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Dynamic Simulations of Networks

A static analysis of a (metabolic) network can reveal its steady state properties like the most
important flux modes or identify seamingly redundant reactions. However, as life is not always
static, a network can exhibit a different or unexpected behavior, when subjected to time dependent
concentration changes of the metabolites. This is where dynamic network simulations come into
play.

For these dynamic simulations, two major approaches exist: for large densities of the relevant
molecules, the network can be treated by a set of differential equations that describe the time evo-
lution of the densities, while for small densities, where the dynamics are governed by the binding
and unbinding events of individual molecules, stochastic approaches like the Gillespie algorithm
are more appropriate.

When proceeding through this assignment you will build a solid understandign of the under-
lying theory and then get to model the circadian clock of Drosophila.

Exercise 9.1: Theoretical drill (50 points)

(a) Define Stochastic and Deterministic reaction kinetics. (5)

(b) Poissonian process. Master equations. Go through sections 1 - 3 in the tutorial of F.
Hayot and C. Jayaprakash (1). And at least 4.1.1. from the link (2) to get accustomed to
the differences in notations and get the point.

(1) Give 3 (three) examples of two-state system. (3)

(2) Why, on your opinion, does the probability density function for successive time intervals
in Poisson distribution is a decaying exponential? (7)

(3) Write down the probability P1(t + dt) that the particle is in state 1 at time t + dt
using the rules of conditional probability. Progress to the formulation of the Master
equations using the definition of reaction rate. Mention the Markov assumption about
the transition rate at some appropriate point. (7)

(4) What is the Master equation? (7)

(c) Gillespie algorithm (i). (7)

”Gillespie at showed the algorithm to be equivalent to solving the equation of a
system of reactions in a well stirred container. The crux of the algorithm is the drawing
of two numbers at each time step, one to , the second one to .”



 (A)                                                                                       (B)

Figure 1: (A) - plot of the solution of the deterministic system versus three different realizations of the
stochastic system; (B) - simulation of Lotka-Volterra Two Species Model. (borrowed from here)

(d) Gillespie algorithm (ii). Write down the steps of Gillespie algorithm in the easy
pseudocode version. (7)

(e) Elaborate on the behaviour of the Stochastic and Deterministic models plotted
on the Figure 1. Mention the effect that the noise has on the model. Also talk about the
quality of the predictions that models generate. (7)

http://www.math.wisc.edu/~anderson/605F11/IntroSlides.pdf


Oscillating Reactions: Circadian Clock

Exercise 9.2: Deterministic versus stochastic models for circadian rythms. (50 points)
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Figure 9.11 Goldbeter’s model of circadian
rhythms (Goldbeter 1995). PER protein is
synthesized in the cytoplasm, where it is
successively phosphorylated, as indicated
by subscripts. The doubly phosphorylated
form enters the nucleus and represses
transcription of the per gene.

cess involving phosphorylation by DBT kinase, binding to TIM subunits, transport into
the nucleus, and interaction with the transcription factors (CLK and CYC).

It is clear to all that the control system is dominated by a time-delayed negative–
feedback loop, quite close in principle to Goodwin’s original negative feedback
oscillator. Numerous theoreticians have exploited the interesting nonlinear dynam-
ics of delayed negative feedback in order to model certain characteristics of circadian
rhythms. Ruoff and Rensing have explored the capabilities of Goodwin’s Equation
(9.18), with p ! 9, to account for temperature compensation, entrainment, and phase
resetting (Ruoff and Rensing 1996).

Goldbeter proposed a more complicated model, based loosely on Goodwin’s idea,
supplemented with reversible phosphorylation steps and nuclear transport; see Figure
9.11 (Goldbeter 1995). The kinetic equations describing this mechanism are
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The basal parameter values are:

vs! 0.76 µM/h, vm ! 0.65 µM/h, vd ! 0.95 µM/h,

ks! 0.38 h−1
, k1 ! 1.9 h−1

, k2 ! 1.3 h−1
,

V1! 3.2 µM/h, V2 ! 1.58 µM/h, V3 ! 5 µM/h, V4 ! 2.5 µM/h,

K1! K2 ! K3 ! K4 ! 2 µM, KI ! 1µM, Km1 ! 0.5 µM, Kd ! 0.2 µM.

Figure 9.12A shows a numerical simulation of this system of ODEs, with a period
close to 24 h. Figure 9.12B shows how the period of oscillation depends on vd, the

Figure 2: Reaction schematic

Figure 2 shows a model for circadian oscillations in Drosophila based on negative autoregulation
of the per gene by its protein product PER3. The model incorporates gene transcription into
per mRNA, transport of per mRNA into the cytosol as well as mRNA degradation, synthesis
of the PER protein at a rate proportional to the per mRNA level, reversible phosphorylation
and degradation of PER, as well as transport of PER into the nucleus where it represses the
transcription of the per gene. For details please refer to (3) and (4).

(a) Provide the deterministic version of a five-variable molecular model for circadian
oscillations (Figure 2). Rate equations. (15)

(b) Describe the reaction steps as stochastic birth and death processes. (10)

(c) Implement the deterministic model. (15)

Start with the following parameter set:
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oscillator. Numerous theoreticians have exploited the interesting nonlinear dynam-
ics of delayed negative feedback in order to model certain characteristics of circadian
rhythms. Ruoff and Rensing have explored the capabilities of Goodwin’s Equation
(9.18), with p ! 9, to account for temperature compensation, entrainment, and phase
resetting (Ruoff and Rensing 1996).

Goldbeter proposed a more complicated model, based loosely on Goodwin’s idea,
supplemented with reversible phosphorylation steps and nuclear transport; see Figure
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The basal parameter values are:

vs! 0.76 µM/h, vm ! 0.65 µM/h, vd ! 0.95 µM/h,

ks! 0.38 h−1
, k1 ! 1.9 h−1

, k2 ! 1.3 h−1
,

V1! 3.2 µM/h, V2 ! 1.58 µM/h, V3 ! 5 µM/h, V4 ! 2.5 µM/h,

K1! K2 ! K3 ! K4 ! 2 µM, KI ! 1µM, Km1 ! 0.5 µM, Kd ! 0.2 µM.

Figure 9.12A shows a numerical simulation of this system of ODEs, with a period
close to 24 h. Figure 9.12B shows how the period of oscillation depends on vd, the(d) Plot the protein and mRNA concentrations as functions of time. Describe your

findings. (5)

(e) What happens if you modify the PER-degradation rate vd? Verify your finding
plotting the period of oscillation as a function of vd. (5)
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