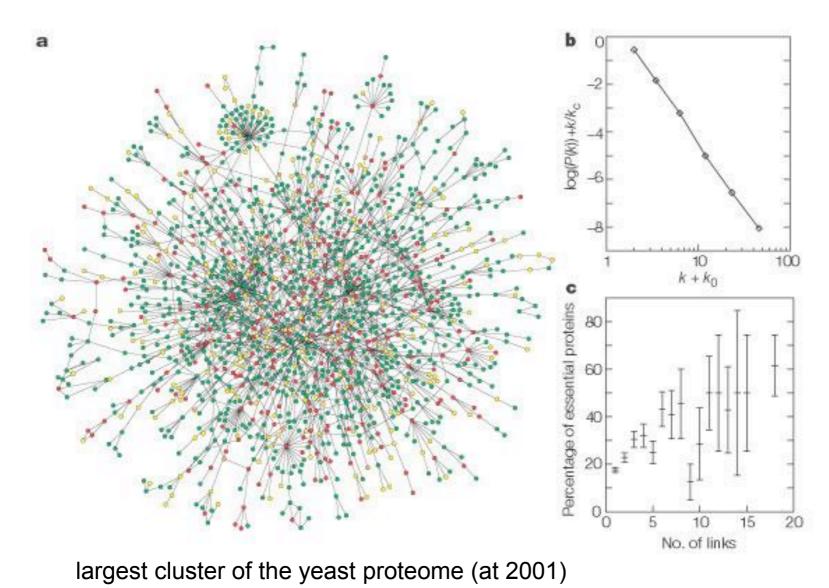
Fri, Nov 8, 2013

brief communications

Lethality and centrality in protein networks

The most highly connected proteins in the cell are the most important for its survival.

Jeong, Mason, Barabási, Oltvai, Nature 411 (2001) 41



→ "PPI networks apparently are scale-free…"

"Are" they scale-free or "Do they look like" scale-free???

Bioinformatics 3 – WS 13/14

Partial Sampling

Estimated for yeast: 6000 proteins, 30000 interactions

Table 1 Topological pr	operties of inte	ractome maps					
Data set	Ito <i>et al.</i> (yeast)	Uetz <i>et al.</i> (yeast)	Ito-Uetz combined	Li <i>et al.</i> (worm)	Giot <i>et al.</i> (fly)	Minimum value	Maximum value
Total number of nodes	797	1,005	1,417	1,415	4,651	797	4,651
Nodes in main component	417 (52%)	473 (47%)	970 (68%)	1,260 (89%)	3,039 (65%)	47%	89%
Total number of interactions	806	948	1,520	2,135	4,787	806	4,787
nteractions in main component	544	558	1,229	2,038	3,715	544	3,715
?-square	0.843	0.954	0.899	0.885	0.91	0.843	0.954
,	-1.82	-2.42	-1.91	-1.59	-2.75	-2.75	-1.59
k>	1.96	1.84	2.15	2.98	2.04	1.84	2.98
verage clustering oefficient	0.2	0.11	0.09	0.09	0.06	0.06	0.2
lumber of network omponents	143	177	160	70	591	70	591
verage component size	5.6	5.7	8.9	20.2	7.9	5.6	20.2
haracteristic path length	6.14	7.48	6.55	4.91	9.43	4.91	9.43
lumber of baits	455	512	827	502	2,820	455	2,820

The linear regression R-square measures the linearity between log(n(k)) and log(k) i.e. the fit to a power-law distribution. γ is the exponent of the power law distribution formula that best fits the observed distribution. $\langle k \rangle$ is the average number of interactions per protein observed in the network. For the Ito, Li and Giot data sets only the high confidence interactions were considered (core).

Y2H **covers** only **3...9%** of the complete interactome!

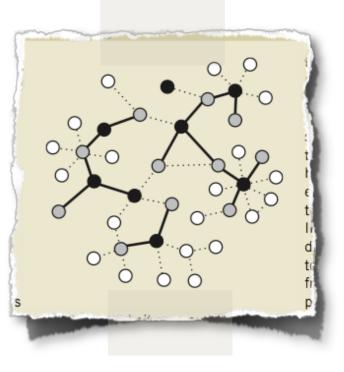
Effect of sampling on topology predictions of protein-protein interaction networks

Jing-Dong J Han¹⁻³, Denis Dupuy^{1,3}, Nicolas Bertin¹, Michael E Cusick¹ & Marc Vidal¹

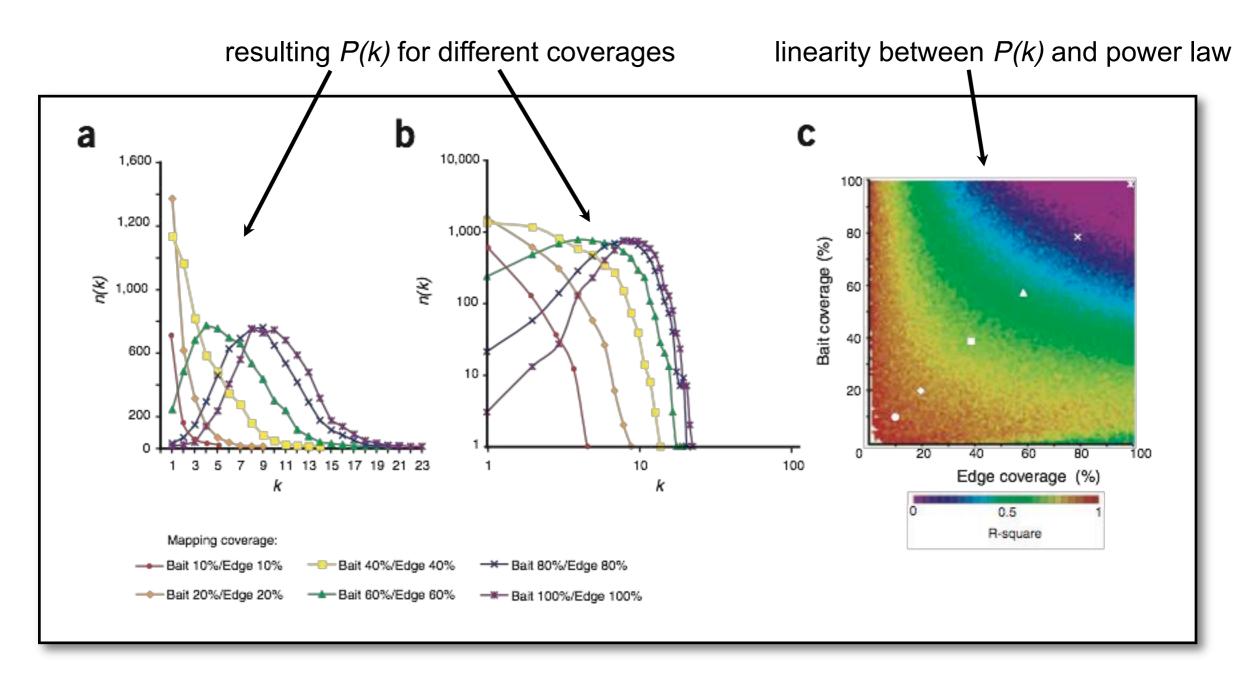
Nature Biotech 23 (2005) 839

Generate networks of various types, sample sparsely from them

- \rightarrow degree distribution?
- Random (ER / Erdös-Renyi) $\rightarrow P(k)$ = Poisson
- Exponential (EX) $\rightarrow P(k) \sim \exp[-k]$
- scale-free / power-law (PL) $\rightarrow P(k) \sim k^{-\gamma}$
- *P*(*k*) = truncated normal distribution (TN)

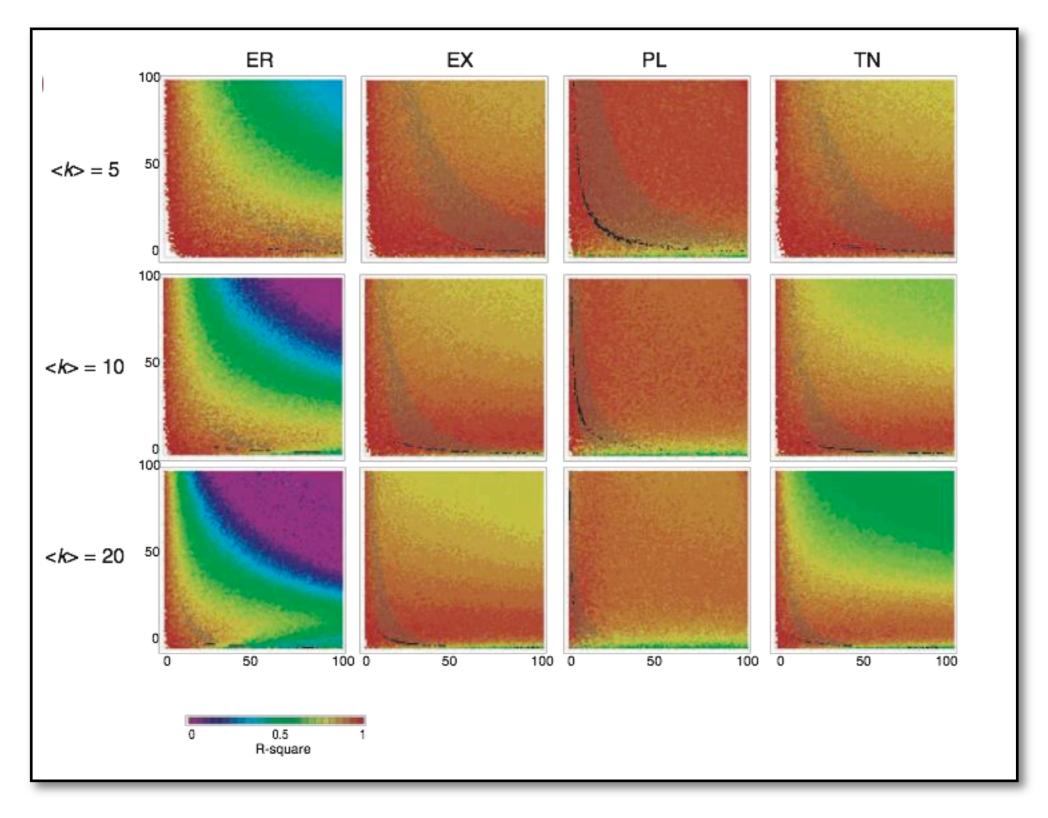


Sparsely Sampled random (ER) Network

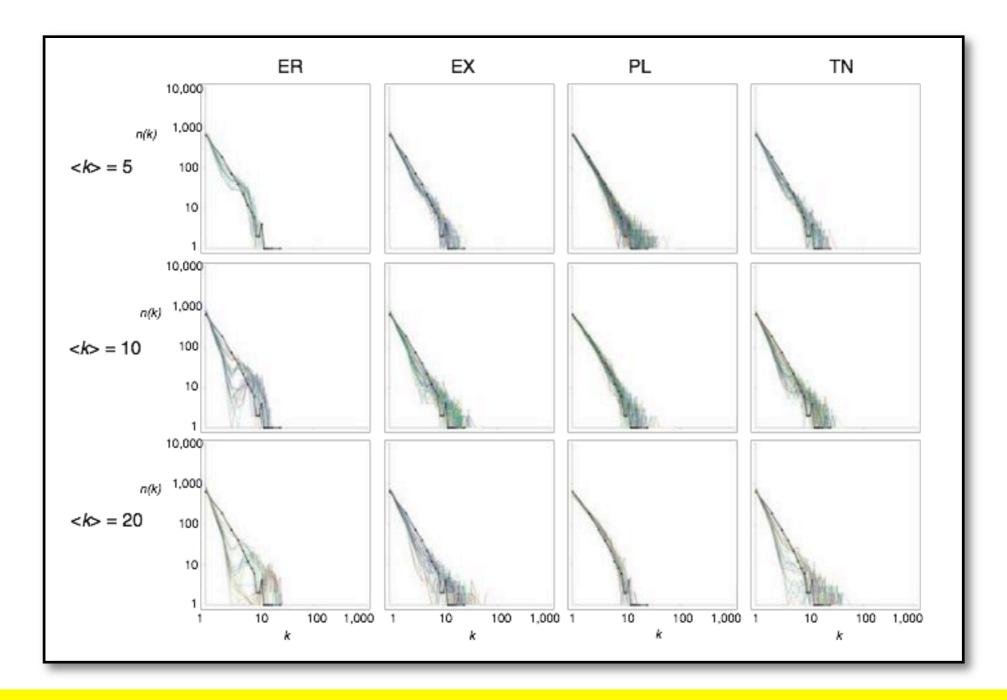


 \rightarrow for **sparse** sampling, even an ER networks "**looks**" scale-free (when only *P(k)* is considered)

Anything Goes



Compare to Uetz et al. Data



Sampling density affects observed degree distribution → true underlying network cannot be identified from available data

Bioinformatics 3 – WS 13/14

Han et al, *Nature Biotech* **23** (2005) 839

Network Growth Mechanisms

Given: an observed PPI network \rightarrow how did it grow (evolve)?

Inferring network mechanisms: The Drosophila melanogaster protein interaction network

Manuel Middendorf[†], Etay Ziv[‡], and Chris H. Wiggins^{§1}

[†]Department of Physics, [‡]College of Physicians and Surgeons, [§]Department of Applied Physics and Applied Mathematics, and [¶]Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027

Communicated by Barry H. Honig. Columbia University. New York. NY. December 20, 2004 (received for review September 7, 2004)

PNAS **102** (2005) 3192

Look at **network motifs** (local connectivity):

compare motif distributions from various network prototypes to fly network

Idea: each growth mechanism leads to a typical motif distribution, even if global measures are comparable

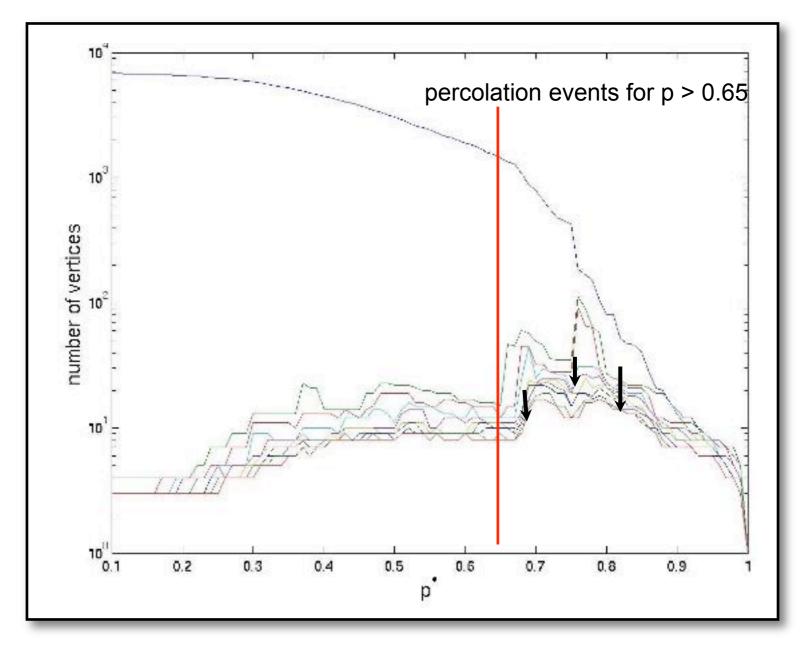
The Fly Network

Y2H PPI network for *D. melanogaster* from Giot et al. [Science 302 (2003) 1727]

Confidence score [0, 1] for every observed interaction \rightarrow use only data with p > 0.65 (0.5) \rightarrow remove self-interactions and isolated nodes

> High confidence network with 3359 (4625) nodes and 2795 (4683) edges

Use prototype networks of same size for training



Size of largest components. At p = 0.65, there is one large component with 1433 and the other 703 components contain at most 15 nodes.

V 6

Network Motives

All non-isomorphic subgraphs that can be generated with a walk of length 8

Middendorf et al, PNAS 102 (2005) 3192

V6 - 10

Growth Mechanisms

Generate 1000 networks, each, of the following 7 types (Same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity
DMR Duplication with random mutations
RDS Random static networks
RDG Random growing network
LPA Linear preferential attachment network
AGV Aging vertices network
SMW Small world network

Growth Type 1: DMC

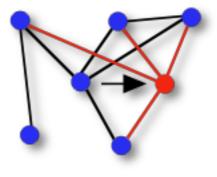
"Duplication – mutation with preserved complementarity"

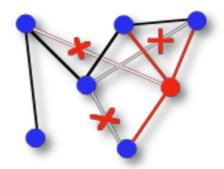
Evolutionary idea: gene **duplication**, followed by a partial **loss** of function of one of the copies, making the other copy essential

Algorithm:

Start from two connected nodes, repeat *N* - 2 times:

- duplicate existing node with all interactions
- for all neighbors: delete with probability q_{del}
 either link from original node or from copy





Growth Type 2: DMR

"Duplication with random mutations"

Gene duplication, but no correlation between original and copy (original unaffected by copy)

Algorithm:

Start from five-vertex cycle, repeat *N* - 5 times:

- duplicate existing node with all interactions
- for all neighbors: delete with probability q_{del} link from copy
- add new links to non-neighbors with probability q_{new}/n



Growth Types 3–5: RDS, RDG, and LPA

RDS = static random network

Start from N nodes, add L links randomly

RDG = growing random network

Start from small random network, add nodes, then edges between all existing nodes

LPA = linear preferential attachment

Add new nodes similar to Barabási-Albert algorithm, but with preference according to $(k_i + \alpha)$, $\alpha = 0...5$ (BA for $\alpha = 0$)

Growth Types 6-7: AGV and SMW

AGV = aging vertices network

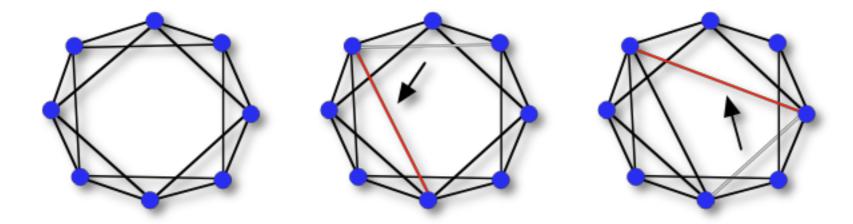
Like growing random network,

but preference decreases with age of the node

 \rightarrow citation network: more recent publications are cited more likely

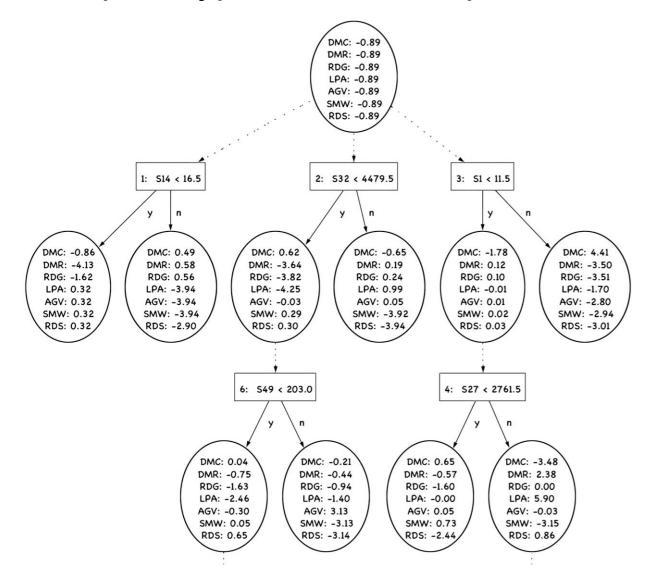
SMW = small world networks (Watts, Strogatz, *Nature* **363** (1998) 202)

Randomly rewire regular ring lattice



Alternating Decision Tree Classifier

Trained with the motif counts from 1000 networks of each of the 7 types \rightarrow prototypes are well separated and reliably classified



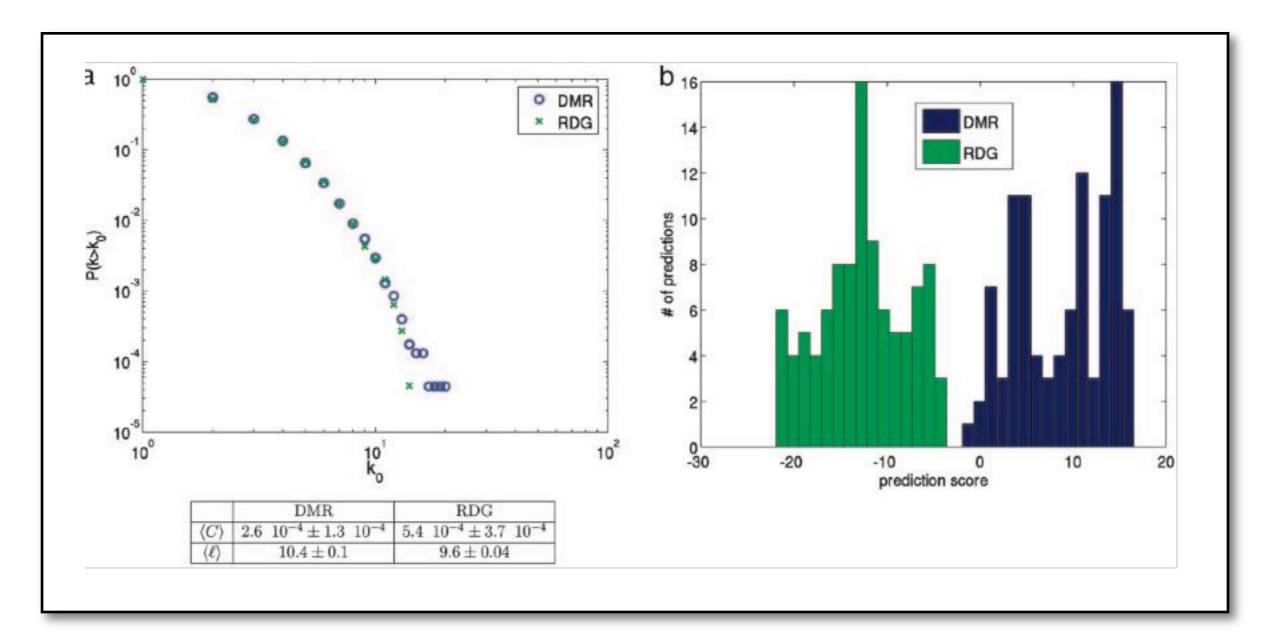
Prediction accuracy for networks similar to fly network with p = 0.5:

			F	Predictio	n		
Truth	DMR	DMC	AGV	LPA	SMW	RDS	RDG
DMR	99.3	0.0	0.0	0.0	0.0	0.1	0.6
DMC	0.0	99.7	0.0	0.0	0.3	0.0	0.0
AGV	0.0	0.1	84.7	13.5	1.2	0.5	0.0
LPA	0.0	0.0	10.3	89.6	0.0	0.0	0.1
SMW	0.0	0.0	0.6	0.0	99.0	0.4	0.0
RDS	0.0	0.0	0.2	0.0	0.8	99.0	0.0
RDG	0.9	0.0	0.0	0.1	0.0	0.0	99.0

Part of a trained ADT

Decision nodes count occurrence of motifs

Are They Different?



Example DMR vs. RDG: Similar global parameters, but different counts of the network motifs

-> networks can be perfectly separated by motif-based classifier

Middendorf et al, *PNAS* **102** (2005) 3192

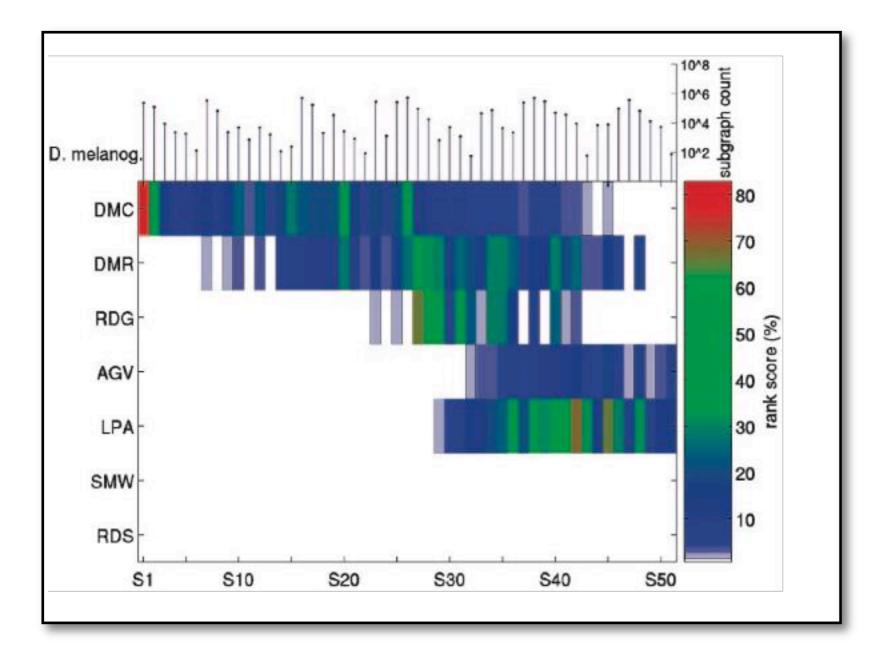
How Did the Fly Evolve?

	-	tep subgraphs * = 0.65)	sev	phs with up to ven edges * = 0.65)	-	tep subgraphs o* = 0.5)
Rank	Class	Score	Class	Score	Class	Score
1	DMC	8.2 ± 1.0	DMC	8.6 ± 1.1	DMC	0.8 ± 2.9
2	DMR	-6.8 ± 0.9	DMR	-6.1 ± 1.7	DMR	-2.1 ± 2.0
3	RDG	-9.5 ± 2.3	RDG	-9.3 ± 1.6	AGV	-3.1 ± 2.2
4	AGV	-10.6 ± 4.2	AGV	-11.5 ± 4.1	LPA	-10.1 ± 3.1
5	LPA	-16.5 ± 3.4	LPA	-14.3 ± 3.2	SMW	-20.6 ± 1.9
6	SMW	-18.9 ± 0.7	SMW	-18.3 ± 1.9	RDS	-22.3 ± 1.7
7	RDS	-19.1 ± 2.3	RDS	-19.9 ± 1.5	RDG	-22.5 ± 4.7

Drosophila is consistently (independently of the cut-off in subgraph size) classified as a DMC network, with an especially strong prediction for a confidence threshold of $p^* = 0.65$.

- → Best overlap with DMC (Duplication-mutation, preserved complementarity)
- \rightarrow Scale-free or random networks are very unlikely
- \rightarrow what about protein-domain-interaction network of Thomas et al?

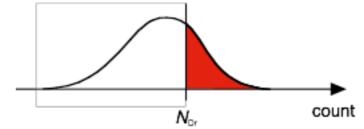
Motif Count Frequencies



-> DMC and DMR networks contain most subgraphs in similar amount as fly network.

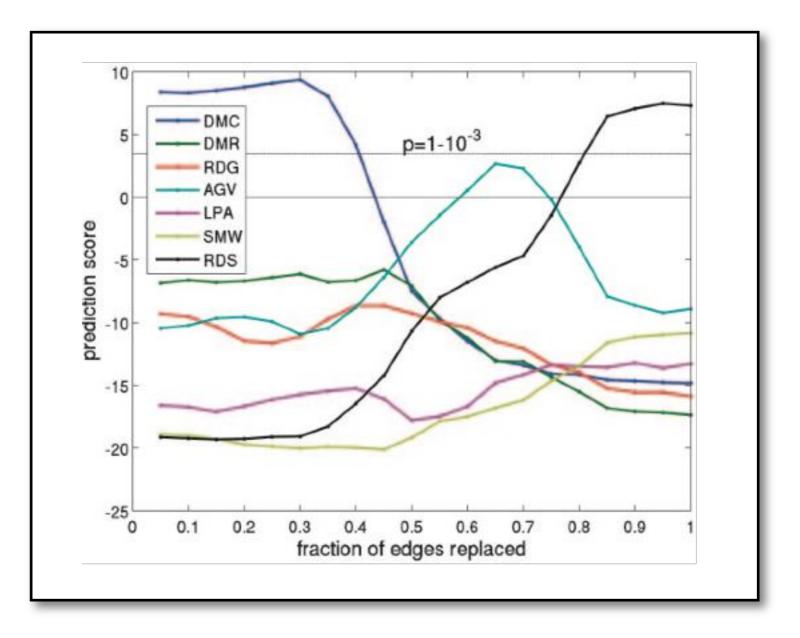
19

rank score: fraction of test networks with a higher count than Drosophila (50% = same count as fly on avg.)



Experimental Errors?

Randomly replace edges in fly network and classify again:



 \rightarrow Classification **unchanged** for \leq 30% incorrect edges

Summary (I)

Sampling matters!

 \rightarrow "Scale-free" *P(k)* obtained by sparse sampling from many network types

Test different hypotheses for

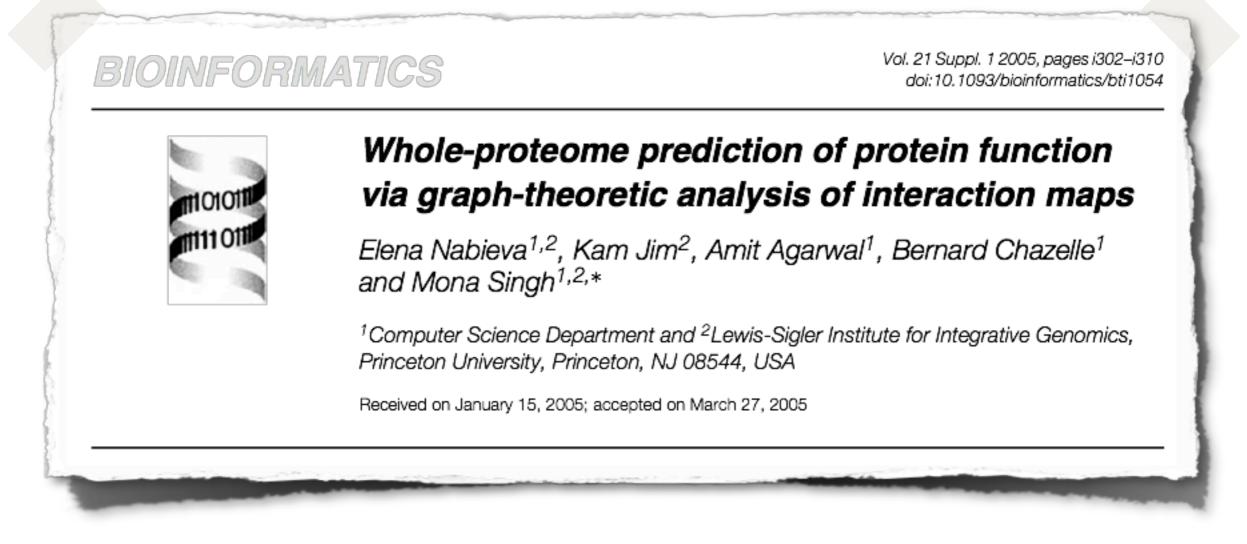
- global features
 - \rightarrow depends on unknown parameters and sampling
 - \rightarrow no clear statement possible
- local features (motifs)
 - \rightarrow are better preserved
 - \rightarrow DMC best among tested prototypes

What Does a Protein Do?

 Explorer [SEARCH][BROWSE] 1 Oxidoreductases (4042 organisms) \$ 2 Transferases (3198 organisms) \$ 2.1 Transferring one-carbon groups (615 organisms) \$ 2.1.1 Methyltransferases (514 organisms) \$ 2.1.2 Hydroxymethyl-, formyl- and related transferases (82 organisms) \$ 2.1.3 Carboxy- and carbamoyltransferases (105 organisms) \$ 2.1.4 Amidinotransferases (32 organisms) \$ 2.1.4.1 glycine amidinotransferase (17 organisms) \$ 2.1.4.2 scyllo-inosamine-4-phosphate amidinotransferase (15 organisms) \$ 2.2 Transferring aldehyde or ketonic groups (91 organisms) \$ 2.3 Acyltransferases (925 organisms) \$ 2.4 Glycosyltransferases (925 organisms) \$ 2.5 Transferring alkyl or aryl groups, other than methyl groups (547 organisms) \$
 ⇒ 2 Transferases (3198 organisms) \$ ■ \$ ⇒ 2.1 Transferring one-carbon groups (615 organisms) \$ ■ \$ ⇒ 2.1.1 Methyltransferases (514 organisms) \$ ■ \$ ⇒ 2.1.2 Hydroxymethyl-, formyl- and related transferases (82 organisms) \$ ■ \$ ⇒ 2.1.3 Carboxy- and carbamoyltransferases (105 organisms) \$ ■ \$ ⇒ 2.1.4 Amidinotransferases (32 organisms) \$ ■ \$ ⇒ 2.1.4.1 glycine amidinotransferase (17 organisms) \$ ■ \$ ⇒ 2.1.4.2 scyllo-inosamine-4-phosphate amidinotransferase (15 organisms) \$ ■ \$ ⇒ 2.1 Transferring aldehyde or ketonic groups (91 organisms) \$ ■ \$ ⇒ 2.3 Acyltransferases (920 organisms) \$ ■ \$ ⇒ \$<!--</td-->
 1.2.6 Transferring nitrogenous groups (377 organisms) 1.2.7 Transferring phosphorus-containing groups (1343 organisms) 1.2.8 Transferring sulfur-containing groups (276 organisms) 1.2.9 Transferring selenium-containing groups (6 organisms) 1.3 Hydrolases (4453 organisms) 1.4 Lyases (2145 organisms) 1.5 Isomerases (849 organisms) 1.6 Ligases (686 organisms) 1.6 Ligases (686 organisms)

Enzyme Classification scheme (from <u>http://www.brenda-</u> <u>enzymes.org</u>/)

Un-Classified Proteins?



Many unclassified proteins:

 \rightarrow estimate: ~1/3 of the yeast proteome not annotated functionally

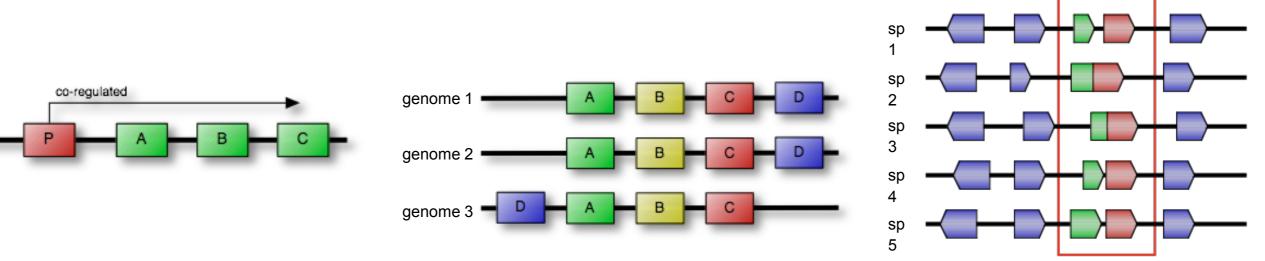
 \rightarrow BioGRID: 4495 proteins in the largest cluster of the yeast physical interaction map.

2946 have a MIPS functional annotation

Partition the Graph

Large **PPI networks** were built from:

- HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, ...)
- predictions (gene profiling, gene neighborhood, phylogenetic profiles, ...)
- \rightarrow proteins that are functionally linked

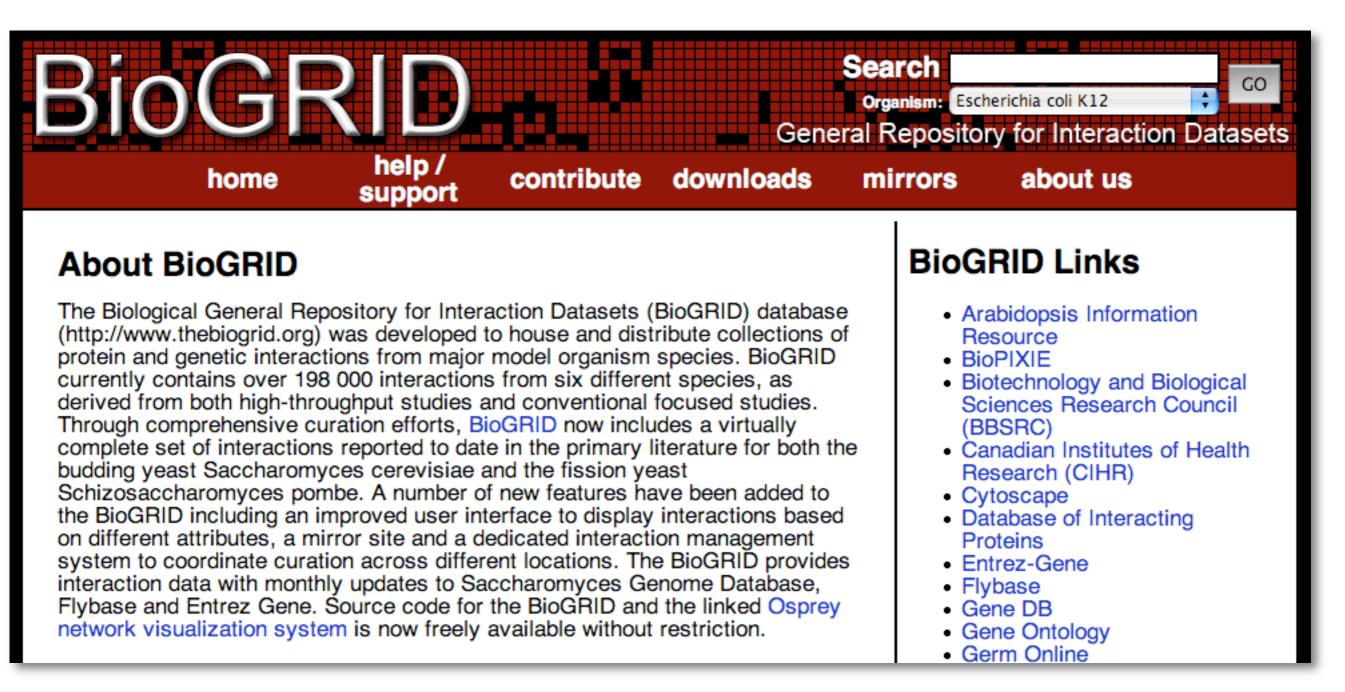


Identify **unknown functions** from **clustering** of these networks by, e.g.:

- shared interactions (similar neighborhood \rightarrow power graphs)
- membership in a community
- similarity of shortest path vectors to all other proteins (= similar path into the rest of the network)

Protein Interactions

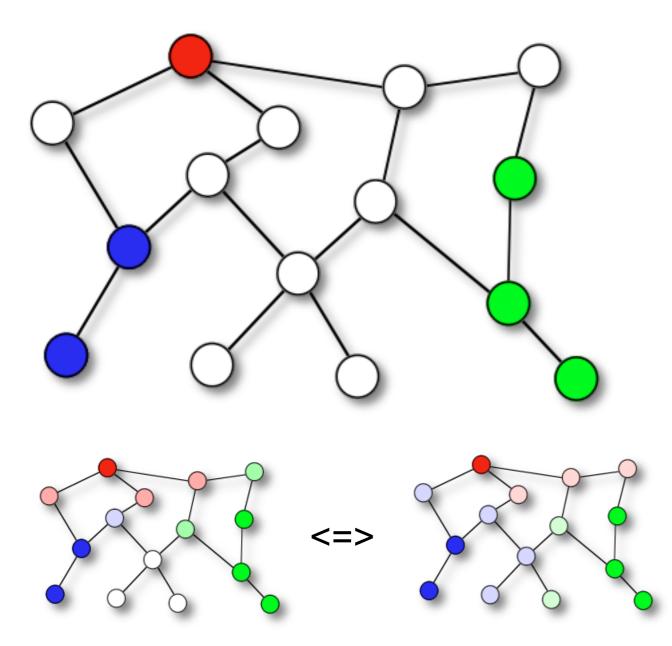
Nabieva et al used the *S. cerevisiae* dataset from GRID of 2005 (now BioGRID) \rightarrow 4495 proteins and 12 531 physical interactions in the largest cluster



http://www.thebiogrid.org/about.php

Function Annotation

Task: **predict** function (= functional annotation) for a protein from the **available** annotations



Similar:

How to **assign colors** to the white nodes?

Use information on:

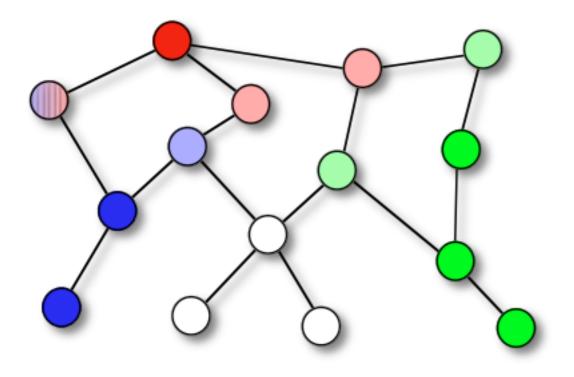
- distance to colored nodes
- local connectivity
- reliability of the links

• ...

Algorithm I: Majority

Schwikowski, Uetz, and Fields, "A network of protein–protein interactions in yeast" *Nat. Biotechnol.* **18** (2000) 1257

Consider all neighbors and **sum** up how often a certain **annotation occurs** \rightarrow score for an annotation = count among the direct neighbors \rightarrow take the 3 most frequent functions



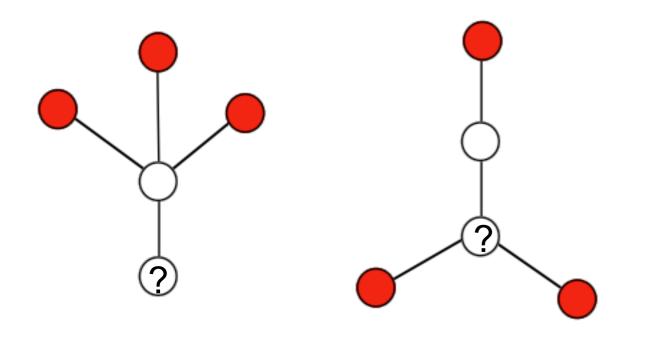
Majority makes only limited
 use of the local connectivity
 → cannot assign function to
 next-neighbors

For weighted graphs: \rightarrow weighted sum

Extended Majority: Neighborhood

Hishigaki, Nakai, Ono, Tanigami, and Takagi, "Assessment of prediction accuracy of protein function from protein–protein interaction data", *Yeast* **18** (2001) 523

Look for **overrepresented** functions within a given **radius** of 1, 2, or 3 links \rightarrow use as function score the value of a χ^2 -test



Neighborhood does not consider local network topology

Both examples are treated **identically** with *r* = 2

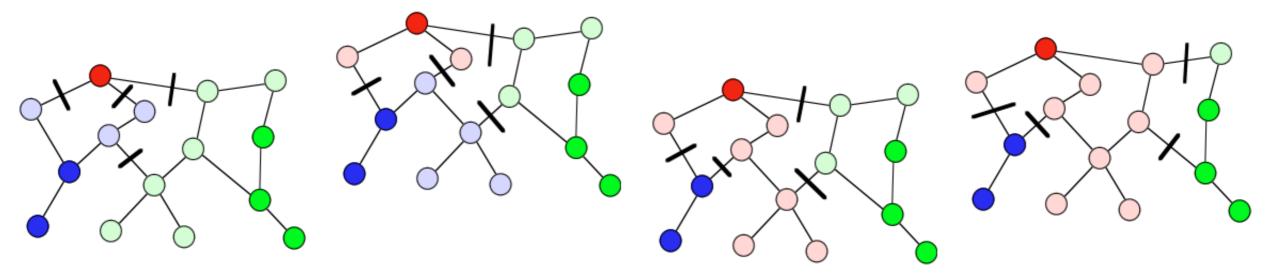
Neighborhood can not (easily) be generalized to weighted graphs!

Minimize Changes: GenMultiCut

Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif, "Whole-genome annotation by using evidence integration in functional-linkage networks" PNAS **101** (2004) 2888

"Annotate proteins so as to **minimize** the number of times that **different** functions are associated with **neighboring** proteins"

 \rightarrow generalization of the multiway *k*-cut problem for weighted edges, can be stated as an integer linear program (ILP)



Multiple possible solutions \rightarrow scores from **frequency** of annotations

Nabieva et al: FunctionalFlow

Extend the idea of "guilty by association"

 \rightarrow each annotated protein is a source of "function"-flow

- \rightarrow simulate for a few time steps
 - \rightarrow choose the annotation *a* with the highest accumulated flow

Each node *u* has a reservoir $R_t(u)$, each edge a capacity constraint (weight) $w_{u,v}$

Initially: $R_0^a(u) = \begin{cases} \infty, & \text{if } u \text{ is annotated with } a, \\ 0, & \text{otherwise.} \end{cases}$ and $g_0^a(u,v) = 0$

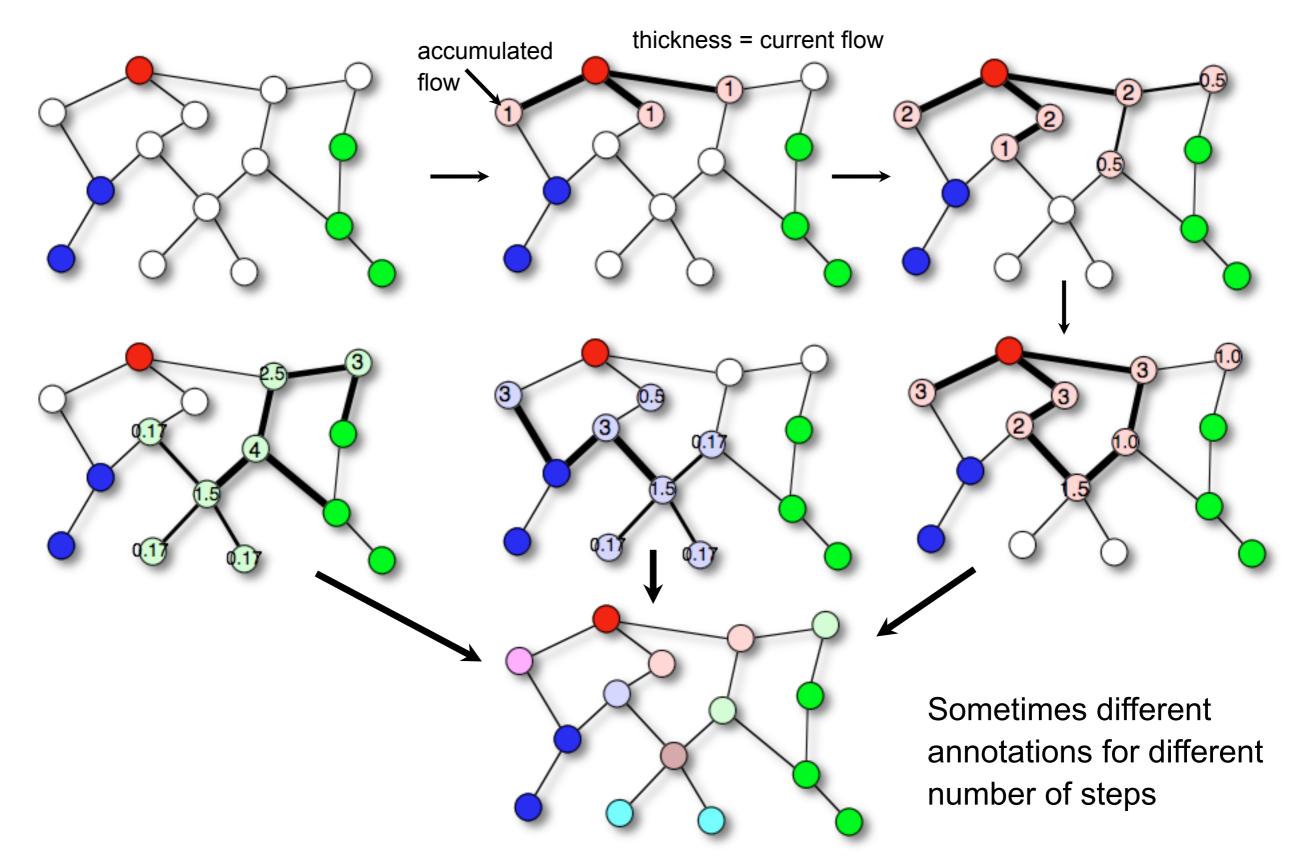
Then: downhill flow with capacity constraints

 $g_t^a(u,v) = \begin{cases} 0, & \text{if } R_{t-1}^a(u) < R_{t-1}^a(v) \\ \min\left(w_{u,v}, \frac{w_{u,v}}{\sum_{(u,y) \in E} w_{u,y}}\right), & \text{otherwise.} \end{cases}$

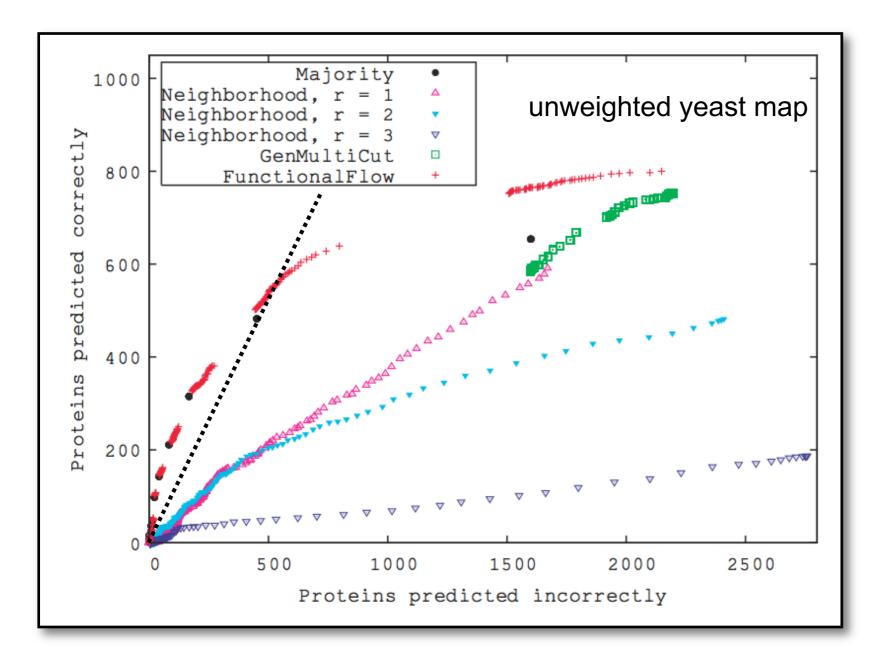
Score from accumulated in-flow: $f_a(u) = \sum_{t=1}^d \sum_{v:(u,v)\in E} g_t^a(v,u)$

V6 - 30

An Example



Comparison

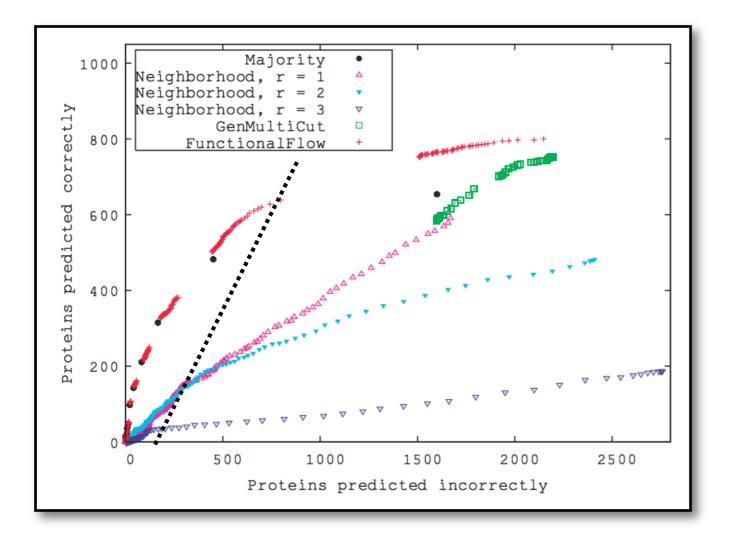


For FunctionalFlow: six propagation steps (diameter of the yeast network \approx 12)

Change score threshold for accepting annotations \rightarrow ratio TP/FP

- \rightarrow FunctionalFlow performs best in the high-confidence region
- \rightarrow many false predictions!!!

Comparison Details

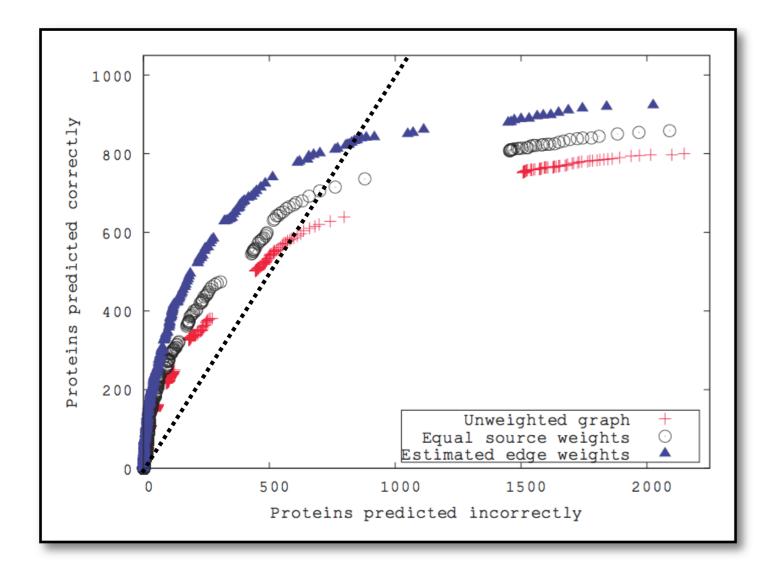


Multiple runs (solutions) of FunctionalFlow (with slight random perturbations of the weights) → increases prediction accuracy Majority vs. Neighborhood @ *r* = 1 → counting neighboring annotations is more effective than χ²-test

Neighborhood with r = 1 comparable to FunctionalFlow for high-confidence region, performance decreases with increasing $r \rightarrow bad$ idea to **ignore** local connectivity

Weighted Graphs

Performance of FunctionalFlow with differently weighted data:



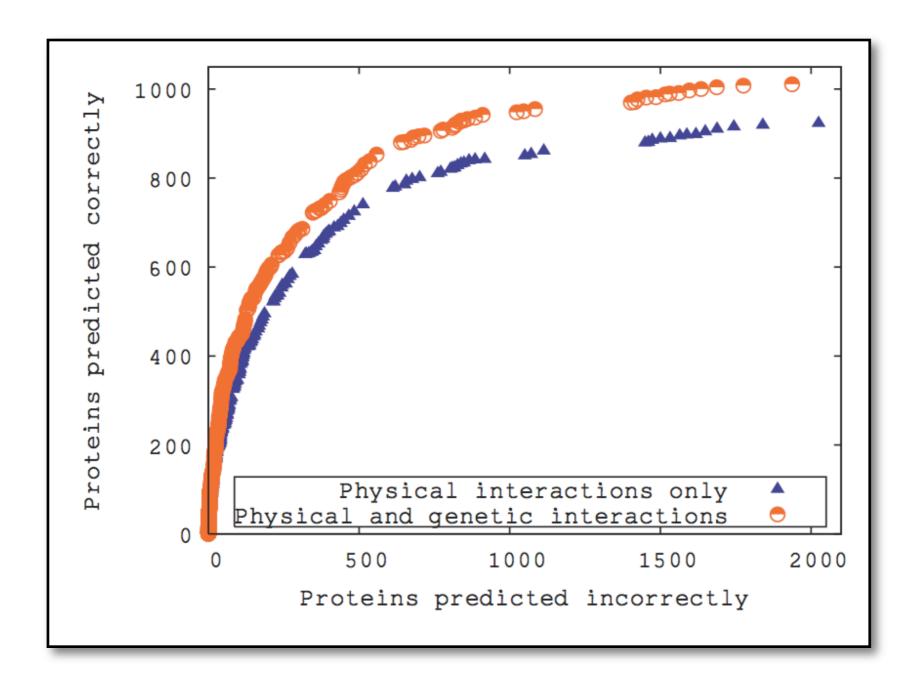
Compare:

- unweighted
- weight 0.5 per experiment
- weight for experiments according to (estimated) reliability

Largest improvement

→ individual experimental reliabilities

Additional Information



Use **genetic linkage** to modify the edge **weights** → better performance (also for Majority and GenMultiCut)

Bioinformatics 3 – WS 13/14

Nabieva et al, Bioinformatics 21 (2005) i302

Summary: Static PPI-Networks

"Proteins are **modular machines**" <=> How are they related to each other?

- Understand "Networks" prototypes (ER, SF, ...) and their properties (*P(k), C(k),* clustering, ...)
- 2) Get the data

experimental and theoretical techniques (Y2H, TAP, co-regulation, ...), quality control and data integration (Bayes)

3) Analyze the data

compare P(k), C(k), clusters, ... to prototypes \rightarrow highly modular, clustered with sparse sampling \rightarrow PPI networks are not scale-free

4) Predict missing information

network structure combined from multiple sources \rightarrow functional annotation

Next step: environmental changes, cell cycle

 \rightarrow changes (dynamics) in the PPI network – how and why?