V1 - Introduction

Medalia et al, Science 298 (2002) 1209
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A cell is a crowded environment
=> many different proteins,
metabolites, compartments, ...

At the microscopic level
=> direct two-body interactions

At the macroscopic level
=> complex behavior

Can we understand the behavior
from the interactions?

=> Connectivity

Vi



The view of traditional molecular biology

Molecular Biology: "One protein — one function"

mutation => phenotype

Linear one-way dependencies: regulation at the DNA level, proteins follow

CDNA => RNA => protein => phenotype

Structural Biology: "Protein structure determines its function”

biochemical conditions => phenotype

No feedback, just re-action:

genetic _ molecular ~__ biochemical

=> => => henotype
information structure function P 7P
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The Network View of Biology

Molecular Systems Biology: "It's both + molecular interactions”

genetic molecular biochemical
, , = = => phenotype
information structure fu nction

\

interactions

molecular

— highly connected network of various interactions, dependencies

=> study networks
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Lecture — Overview

Protein complexes: spatial structure
=> experiments, spatial fitting, docking

Protein association:
=> interface properties, spatial simulations

Protein-Protein-Interaction Networks: pairwise connectivity
=> data from experiments, quality check

PPI: static network structure
=> network measures, clusters, modules, ...

A3ojo1g swa3sAg

Gene regulation: cause and response
=> Boolean networks

Metabolic networks: steady state of large networks
=> FBA, extreme pathways

Metabolic networks / signaling networks: dynamics
=> ODEs, modules, stochastic effects
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Appetizer: A whole-cell model for the life cycle
of the human pathogen Mycoplasma genitalium

A Whole-Cell Computational Model 100% 900+ 1900+ 28

of genes publications parameters processes

Predicts Phenotype from Genotype l l J J

Jonathan R. Karr,'# Jayodita C. Sanghvi,2# Derek N. Macklin,2 Miriam V. Gutschow,2 Jared M. Jacabs,? Soo
Benjamin Balival, Jr.,2 Nacyra Assad-Garcia,® John |. Glass,? and Markus W. Covert2™ tm =
1Graduate Program in Biophysics —
2Department of Bioengineering

Stanford University, Stanford, CA 94305, USA

2. Craig Venter Institute, Rockville, MD 20850, USA

4These authors contributed equally to this work

*Correspondence: mcovert@stanford.edu
http://dx.doi.org/10.1016/.cell.2012.05.044
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Cell 150,389-401 (2012)
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Divide and conquer approach (Caesar):
split whole-cell model into 28 independent
submodels
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28 submodels are built / parametrized / iterated independently
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Cell variables

B Update time & System state is described
( cell variables \ b | 6 ” . b|
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Cell variables Cell process submodels
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List S1. Primary sources of the M. genitalium reconstruction.

Data source

Content

Bernstein et af., 20024
BioCyc®

BRENDA®™

CMRISB

Devuerling et af., 2003%¢
DrugBank®’

Eisen et al., 1009*!
Endo et af., 2007*
Feist et af., 2007%*
Glass et af., 2006'%*
Giiell et af., 2000%*
Gupta et af., 2007*®
KEGG!?

Kerner et af., 2005°®
Krause et af., 2004
Lindahl et af, 2000%7
Morowitz et af., 1062°™
NCBI Gene®:'7
Neidhardt et af, 1000%3
Peil, 2000'%
PubChem®®
SABIO-RK ™

Solabia 4"

Suthers et af., 2000%°
UniProt™

Weiner et al., 2000*!
Weiner et af., 2003°®

mRMNA half-lives

Genome annotation, metabolic reactions

Reaction kinetics

Genome annotation
Chaperone substrates
Antibiotics

DMNA repair

Chaperone substrates
Metabolic reactions

Gene essentiality
Transcription unit structure
N-terminal methionine cleavage
Genome annotation, orthology
Chaperone substrates
Terminal organelle assembly
DMNA damage

Cell chemical composition
Genome annotation

Cell chemical composition
RMNA modification
Metabolite structures
Reaction kinetics

Media chemical composition
Metabolic reactions
Genome annotation
Promoters

mRMNA expression
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Growth of virtual cell culture

A noat
In{dilution factor)
0.2-

- At=214h At=183h

T o 1=82h 1=83h

a) 1X dilution

Qe SXdliuton Mear

Bl Ak T=90h

15

The model calculations were consistent with
the observed doubling time!
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Growth of three cultures
(dilutions indicated by
shade of blue) and a blank
control measured by
OD550 of the pH
indicator phenol red. The
doubling time, t, was
calculated using the
equation at the top left
from the additional time
required by more dilute
cultures to reach the

same OD550 (black lines).
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DNA-binding and dissociation dynamics
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DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA (blue) and DNA (green)
polymerases for one in silico cell. The oriC DnaA complex recruits DNA polymerase to the oriC to initiate
replication, which in turn dissolves the oriC DnaA complex. RNA polymerase traces (blue line segments) indicate
individual transcription events.The height, length, and slope of each trace represent the transcript length,

transcription duration, and transcript elongation rate, respectively.

Inset : several predicted collisions between DNA and RNA polymerases that lead to the displacement of RNA

polymerases and incomplete transcripts.
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Predictions for cell-cycle regulation

A ap- Cell oycle Distributions of the
h Replication initiation duration of three cell-
. Replication
. Cytokinesis cycle phases, as well as
D 5 that of the total cell-cycle
& length, across 128
| simulations.
0 T
0 , 10
Duration {h})

There was relatively more cell-to-cell variation in the durations of the

replication initiation (64.3%) and replication (38.5%) stages than in cytokinesis
(4.4%) or the overall cell cycle (9.4%).

This data raised two questions:

(1) what is the source of duration variability in the initiation and replication
phases; and

(2) why is the overall cell-cycle duration less varied than either of these phases!?
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Single-gene knockouts : essential vs. non-essential
genes

B IMacr‘omolechles;,rnthgssiss‘jmial Cell cycle Slngle-gene dlsruptlon
EeE D SERn, o 4, 9oy s strains grouped into
_— T~ phenotypic classes

/ / (columns) according to
S / o

their capacity to grow,
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e / [ f/ and DNA, and divide
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\ | length).
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-

RNA {fg)

bl
124

DNA (fg)

064
2504

Septum {hm)
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OTime(1r?)
Each column depicts the temporal dynamics of one representative in silico cell
of each essential disruption strain class.

Dynamics significantly different from wild-type are highlighted in red.

The identity of the representative cell and the number of disruption strains in
each category are indicated in parenthesis.
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Literature

Lecture slides — available before the lecture
Suggested reading

=> check our web page
http://gepard.bioinformatik.uni-saarland.de/teaching/...

Textbooks
]
Volkhard Helms WWILEY-VCH system S Bio I ogy SYSTEM S
Principles of B ooy g it
Computational BIOLOGY
ce" B'OIOgY Properties of Reconstructed Networks
From Protein Complexes to Cellular Networks

Bernhard @. Palsson

=> check computer science library
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How to pass this course

Schein = you need to qualify for the the final exam and pass it

Final exam: written test of 180 min length about selected parts of the lecture
(will be defined 2 weeks before exam) and about the assignments

requirements for participation:
* 50% of the points from the assignments

* one assignment task presented @ blackboard

Final exam will take place at the end of the semester

In case you are sick (final exam) you should bring

a medical certificate to get a re-exam.

Re-exam:  will take place in first week of the summer term 2016
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Assignments

Tutors: Thorsten Will, Maryam Nazarieh
Duy Nguyen, HaVu Tranh

Tutorial: ?? Mon, 12:00-14:00, E2 |, room 007

|0 assighments with 100 points each

Assignments are part of the course material (not everything is covered in lecture)

=> one solution for two students (or one)

=> hand-written or one printable PDF/PS file per email
=> content: data analysis + interpretation — think!
=> no 100% solutions required!!!

=> attach the source code of the programs for checking (no suppl. data)

=> present one task at the blackboard

Hand in at the following Fri electronically until 13:00 or
printed at the start of the lecture.
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Some Graph Basics
Network <=> Graph

Formal definition:

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

NX

undirected graph directed graph

If E=V@ => fully connected graph
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Graph Basics |l
Subgraph: Weighted graph:

G'=(V,E') isasubsetof G=(VE) Weights assigned to the edges

Practical question: how to Note: no weights for vertices
define useful subgraphs?
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Walk the Graph

Path = sequence of connected vertices
start vertex => internal vertices => end vertex

Two paths are independent (internally vertex-disjoint),
if they have no internal vertices in common.

Vertices u and v are connected, if there exists a path from u to v.
otherwise: disconnected

Trail = path, in which all edges are distinct

Length of a path = number of vertices || sum of the edge weights

How many paths connect the green to
the red vertex!

How long are the shortest paths?

Find the four trails from the green to the
red vertex.

How many of them are independent?
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Local Connectivity: Degree/Degree Distribution

Degree k of a vertex = number of edges at this vertex
Directed graph => distinguish kin and kou

Degree distribution P(k) = fraction of nodes with k connections

Nk
Pk) = —
(k) = + 1;2
K Ko = 1; 0 7)
G, 1
3;1
1;0
Q
k 0 | 2 3
k1o 12 3 4 Pkn) | 1/7 5/7 0 /7
Pk)| O 37 17T 1T 27 Pkow) | 2/7 317 117 117
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Graph Representation e.g. by adjacency
matrix

Adjacency matrix is a N x N matrix

with entries My

M., = weight when edge between u and v exists,
0 otherwise

— symmetric for undirected graphs

1 2 3 4 5 6 7

+ fast O(/) lookup of edges 1| = 1 0 0 0 O

— large memory requirements olo = 1. 0 0 0 O

— adding or removing nodes is expensive 3/l1 1 - 1 1 0 o0

410 0 1 - 1 1 O

Note: very convenient in programming 5lo 0 1 1 — 1 1
languages that support sparse multi-

: s g. PP P 6({0 0 0O 1 1 - O

dimensional arrays
=> Perl 710 0 0 O 1 0 -
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Measures and Metrics

“Which are the most important or central vertices in a network? “

Examples of
A) Degree
centrality,

B) Closeness centrality,

C) Betweenness D) Eigenvector centrality,

centrality,

E) Katz centrality,

Networks www.wikipedia.org

book by Mark Newman / Oxford Univ Press
- Chapter 7: measures and metrics

- Chapter | |: matrix algorithms and graph partitioning
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Degree centrality

Perhaps the simplest centrality measure in a network is the
degree centrality that is simply equal to the degree of each vertex.

E.g.in a social network, individuals that have many connections
to others might have

- more influence,

- more access to information,

- or more prestige than those individuals who have fewer connections.

A natural extension of the simple degree centrality is eigenvector centrality.
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Towards Eigenvector Centrality

Let us start by defining the centrality of vertex x; as the sum of the centralities
of all its neighbors:
xl-' = 2 AUX]
J

where A; is an element of the adjacency matrix.
(This equation system must be solved recursively until convergence.)

Remember the multiplication of a matrix with a vector below ...

a b c x
A=|p q r |, B=|y],
u v ow z
a b c azx + by + cz
AB=|p q r yl|l=\|pr+qy+rz |,
u v w Z urT + vy + wz

en.wikipedia.org
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Towards Eigenvector Centrality

Let us start by defining the centrality of vertex x; as the sum of the centralities
of all its neighbors:
Xl" - Z AUX]
J

where A; is an element of the adjacency matrix.
We can also write this expression in matrix notation as
x’=AX where x is the vector with elements X; .

Repeating this process to make better estimates gives after t steps
the following vector of centralities:

x(t) = At x(0)
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Eigenvector Centrality

Now let us write x(0) as a linear combination of the eigenvectors v; of the
(quadratic) adjacency matrix’
x(0) = );c;v; with suitable constants c;

Then x(t) = A Y vy

Because v, are eigenvectors of A, Av, = k; v, with the eigenvalue k; .
Let k, be the largest eigenvector.

t
k.
X(t) = At Zi CiVi = Zi Ci kit Vi = klt Zi C; lk_l] Vi Here, we divide by k,
14+ and multiply by k; in
the front.
Since k; [ k, <1 forallj=j, all terms in the sum decay exponentially as t

becomes large, only the term with / = remains unchanged.

In the limitt — oo, we get for the centrality vector x(t) = ¢, k.t v,

' Remember from linear algebra that a quadratic matrix with full rank can be diagonalized.
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Eigenvector Centrality

This limiting vector of the eigenvector centralities is simply proportional
to the leading eigenvector of the adjacency matrix.

Equivalently, we could say that the centrality x satisfies
AX =k, X
This is the eigenvector centrality first proposed by Bonacich (1987).
The centrality x; of vertex i is proportional to the sum of the centralities of
its neighbors:
X; = kl_l Zj Ajjx; Divide above eq. by k;
This has the nice property that the centrality can be large either because a vertex

has many neighbors or because it has important neighbors with high centralities
(or both).
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Problems of the Eigenvector Centrality

The eigenvector centrality works best for undirected networks.

For directed networks, certain complications can arise.

In the figure on the right,
vertex A will have eigenvector
centrality zero.

Hence, vertex B will also have
centrality zero.

Bioinformatics 3 —WS 16/17

Figure 7.1: A portion of a directed net-
work. Vertex A in this network has
only outgoing edges and hence will
have eigenvector centrality zero. Ver-
tex B has outgoing odges and one in-
going edge, but the ingoing one origi-
nates at A, and hence vertex B will also
have centrality zero

VI -
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Katz Centrality

One solution to the issues of the Eigenvector Centrality is the following:

We simply give each vertex a small amount of centrality “for free”,
regardless of its position in the network or the centrality of its neighbors.

— we define x; = a);A;jx +p where o and 3 are positive constants.
In matrix terms, this can be written as X=0Ax +[ 1
where 1 is the vector (1,1,1,...) T . By rearranging for x we find
IX-a Ax=(1 (where we used | x = x)
(I-aA)x=p1
(I-a AT (-0 A)x=(1-aA)T1B1  (multiplyboth sides with (I - « A)")
x=B(-aA)'1

When setting B =1, we get the Katz centrality (1953)x=(1-a A )1
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Computing the Katz Centrality

The Katz centrality differs from the ordinary eigenvector centrality by having
a free parameter o, which governs the balance between the eigenvector term and the
constant term.

However, inverting a matrix on a computer has a complexity of O(n?) for a graph with n
vertices.

This becomes prohibitively expensive for networks with more than 1000 nodes or so.
It is more efficient to make an initial guess of x and then repeat

xX'=cAx +f I
many times. This will converge to a value close to the correct centrality.

A good test for convergence is to make two different initial guesses and run this until the
resulting centrality vectors agree within some small threshold.
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Towards PageRank

The Katz centrality also has one feature that can be undesirable.

If a vertex with high Katz centrality has edges pointing to many other vertices,
then all those vertices also get high centrality.

E.g. if a Wikipedia page points to my webpage,
my webpage will get a centrality comparable to Wikipedia!

But Wikipedia of course also points to many other websites,
so that its contribution to my webpage “should” be relatively small
because my page is only one of millions of others.

-> we will define a variation of the Katz centrality in which the

centrality | derive from my network neighbors is proportional
to their centrality divided by their out-degree.

Bioinformatics 3 —WS 16/17
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PageRank

This centrality is defined by
2 ] kjout
At first, this seems problematic if the network contains vertices with zero outdegree.

However, this can easily be fixed by setting ke« = 1 for all such vertices.

In matrix terms, this equation becomes
x=aAD'x+p1

where 1 is the vector (1,1,1,...)T and D the diagonal matrix with D; = max(k?t, 1)

Bioinformatics 3 —WS 16/17
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PageRank

By rearranging we find that
x=pf(l-aAD')"I
Because [ plays the same unimportant role as before, we will set § = 1.
Then we get x=(l-cAD'")'1=DD-aA)'l expand with D

This centrality measure is commonly known as PageRank,
using the term used by Google.

PageRank is one of the ingredients used by Google
to determine the ranking of the answers to your queries.

o is a free parameter and should be chosen less than |. (Google uses 0.85).
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Closeness centrality

An entirely different measure of centrality is provided
by the closeness centrality.

Suppose d; is the length of a geodesic path (i.e. the shortest path)
from a vertex i to another vertex j.
Here, length means the number of edges along the path.

Then, the mean geodesic distance from /, averaged over
all vertices j in the network is

1
l; = Zjdij

n

The mean distance /; is not a centrality measure in the same sense
as the other centrality measures.

It gives low values for more central vertices and
high values for less central ones.

Bioinformatics 3 —WS 16/17
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Closeness centrality

The inverse of /; is called the closeness centrality C,

It has become popular in recent years to rank film actors
according to their closeness centrality in the network
of who has appeared in films with who else.

Using data from www.imdb.com the largest component of the network
includes more than 98 % of about half a million actors.

Bioinformatics 3 —WS 16/17
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Closeness centrality

The highest closeness centrality of any actor is
0.4143 for Christopher Lee.

The second highest centrality has
Donald Pleasence (0.4138).

The lowest value has the Iranian actress Leia Zanganeh (0.1 154).
— the closeness centrality values are crammed in a very small interval [0,0.4143]

Other centrality measures including degree centrality and eigenvector centrality
typically don‘t suffer from this problem.They have a wider dynamic range.

Pictures from wikipedia
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Summary
What you learned today:
=> networks are everywhere

=> how to get the "Schein" for BI3
= How to determine the most central nodes in a network

NeXxt lecture:

=> basic network types and definitions:

random, scale-free, degree distribution, Poisson distribution, ageing, ...
=> clusters, percolation

=> algorithm on a graph: Dijkstra's shortest path algorithm

=> looking at graphs: graph layout
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