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V9 Topologies and Dynamics of Gene Regulatory Networks 
Who are the players in GRNs? SILAC technology 
 
What are the kinetic rates? 
 
 
DREAM3 contest for network reconstruction 
 
 
Algorithm by team of Mark Gerstein 

9. Lecture WS 2013/14 
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Rates of mRNA transcription and protein translation 

Schwanhäuser et al. Nature 473, 337 (2011) 

Parallel quantification of mRNA and protein turnover 
and levels. Mouse fibroblasts were pulse-labelled 
with heavy amino acids (SILAC, left) and the 
nucleoside 4-thiouridine (4sU, right).  
Protein and mRNA turnover is quantified by mass 
spectrometry and next-generation sequencing, 
respectively. 

SILAC: „stable isotope labelling by 
amino acids in cell culture“ means that 
cells are cultivated in a medium 
containing heavy stable-isotope 
versions of essential amino acids.  
 
When non-labelled (i.e. light) cells are 
transferred to heavy SILAC growth 
medium, newly synthesized proteins 
incorporate the heavy label while pre-
existing proteins remain in the light 
form. 

9. Lecture WS 2013/14 
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Rates of mRNA transcription and protein translation 

Schwanhäuser et al. Nature 473, 337 (2011) 

Mass spectra of peptides for 
two proteins. 
 
Top: high-turnover protein 
Bottom: low-turnover protein. 
 
Over time, the heavy to light 
(H/L) ratios increase. 
 
You should understand 
these spectra! 

84,676 peptide sequences were identified by MS and assigned to 6,445 unique proteins.  
 
5,279 of these proteins were quantified by at least three heavy to light (H/L) peptide ratios 

9. Lecture WS 2013/14 
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Compute protein half-lives 

Schwanhäuser et al. Nature 473, 337 (2011) 

The same is done to compute mRNA 
half-lives (not shown). 

9. Lecture WS 2013/14 

Extract ratio r of protein with heavy amino 
acids (PH) and light amino acids (PL): 

Assume that proteins labelled with light amino 
acids decay exponentially with degradation 
rate constant kdp : 

Express (PH) as difference between total 
number of a specific protein Ptotal and PL: 

Assume that Ptotal doubles during duration of 
one cell cycle (which lasts t ): 

Consider m intermediate time points: 
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mRNA and protein levels and half-lives 

Schwanhäuser et al. Nature 473, 337 (2011) 

c, d, Although mRNA and protein levels 
correlated significantly, correlation of half-
lives was virtually absent 

a, b, Histograms of mRNA (blue) and 
protein (red) half-lives (a) and levels (b). 
 
Proteins were on average 5 times more 
stable (9h vs. 46h) and 900 times more 
abundant than mRNAs and spanned a 
higher dynamic range.  

9. Lecture WS 2013/14 
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Mathematical model 

The mRNA (R) is synthesized with a constant rate vsr and degraded proportional to 
their numbers with rate constant kdr.  
 
The protein level (P) depends on the number of mRNAs, which are translated with 
rate constant ksp. 
  
Protein degradation is characterized by the rate constant kdp.  
 
The synthesis rates of mRNA and protein are calculated from their measured half 
lives and levels. 

A widely used minimal description 
of the dynamics of transcription 
and translation includes the 
synthesis and degradation of 
mRNA and protein, respectively 

9. Lecture WS 2013/14 

Schwanhäuser et al. Nature 473, 337 (2011) 
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Computed transcription and translation rates 

Schwanhäuser et al. Nature 473, 337 (2011) 

Calculated 
translation rate 
constants are not 
uniform 

Average cellular transcription rates predicted by 
the model span two orders of magnitude. 
 
The median is about 2 mRNA molecules 
per hour (b). An extreme example is Mdm2  
with more than 500 mRNAs per hour 
 
 
 
 
 
 
The median translation rate constant  
is about 40 proteins per mRNA 
per hour 

9. Lecture WS 2013/14 
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Schwanhäuser et al. Nature 473, 337 (2011) 

Abundant proteins are translated about 100 
times more efficiently than those of low 
abundance 
 
Translation rate constants of abundant proteins 
saturate between approximately 120 and 240 
proteins per mRNA per hour. 
 
The maximal translation rate constant in 
mammals is not known. 
 
The estimated maximal translation rate 
constant in sea urchin embryos is 140 copies 
per mRNA per hour, which is surprisingly close 
to the prediction of this model. 

9. Lecture WS 2013/14 

Maximal translation constant 
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Mathematical reconstruction of Gene Regulatory Networks 

Marbach et al. PNAS 107, 6286 (2010) 

DREAM: Dialogue on Reverse Engineerging 
Assessment and Methods 
 
Aim:  
systematic evaluation of methods for 
reverse engineering of network topologies 
(also termed network-inference methods). 
 
Problem:  
correct answer is typically not known for real 
biological networks 
 
Approach:  
generate synthetic data 
 
 

Gustavo Stolovitzky/IBM 
9. Lecture WS 2013/14 
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Generation of Synthetic Data 

Marbach et al. PNAS 107, 6286 (2010) 

Transcriptional regulatory networks are modelled consisting of genes, mRNA, and proteins. 
 
The state of the network is given by the vector of mRNA concentrations x and protein 
concentrations y.  
 
Only transcriptional regulation considered, where regulatory proteins (TFs) control the 
transcription rate (activation) of genes (no epigenetics, microRNAs etc.). 
 
The gene network is modeled by a system of differential equations 

where mi is the maximum transcription rate, ri the translation rate, λi
RNA and λi

Prot are the 
mRNA and protein degradation rates and fi(.) is the so-called input function of gene i. 

9. Lecture WS 2013/14 
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The input function fi() 

Marbach et al. PNAS 107, 6286 (2010) 

The input function describes the relative activation of the gene, which is between 0 (the 
gene is shut off) and 1 (the gene is maximally activated), given the transcription-factor (TF) 
concentrations y. 
 
We assume that binding of TFs to cis-regulatory sites on the DNA is in quasi-equilibrium, 
since it is orders of magnitudes faster than transcription and translation.  
 
In the most simple case, a gene i is regulated by a single TF j. In this case, its promoter 
has only two states: either the TF is bound (state S1) or it is not bound (state S0). 
 
The probability P(S1) that the gene i is in state S1 at a particular moment is given by the 
fractional saturation, which depends on the TF concentration yj 

9. Lecture WS 2013/14 
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Excursion: the Hill equation 

Goutelle et al. Fundamental & Clinical Pharmacology 22 (2008) 633–648 

Let us consider the binding reaction of two molecules L and M: 

9. Lecture WS 2013/14 

The dissociation equilibrium constant KD is defined as follows: 

where [L], [M], and [LM] are the molecular concentrations of the 3 molecules. 
 
In equilibrium, we may take T as the total concentration of molecule L  

y   is the fraction of molecules L that have reacted 
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Excursion: the Hill equation 

Substituting [LM] by   [L] [M] / KD gives  ( rearranged from                                 

9. Lecture WS 2013/14 

Back to our case about TF binding to DNA. TF then takes the role of M. Divide eq by KD. 
 
The probability P(S1) that the gene i is in state S1 at a particular moment is given by the 
fractional saturation, which depends on the TF concentration yj 

where kij is the dissociation constant and nij the Hill coefficient. 
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The input function fi() 

Marbach et al. PNAS 107, 6286 (2010) 

P(S1) is large if the concentration of the TF j is large and if the dissociation constant is 
small (strong binding). 
 
The bound TF activates or represses the expression of the gene.  
In state S0  the relative activation is α0 and in state S1 it is α1.  
 
Given P(S1) and its complement P(S0) , the input function fi(yj) is obtained, which computes 
the mean activation of gene i as a function of the TF concentration yj  

9. Lecture WS 2013/14 
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The input function fi() 

Marbach et al. PNAS 107, 6286 (2010) 

This approach can be used for an arbitrary number of regulatory inputs.  
 
A gene that is controlled by N TFs has 2N states: each of the TFs can be bound or not 
bound.  
 
Thus, the input function for N regulators would be 

9. Lecture WS 2013/14 
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Synthetic gene expression data 

Marbach et al. PNAS 107, 6286 (2010) 

Gene knockouts were simulated by setting the maximum transcription  
rate of the deleted gene to zero, knockdowns by dividing it by two.  
 
Time-series experiments were simulated by integrating the dynamic 
evolution of the network ODEs using different initial conditions.  
 
For the networks of size 10, 50, and 100, 4, 23, and 46 different time  
series were provided, respectively.  
For each time series, a different random initial condition was used for the mRNA and 
protein concentrations. Each time series consisted of 21 time points. 
  
Trajectories were obtained by integrating the networks from the given initial conditions 
using a Runge-Kutta solver. 
 
White noise with a standard deviation of 0.05 was added after the simulation to the 
generated gene expression data.  

9. Lecture WS 2013/14 
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Synthetic networks 

Marbach et al. PNAS 107, 6286 (2010) 

The challenge was structured as three separate subchallenges with networks of 10, 50, 
and 100 genes, respectively. For each size, five in silico networks were generated.  
 
These resembled realistic network structures by extracting modules from the known 
transcriptional regulatory network for Escherichia coli (2x) and for yeast (3x). 
 
 
 Example network  E.coli   Example network yeast 

9. Lecture WS 2013/14 
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Evaluation of network predictions 

Marbach et al. PNAS 107, 6286 (2010) 

(B) Example of a prediction by the best-performer team. The format is a ranked list of 
predicted edges, represented here by the vertical colored bar. The white stripes indicate the 
true edges of the target network. A perfect prediction would have all white stripes at the top of 
the list.  
Inset shows the first 10 predicted edges: the top 4 are correct, followed by an incorrect 
prediction, etc. The color indicates the precision at that point in the list. E.g., after the first 10 
predictions, the precision is 0.7 (7 correct predictions out of 10 predictions).  

(A) The true 
connectivity of 
one of the 
benchmark 
networks of 
size 10.  

(C) The network prediction 
is evaluated by computing 
a P-value that indicates its 
statistical significance 
compared to random 
network predictions. 

9. Lecture WS 2013/14 
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Similar performance on different network sizes 

Marbach et al. PNAS 107, 6286 (2010) 

The method by Yip et al. (method A) gave the best results for all 3 network sizes.  

9. Lecture WS 2013/14 
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Error analysis 

Marbach et al. PNAS 107, 6286 (2010) 

Left: 3 typical errors made in predicted networks. 
 
We will now discuss the best-performing method by Yip et al. 
Only this method gives stable results independent of the indegree of the target (right)  

9. Lecture WS 2013/14 
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Synthetic networks 

Yip et al. PloS ONE 5:e8121 (2010) 

Best performing team in DREAM3 contest 
 
Applied a simple noise model and linear and sigmoidal ODE models. 
 
Predictions from the 3 models were combined. 
 
 
 
       Mark Gerstein/Yale  

9. Lecture WS 2013/14 
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Cumulative distribution function 

www.wikipedia.org 

The cumulative distribution function (CDF) describes the probability that a real-
valued random variable X with a given probability distribution P will be found at a 
value less than or equal to x.  

9. Lecture WS 2013/14 

CDF of the normal distribution 

Different normal distributions 

The complementary cumulative distribution 
function (ccdf) or simply the tail distribution 
addresses the opposite question and asks 
how often the random variable is above a 
particular level. It is defined as 

file://upload.wikimedia.org/wikipedia/commons/7/74/Normal_Distribution_PDF.svg
file://upload.wikimedia.org/wikipedia/commons/c/ca/Normal_Distribution_CDF.svg
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

If we were given: 
xa

b : observed expression level of gene a in deletion strain of gene b, and  
xa

wt*:  real expression level of gene a in wild type xa
wt* (without noise) 

 
we would like to know whether the deviation xa

b - xa
wt* is merely due to noise.  

 

 Need to know the variance σ2 of the Gaussian,  
assuming the noise is non systematic so that the mean μ is zero. 
 
Later, we will discuss the fact that xa

wt*:  is also subject to noise so that we are 
only provided with the observed level xa

wt . 

9. Lecture WS 2013/14 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

The probability for observing a deviation at least as large as xa
b - xa

wt* due to random chance 
is 
 
where Φ is the cumulative distribution function of the standard Gaussian distribution. 
 
-> The deviation is taken relative to the width (standard dev.) of the Gaussian which 
describes the magnitude of the „normal“ spread in the data. 
 
-> 1 - CDF measures the area in the tail of the distribution. 
 
-> The factor 2 accounts for the fact that we have two tails left and right. 
 
The complement of the above equation 
 
 
is the probability that the deviation is due to a real (i.e. non-random) regulation event. 

9. Lecture WS 2013/14 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

One can then rank all the gene pairs (b,a) in descending order of pba. 
 
For this we first need to estimate σ2  from the data. 
 
Two difficulties. 
(1) the set of genes a not affected by the deleted gene b is unknown. This is exactly what 
we are trying to learn from the data. 
(2) the observed expression value of a gene in the wild-type strain, xa

wt, is also subjected 
to random noise, and thus cannot be used as the gold-standard reference point xa

wt* in the 
calculations 

 
Use an iterative procedure to progressively refine the estimation of pba.  

9. Lecture WS 2013/14 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

We start by assuming that the observed wild-type expression levels xa
wt  are reasonable 

rough estimates of the real wild type expression levels xa
wt*.  

 
For each gene a, our initial estimate for the variance of the Gaussian noise is set as the 
sample variance of all the expression values of a in the different deletion strains b1 - bn. 
 
Repeat the following 3 steps for a number of iterations: 
 
(1). Calculate the probability of regulation pba for each pair of genes (b,a) based on the 
current reference points xa

wt.  
 
Then use a p-value of 0.05 to define the set of potential regulations:  
if the probability for the observed deviation from wild type of a gene a in a deletion strain b 
to be due to random chance only is less than 0.05, we treat ba as a potential regulation.  
 
Otherwise, we add (b,a) to the set P of gene pairs for refining the error model. 

9. Lecture WS 2013/14 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010) 

(2) Use the expression values of the genes in set P to re-estimate the variance of the 
Gaussian noise. 
 
 
 
 
(3) For each gene a, we re-estimate its wild-type expression level by the mean of its 
observed expression levels in strains in which the expression level of a is unaffected by the 
deletion 
 
 
 
After the iterations, the probability of regulation pba  is computed using the final estimate 
of the reference points xa

wt and the variance of the Gaussian noise σ2 . 

9. Lecture WS 2013/14 
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Learning ODE models from perturbation time series data 

Yip et al. PloS ONE 5:e8121 (2010) 

For time series data after an initial perturbation, we use differential equations to model the 
gene expression rates. The general form is as follows: 
 
 
 
with xi : expression level of gene i ,  
 
fi (…): function that explains how the expression rate of gene i is affected by the expression 
level of all the genes in the network, including the level of gene i itself. 

9. Lecture WS 2013/14 
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Learning ODE models from perturbation time series data 

Yip et al. PloS ONE 5:e8121 (2010) 

Various types of function fi have been proposed.  
 
We consider two of them. The first one is a linear model 
 
 
 
ai0 : basal expression rate of gene i in the absence of regulators,  
aii : decay rate of mRNA transcripts of i,  
S : set of potential regulators of i (we assume no self regulation, so i not element of S). 
 
For each potential regulator j in S, aij explains how the expression of i is affected by the 
abundance of j.  
 
A positive aij indicates that j is an activator of i , and a negative aij indicates that j is a 
suppressor of i . 
 
The linear model contains Ι S Ι + 2 parameters aij. 

9. Lecture WS 2013/14 
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Learning ODE models from perturbation time series data 

Yip et al. PloS ONE 5:e8121 (2010) 

The linear model assumes a linear relationship between the expression level of the 
regulators and the resulting expression rate of the target. 
 
But real biological regulatory systems seem to exhibit nonlinear characteristics. The 
second model assumes a sigmoidal relationship between the regulators and the target 
 
 
 
bi1 : maximum expression rate of i , bi2 : its decay rate 
 
The sigmoidal model contains Ι S Ι + 3 parameters. 
 
Try 100 random initial values and refine parameters by Newton minimizer so that the 
predicted expression time series give the least squared distance from the real time series. 
 
Score: negative squared distance 

9. Lecture WS 2013/14 
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Learning ODE models from perturbation time series data 

Yip et al. PloS ONE 5:e8121 (2010) 

• Batch 1 contains the most confident predictions: all predictions with probability of regulation                   
pba > 0.99 according to the noise model learned from homozygous deletion data 
 
• Batch 2: all predictions with a score two standard deviations below the average according to all types 
(linear AND sigmoidal) of differential equation models learned from perturbation data 
 
• Batch 3: all predictions with a score two standard deviations below the average according to all types 
of guided differential equation models learned from perturbation data, where the regulator sets contain 
regulators predicted in the previous batches, plus one extra potential regulator 
 
• Batch 4: as in batch 2, but requiring the predictions to be made by only one type (linear OR sigmoidal) 
of the differential equation models as opposed to all of them. 
 
• Batch 5: as in batch 3, but requiring the predictions to be made by only one type of the differential 
equation models as opposed to all of them 
 
• Batch 6: all predictions with pba > 0.95 according to both the noise models learned from homozygous 
and heterozygous deletion data, and have the same edge sign predicted by both models 
 
• Batch 7: all remaining gene pairs, with their ranks within the batch determined by their probability of 
regulation according to the noise model learned from homozygous deletion data 

9. Lecture WS 2013/14 
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Learning ODE models from perturbation time series data 

Yip et al. PloS ONE 5:e8121 (2010) 
9. Lecture WS 2013/14 
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Learning ODE models from perturbation time series data 

Yip et al. PloS ONE 5:e8121 (2010) 
9. Lecture WS 2013/14 

Interpretation: 
 
A network with 10 nodes has 10 x 9 possible edges 
 
Batch 1 already contains many of the correct edges (7/11 – 8/22). 
The majority of the high-confidence predictions are correct (7/11 – 8/12). 
 
Batch 7 contains only 1 correct edge for the E.coli-like network, but 9 or 10 
correct edges for the Yeast-like network. 
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Learning ODE models from perturbation time series data 

Yip et al. PloS ONE 5:e8121 (2010) 
9. Lecture WS 2013/14 

Not all regulation arcs can be detected from deletion data (middle): 
Left: G7 is suppressed by G3, G8 and G10 
Right: G8 and G10 have high expression levels in wt. 
Middle: removing the inhibition by G3 therefore only leads to small increase of G7 
which is difficult to detect. 
 
However the right panel suggests that the increased expression of G7 over time is  
anti-correlated with the decreased level of G3 
 This link was detected by the ODE-models in batch 2 
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Learning ODE models from perturbation time series data 

Yip et al. PloS ONE 5:e8121 (2010) 
9. Lecture WS 2013/14 

Another case: 
Left: G6 is activated by G1 and suppressed by G5. G1 also  suppresses G5. 
G1 therefore has 2 functions on G6. When G1 is expressed, deleting G5 (middle) 
has no effect. 
 
Right: G6 appears anti-correlated to G1. Does not fit with activating role of G1. 
 
But G5 is also anti-correlated with G6  evidence for inhibitory role of G5. 
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Summary : deciphering GRN topologies is hard 

Yip et al. PloS ONE 5:e8121 (2010) 

GRN networks are hot topic. 
 
They give detailed insight into the circuitry of cells. 
 
This is important for understanding the molecular causes e.g. of diseases. 
 
 
New data are constantly appearing. 
 
The computational algorithms need to be adapted. 
 
 
Perturbation data (knockouts and time series following perturbations) are most 
useful for mathematic reconstruction of GRN topologies. 


