Bioinformatics 111

Prof. Dr. Volkhard Helms Saarland University
Maryam Nazarieh, Duy Nguyen, Thorsten Will Chair for Computational Biology
Winter Semester 2016/2017

Exercise Sheet 2
Due: Nov 11, 2016 13:15

Submit your solutions on paper, hand-written or printed at the beginning of the lecture or in
building E2.1, Room 3.02. Alternatively you may send an email with a single PDF attachment.
If possible, please include source code listings. Additionally hand in all source code via mail to

thorsten.will@bioinformatik.uni-saarland.de.

2 Force directed layouts and real interaction networks

We continue to evolve the classes from the first assignment. The assignment of this week deals
with energies and forces applied to layout networks and real data on protein-protein interaction
networks.

Exercise 2.1: Force directed layout of graphs (50 pts)

In this exercise you implement a layout algorithm for networks in the Layout-class by using energy
functions that mimic repulsive and attractive molecular forces. Subsequently, you read networks
from files and visualize the final layouts and the energy trajectories.

General remarks:

e The force equals the negative gradient of the energy, i.e., the force is a measure for how
much the energy changes with an infinitesimal displacement:

d/dx
?(7) = —VE(7), with the gradient operator V := [d/dy
d/dz

In a single dimension, this reduces to V = d/dr, i.e. the simple derivative with respect to the
distance r. The gradient of a function can consequently be understood as a multidimensional
slope.

e The interaction energy between two charges ¢; and ¢s is given as:

1 qq

E.(r)=
-(7) 4 - €ge T

For the connecting spring use the harmonic potential:

mailto:thorsten.will@bioinformatik.uni-saarland.de

(a)

As a preliminary consideration, use the general definitions above to calculate the force fields
F(?) = —VE(7) for both the Coulomb interaction E, and the harmonic potential Ej, in
cartesian coordinates.

Write V and the resulting force field ?(7) in component form to get one equation for x, y,
and z, each. This is the form that you need to implement the layout algorithm in the next
exercise. Note that:

r=vVZ+g+2 F@)=| FW
F.(2)

For the implementation, use variants of such interaction energies that are adapted to graphs.
Between all nodes, use a repulsive degree dependent Coulomb type potential, defined as:

Eo(ry) = ——
Tij
Additionally, for interacting nodes, use a degree independent harmonic attractive potential:

72

Ep(ry) = %

The parameter r;; is the distance between two nodes i and j. Because we layout in 2D, the
squared distance is defined as:
iy = (@i —) + (g — y;)°

The interaction between two nodes i, j is defined as:

1, if edge ¢ — j exists

0, else

WIil[j] = {

The basic approach (function layout(iterations)) can be outlined as:

(1) Calculate the pairwise forces between all nodes and sum them up for each of the nodes:
—> . .
Fij = Fo(Py) + WIl - Fa(Ty)
Thus, the total force on node i is F; =) j Fj;. Note that the forces between two nodes
are symmetric, i.e., Fi; = —Fy;.

(2) Update the position of each node from the forces as:
A’I‘i = - Fi

A reasonable value is a = 0.03. Do not forget to reset all the forces after this step.

(3) Calculate the total energy, which is the sum of all individual interaction energies:

Eior = Y Ee(ryy) + WIilj] - En(rij)
j>i
The energy of each iteration is stored and returned, the positions are altered in the
Node-objects.

The alternative function SAlayout(iterations) additionally adds a random force, a “ther-
mal contribution”, to the total force on each node in each iteration which should decrease
(implement!) in every step. This optimization principle is called simulated annealing. Why
is it worthwhile in practice?

To store energy and positions the Node-class is extended “on-the-fly” (see source code). This
will magically add those attributes to your Node-objects .

(¢) Implement GenericNetwork, a network class that imports networks from files.

(d) Use the new classes to layout the test files “star.txt”, “square.txt”, “star++.txt” and
“dog.txt”, which are part of the supplement. Do 1000 iterations with both implementations
of the algorithm, report the final energies and plot the nicer layout. For one of the net-
works, also compare the energies per step for the basic and the simulated annealing method.
Tools.py contains new methods that you can use for plotting. You may need to restrict to
certain ranges of the axes to see the important differences.

(e) A general approach to speed up graph algorithms is to merge sets of nodes into "supernodes"
that represent them. Briefly describe how a layout procedure that uses this idea could
look like (in words, at most some lines of pseudecode, usage of common graph algorithms
allowed). Argument why the runtime improves and why you think your solution is reasonable
in practice.

Exercise 2.2: Real interaction networks (50 pts)

BioGRID ("Biological General Repository for Interaction Datasets”) is a protein interaction database
which, in version 3.4.142 (Nov. 2015), contains data of 842,529 raw protein and genetic interac-
tions from major model organism species compiled from 57,513 publications. The supplement
contains this release as a tab-separated file (“BioGRID.txt"”). The format is documented in the
beginning of the file, make yourself familiar with that.

In this exercise you implement the class BioGRIDReader which should help you to deal with
such data.

(a) The class should read the file in its initialization and store the necessary data in a data
structure that simplifies your later queries. For every organism found in the file (as NCBI
taxon identifiers) one should be able to retrieve all interactions as pairs of official gene
symbols easily.

(b) Implement getMostAbundantTaxonIDs(n) and use it to return the five organism with
the most interactions annotated in BioGRID as well as their respective number of interac-
tions. Argument why the order is not surprising.

(¢) How big is the human interaction network and which are the 10 proteins with the high-
est degree? Take one of them as an example and briefly explain the biology behind the
connectivity.

(d) Implement writeInteractionFile(taxon id, filename) to be able to create organism-
specific network files that can be used by the GenericNetwork-class. Build a network for
human (taxon 9606), determine and plot the corresponding degree distribution. Discuss if
the distribution behaves more like a scale-free or a random network.

(e) At last, analytically assess a part of the the previous issue. The degree distribution of a
scale-free network follows a power law, which has the form

P(k) ~ k.

To simplify the exercise, we assume P(k) = CEk~7, with C being a fixed normalization
constant to obtain a proper distribution. Now fit this theoretical distribution to the degree
distribution of the human interaction network using the Kolmogorov-Smirnov (KS) distance.
Follow this guideline:

e Implement Tools.getScaleFreeDistributionHistogram(gamma, k) which returns
such a simple power law distribution (histograml|i] = math.pow(i, —gamma) and normal-
ization afterwards).

e Implement the KS distance in Tools.simpleKSdist(histogram a, histogram b):
The KS distance of two distributions is the maximal distance between their respective
cumulative distributions Fj:

D= sup |Fi(x) — Fa(x)|

Thus, first build cumulative distributions from the normalized histograms, then find
the position where the distributions deviate the most and return this distance.

e Use the KS distance to determine a « (between 1 and 2, 0.1 steps sufficient) for the
power law distribution that fits best to the degree distribution of the human interaction
network. Compare the empirical distribution of the network to the theoretical distri-
butions in a double-log. plot. Comment on the quality of your fit, reason why it may
fail and how it could be vastly improved.

You can use compareToTheory.py as a template to program this study.

Have fun!

	Force directed layouts and real interaction networks

