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V1 - Introduction 

A cell is a crowded environment
=> many different proteins, 
     metabolites, compartments, …

At the microscopic level
=> direct two-body interactions

At the macroscopic level
=> complex behavior

Can we understand the behavior 
from the interactions?

Medalia et al, Science 298 (2002) 1209

=> Connectivity
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The view of traditional molecular biology 

Molecular Biology:  "One protein  —  one function"

mutation  =>  phenotype

Linear one-way dependencies:  regulation at the DNA level, proteins follow

DNA   =>   RNA   =>   protein   =>   phenotype

Structural Biology:  "Protein structure determines its function"

biochemical conditions  =>  phenotype

No feedback, just re-action:

genetic 
information

molecular 
structure

biochemical 
function

phenotype=> => =>
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The Network View of Biology 

Molecular Systems Biology:  "It's both + molecular interactions"

genetic 
information

molecular 
structure

biochemical 
function

phenotype=> => =>

molecular 
interactions

 → highly connected network of various interactions, dependencies

=> study networks
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Major Metabolic Pathways 

static 
connectivity

dynamic response to 
external conditions

different states 
during the cell cycle

<=> <=>
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http://www.mvv-muenchen.de/de/netz-bahnhoefe/netzplaene/
index.html
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Lecture – Overview 

Protein-Protein-Interaction Networks:  pairwise connectivity
=> data from experiments, quality check

PPI:  static network structure
=> network measures, clusters, modules, …

Gene regulation:  cause and response
=> Boolean networks

Metabolic networks:  steady state of large networks
=> FBA,  extreme pathways

Metabolic networks / signaling networks:  dynamics
=> ODEs,  modules, stochastic effects

Protein complexes:  spatial structure
=> experiments,  spatial fitting, docking

Protein association: 
=> interface properties, spatial simulations

System
s Biology
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Appetizer: A whole-cell model for the life cycle 
of the human pathogen Mycoplasma genitalium 

Cell 150, 389-401 (2012)

7
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Divide and conquer approach (Caesar): 
split whole-cell model into 28 independent 

submodels 

28 submodels are built / parametrized / iterated independently

8



Bioinformatics 3 – WS 16/17 V 1  – 

Cell variables 
System state is described 
by 16 cell variables

Colored lines: cell 
variables affected by 

individual submodels

Mathematical tools:
- Differential equations
- Stochastic simulations

- Flux balance analysis

9
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Growth of virtual cell culture 

The model calculations were consistent with 
the observed doubling time!

Growth of three cultures 
(dilutions indicated by 
shade of blue) and a blank 
control measured by 
OD550 of the pH 
indicator phenol red. The 
doubling time, t, was 
calculated using the 
equation at the top left 
from the additional time 
required by more dilute 
cultures to reach the 
same OD550 (black lines).

11
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DNA-binding and dissociation dynamics 

DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA (blue) and DNA (green) 
polymerases for one in silico cell. The oriC DnaA complex recruits DNA polymerase to the oriC to initiate 
replication, which in turn dissolves the oriC DnaA complex. RNA polymerase traces (blue line segments) indicate 
individual transcription events. The height, length, and slope of each trace represent the transcript length, 
transcription duration, and transcript elongation rate, respectively. 

Inset : several predicted collisions between DNA and RNA polymerases that lead to the displacement of RNA 
polymerases and incomplete transcripts.

12
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Predictions for cell-cycle regulation 
Distributions of the 
duration of three cell-
cycle phases, as well as 
that of the total cell-cycle 
length, across 128 
simulations.

There was relatively more cell-to-cell variation in the durations of the 
replication initiation (64.3%) and replication (38.5%) stages than in cytokinesis 
(4.4%) or the overall cell cycle (9.4%).

This data raised two questions: 
(1)  what is the source of duration variability in the initiation and replication 
phases; and 
(2) why is the overall cell-cycle duration less varied than either of these phases?

13
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Single-gene knockouts : essential vs. non-essential 
genes 

Each column depicts the temporal dynamics of one representative in silico cell 
of each essential disruption strain class.

Dynamics significantly different from wild-type are highlighted in red. 

The identity of the representative cell and the number of disruption strains in 
each category are indicated in parenthesis.

Single-gene disruption 
strains grouped into 
phenotypic classes 
(columns) according to 
their capacity to grow, 
synthesize protein, RNA, 
and DNA, and divide 
(indicated by septum 
length). 

14
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Literature 
Lecture slides — available before the lecture

Textbooks

Suggested reading
=> check our web page
http://gepard.bioinformatik.uni-saarland.de/teaching/…

=> check computer science library
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How to pass this course 
 Schein =    you need to qualify for the the final exam and pass it

Final exam: written test of 180 min length about selected parts of the lecture
(will be defined 2 weeks before exam) and about the assignments

requirements for participation:  
• 50% of the points from the assignments
• one assignment task presented @ blackboard 

Final exam will take place at the end of the semester

In case you are sick (final exam) you should bring 

a medical certificate to get a re-exam.

Re-exam: will take place in first week of the summer term 2016
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Assignments 
Tutors:   Thorsten Will, Maryam Nazarieh   

Duy Nguyen, Ha Vu Tranh 

10 assignments  with  100 points each

=> one solution for two students (or one)

=> content:  data analysis + interpretation  —  think!
=> hand-written or one printable PDF/PS file per email

=> attach the source code of the programs for checking (no suppl. data)

=> no 100% solutions required!!!

Hand in at the following Fri electronically until 13:00 or 
printed at the start of the lecture.

Assignments are part of the course material (not everything is covered in lecture)

=> present one task at the blackboard

Tutorial:  ??  Mon,  12:00–14:00,  E2 1, room 007
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Some Graph Basics 
Network   <=>   Graph

Formal definition:

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

undirected graph directed graph

If  E = V(2)  =>  fully connected graph

G = (V, E)
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Graph Basics II 
Subgraph:  

G' = (V', E')  is a subset of  G = (V, E)

Weighted graph:  

Weights assigned to the edges

Note:  no weights for verticesPractical question: how to 
define useful subgraphs?



Bioinformatics 3 – WS 16/17 V 1  – 20

Walk the Graph 
Path = sequence of connected vertices

start vertex => internal vertices => end vertex

Vertices u and v are connected, if there exists a path from u to v.
otherwise: disconnected

Two paths are independent (internally vertex-disjoint), 
if they have no internal vertices in common.

How many paths connect the green to 
the red vertex?

How long are the shortest paths?

Find the four trails from the green to the 
red vertex.

How many of them are independent?

Length of a path = number of vertices ||  sum of the edge weights

Trail = path, in which all edges are distinct
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Local Connectivity:  Degree/Degree Distribution 
Degree k of a vertex  =  number of edges at this vertex

Directed graph  =>  distinguish kin and kout 

Degree distribution P(k) = fraction of nodes with k connections

k 0 1 2 3 4

P(k) 0 3/7 1/7 1/7 2/7

k 0 1 2 3

P(kin) 1/7 5/7 0 1/7

P(kout) 2/7 3/7 1/7 1/7
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Graph Representation e.g. by adjacency 
matrix 

Adjacency matrix is a N x N matrix 
with entries Muv

 Muv = weight when edge between u and v exists, 
              0 otherwise

1 2 3 4 5 6 7
1 – 0 1 0 0 0 0
2 0 – 1 0 0 0 0
3 1 1 – 1 1 0 0
4 0 0 1 – 1 1 0
5 0 0 1 1 – 1 1
6 0 0 0 1 1 – 0
7 0 0 0 0 1 0 –

→ symmetric for undirected graphs

+ fast O(1) lookup of edges
– large memory requirements
– adding or removing nodes is expensive 

Note: very convenient in programming 
languages that support sparse multi-
dimensional arrays
=> Perl

22
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Measures and Metrics 
“ Which are the most important or central vertices in a network? “

Examples of 
A)  Degree
centrality, 

C) Betweenness 
centrality, 

E) Katz centrality,

B) Closeness centrality, 

D) Eigenvector centrality, 

F) Alpha centrality of the 
same graph.

www.wikipedia.org

23

book by Mark Newman / Oxford Univ Press
-  Chapter 7: measures and metrics

-  Chapter 11: matrix algorithms and graph partitioning
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Degree centrality 
Perhaps the simplest centrality measure in a network is the 
degree centrality that is simply equal to the degree of each vertex.

E.g. in a social network, individuals that have many connections 
to others might have 
-  more influence, 
-  more access to information, 
-  or more prestige than those individuals who have fewer connections.

A natural extension of the simple degree centrality is eigenvector centrality.

24



Bioinformatics 3 – WS 16/17 V 1  – 

Towards Eigenvector Centrality 

25

en.wikipedia.org 
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Towards Eigenvector Centrality 

26
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Eigenvector Centrality 

27

Here, we divide by k1 
and multiply by k1 in 
the  front. 
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Eigenvector Centrality 

28

Divide above eq. by k1 
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Problems of the Eigenvector Centrality 
The eigenvector centrality works best for undirected networks.

For directed networks, certain complications can arise.

In the figure on the right, 
vertex A will have eigenvector 
centrality zero.

Hence, vertex B will also have 
centrality zero.

29
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Katz Centrality 

30
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Computing the Katz Centrality 
The Katz centrality differs from the ordinary eigenvector centrality by having 
a free parameter α, which governs the balance between the eigenvector term and the 
constant term.

However, inverting a matrix on a computer has a complexity of O(n3) for a graph with n 
vertices.

This becomes prohibitively expensive for networks with more than 1000 nodes or so.

It is more efficient to make an initial guess of x and then repeat 

x' = αAx + β 1

many times. This will converge to a value close to the correct centrality.

A good test for convergence is to make two different initial guesses and run this until the 
resulting centrality vectors agree within some small threshold.

31
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Towards PageRank 
The Katz centrality also has one feature that can be undesirable.

If a vertex with high Katz centrality has edges pointing to many other vertices,
then all those vertices also get high centrality.

E.g. if a Wikipedia page points to my webpage, 
my webpage will get a centrality comparable to Wikipedia!

But Wikipedia of course also points to many other websites, 
so that its contribution to my webpage “should” be relatively small 
because my page is only one of millions of others.

-> we will define a variation of the Katz centrality in which the 
centrality I derive from my network neighbors is proportional 
to their centrality divided by their out-degree.

32
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PageRank 

33
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PageRank 
By rearranging we find that

x = β (I - α A D-1 )-1 1

Because β plays the same unimportant role as before, we will set β = 1.

Then we get x =  (I - α A D-1 )-1 1 = D (D - α A )-1 1 expand with D

This centrality measure is commonly known as PageRank, 
using the term used by Google.

PageRank is one of the ingredients used by Google 
to determine the ranking of the answers to your queries.

α is a free parameter and should be chosen less than 1. (Google uses 0.85).

34



Bioinformatics 3 – WS 16/17 V 1  – 

Closeness centrality 

35
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Closeness centrality 

36
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Closeness centrality 
The highest closeness centrality of any actor is 
0.4143 for Christopher Lee.

The second highest centrality has 
Donald Pleasence (0.4138).

The lowest value has the Iranian actress Leia Zanganeh (0.1154).

→ the closeness centrality values are crammed in a very small interval [0,0.4143]

Other centrality measures including degree centrality and eigenvector centrality 
typically don‘t suffer from this problem. They have a wider dynamic range.

Pictures from wikipedia

37
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Summary 
What you learned today:

=> networks are everywhere

⇒  how to get the "Schein" for BI3
⇒ How to determine the most central nodes in a network

=> basic network types and definitions:
     random, scale-free, degree distribution, Poisson distribution, ageing, …

=> algorithm on a graph:  Dijkstra's shortest path algorithm

=> looking at graphs:  graph layout

Next lecture:

=> clusters,  percolation


