Bioinformatics 3 V10 – Simulating the Dynamics of Gene Regulatory Networks by Boolean Networks

Mon, Nov 28, 2016

Quorum sensing of Vibrio fischeri

V. fischeri has a microbial **symbiotic relationship** with the squid Euprymna scolopes.

The bacterium exists in **small amounts** in the ocean (10^2 cells/ml) and in **large amount** in the light organs of the **squid** (10^{10} cells/ml).

At low concentrations, V. fischeri does not produce luminescence.

At high cell density these bacteria emit a blue-green light.

The light organ of the squid provides to the bacteria all the **nutrients** that they need to survive.

The squid benefits from the bacteria's quorum sensing and **bioluminescence** abilities.

Quorum sensing of Vibrio fischeri

The cell density-dependent control of gene expression is activated by a <u>transcriptional activator protein</u> that is coupled to a <u>signal molecule</u> (**autoinducer**).

The autoinducer is released by the bacteria into its surrounding **environment** and taken up from there.

During the day, the squid keeps the bacteria at lower concentrations by expelling some of them into the ocean during regular intervals.

At night however, the bacteria are allowed to accumulate to about 10^{10} cells/ml so that they will emit blue-green light.

Vibrio fischeri helps with Camouflage

This is perfect for the squid because it is a night feeder.

In the **moonlight**, the swimming squid would normally cast a **shadow** beneath itself making it a perfect target for squid-eating organisms.

However, the bacterial glow will counter the shadowing effect the moon makes and mask the squid from its predators.

In the **morning**, the squid expels some bacteria into the ocean to a concentration where they will not generate light anymore so as to conserve energy.

Quorum sensing of Vibrio fischeri

Boolean Networks

Dependencies between variables can be formulated as conditional transitions

- "If LuxI is present, then AI will be produced..."
- "If there is AI and there's no LuxR:AI bound to the genome, then LuxR will be expressed and complexes can form..."
- "If LuxR:AI is bound to the genome, then LuxI is expressed..."

Simplified mathematical **description** of the dependencies:

Densities of the species	<=>	discrete states: on/off, 1/0
Network of dependencies	<=>	condition tables
Progress in time	<=>	discrete propagation steps

Boolean Networks II

State of the system: described by **vector** of **discrete** values

 $S_i = \{0, 1, 1, 0, 0, 1, ...\}$

 $S_i = \{x_1(i), x_2(i), x_3(i), \ldots\}$

fixed number of species with **finite number** of states each

 \rightarrow finite number of system states

 \rightarrow periodic trajectories

→ **periodic** sequence of states = **attractor**

 \rightarrow all states leading to an attractor = **basin of attraction**

Propagation:

$$S_{i+1} = \{x_1(i+1), x_2(i+1), x_3(i+1), ...\}$$

$$x_1(i+1) = f_1(x_1(i), x_2(i), x_3(i), ...)$$
 with f_i given by condition tables

A Small Example

State vector $S = \{A, B, C\} \rightarrow 8$ possible states

Conditional evolution:

A is on if C is on $\begin{array}{c|c}
A_{i+1} & C_i \\
\hline
0 & 0
\end{array}$

Start from $\{A, B, C\} = \{I, 0, 0\}$

#	Si	А	В	С
0	S ₀	I	0	0
I.	Sı	0	1	0
2	S ₂	0	0	I.
3	$S_3 = S_0$	I.	0	0

C is on if (B is on && A is off)

C _{i+1}	Ai	Bi
0	0	0
I	0	I.
0	I	0
0	I	I

assume here that inhibition through A is stronger than activation via B

periodic orbit of length 3

Test the Other Starting Conditions

 \rightarrow Either all off or stable oscillations

A Knock-out Mutant

Attractors:

no feedback

 \rightarrow no stabilization, network just "rotates"

Boolean Network of QS

Minimum set of species:

LuxR, AI, LuxR:AI, LuxR:AI:genome, LuxI

Here: Light signal (LuxAB) α LuxI

Condition tables: describe the state of a species in the next step given the current states of all relevant species.

Luxl	LuxR:AI:Genome	LuxR:AI:Genome	LuxR:AI		
0	0	0	0		
I	I	I	I		
Ho	w does LuxI depend on	How does LuxR:AI:C	How does LuxR:AI:Genome depend or		
Lux	<pre>kR:Al:Genome?</pre>	LuxR:AI?	LuxR:AI?		

Condition Tables for QS II

AI	•			LuxR	Lux	r Al	Lux	R:AI:G	enome
	LuxI		—	I	0	0		0	When LuxR:Al:Genome is empty,
				Ι	1	0		0	Luxk is produced in next step
				I	0	I		0	
				I	I	I		0	
				0	0	0		I	
				Ι	1	0		l c	omment: LuxR present, no AI available
				0	0	I		I	
				0		I			uxR present, binds AI in next step, o LuxR is produced because
LuxR:AI	LuxR	AI	LuxR:AI:Ge	nome			I	L	uxR:AI:Genome inhibits LuxR product
0	0	0	0			LuxR:AI	LuxR	AI	LuxR:AI:Genome
0	I	0	0			0		X	
0	0	I	0		\rightarrow	U		X	X
I	I.	Ι	0			I		I	X
0	0	0	I						
0	I	0	I						
0	0	I	I			Note: no	o dissociat	tion	
I	I	Ι	I		(LuxR:AI:Genome \rightarrow LuxR:AI + Genome) only degradation of AI in this model				

Condition tables for QS III

AI	LuxR	AI	Luxl					
0	0	0	0					
0	1	0	0		AI	LuxR	Al	LuxI
I	0	Ι	0		I	x	х	I
0		Ι	0	\rightarrow	0	x	0	0
I	0	0	I		I	0	Ι	0
I		0	I		0		Ι	0
I	0	Ι	I					
I		Ι	I					

Scanning for Attractors

States of V. fischeri QS system are mapped onto integers

{LuxR (LR), LuxR:AI (RA), AI, LuxR:AI:Genome (RAG), LuxI (LI)}

= {1, 2, 4, 8, 16} - current state can be interpreted as binary number!

For each **attractor**:

- periodic orbit and its length (period)
- basin of attraction and its relative size (32 states in total)
 - \rightarrow how likely will the system end up in each of the attractors?

Scanning for Attractors II

averaged occupancies in this periodic orbit:

 LR
 RA
 AI
 RAG
 LI

 4/4 = I
 I/4 = 0.25
 I/4 = 0.25
 I/4 = 0.25
 I/4 = 0.25

Attractors III

Attractor 3: period 4, basin of 16 states \rightarrow 50 %

LR RA AI RAG LI . X X . . . X X X . . X X X . . . X X X

Attractor 4: period 4, basin of 4 states \rightarrow 12.5 %

Attractor 5: period 2, basin of 3 states \rightarrow 9.4 %

LR RA AI RAG LI X . X X . . X . X

Classifying the Attractors

 \rightarrow Interpret the system's behavior from the properties of the attractors

Attractor	period	basin size	<luxr></luxr>	<luxr:ai></luxr:ai>	<ai></ai>	<luxr:ai:gen></luxr:ai:gen>	<luxl></luxl>
I	I	6.25 % (2)	I	0	0	0	0
2	4	21.9% (7)	I	0.25	0.25	0.25	0.25
3	4	50 % (16)	0	0.5	I	0.5	0.5
4	4	12.5 % (4)	I	0.5	0.5	0.5	0.5
5	2	9.4% (3)	0.5	0.5	0.5	0.5	0.5

There exist three **regimes**:

dark : LuxI = 0	intermediate: Luxl = 0.25	bright : Luxl = 0.5
free LuxR, no Al	free LuxR + little Al	little free LuxR (0.24) + much Al (0.85)

The Feed-Forward-Loop

External signal determines state of X \rightarrow response Z for short and long signals X

Signal propagation

Left column: external signal

Х	Y	Z	
0	0	0	Shart
1	0	0	Short
0	1	0	Signal
0	0	0	-
1	0	0	
1	1	0	Long
1	1	1.1	signal
0	1	1.1	0
0	0	0	
0	0	0	
Х	Y	Z	
X 0	Y I	Z 0	
X 0 I	Y I I	Z 0 0	
X 0 I 0	Y I I 0	Z 0 0 0	
X 0 I 0 0	Y I I 0 I	Z 0 0 0 0	
X 0 I 0 0 I	Y I I 0 I I	Z 0 0 0 0 0	
X 0 1 0 0 1 1	Y I 0 I I 0	Z 0 0 0 0 0 0	
X 0 1 0 0 1 1 1	Y I 0 I 1 0 0	Z 0 0 0 0 0 0 0	
X 0 1 0 1 1 1 1 0	Y I 0 I 0 0 0	Z 0 0 0 0 0 0 1	
X 0 1 0 1 1 1 0 0 0	Y I 0 I 0 0 0 1	Z 0 0 0 0 0 0 1 1	

Response to signal X(t)

Quorum Sensing in P. aeruginosa

In the human pathogen *P. aeruginosa*, the QS network consists of 3 systems termed *las*, *rhl*, and *pqs* that are organized hierarchically.

Idea: selectively targeting the QS machinery by signaling molecule inhibitors may avoid development of resistance mutations.

Aim: develop simple computational model that can account for effects of smallmolecule inhibitors and resistance mutations.

We need > 2 levels of selected variables to generate sequential switching of 3 QS systems.

Nodes named C represent a complex between autoinducer and receptor, C:G is the complex bound to an operon.

thick **red** edge : happens after a certain number of time steps (degradation).

dashed grey arrows : reaction that occurs by chance with a certain probability.

Schaadt et al. BMC Systems Biol. (2013) 7:81

Network propagation

"Growth" : cell divides into 2 cells Simulation is stopped after 10 generations (600 iterations)

Sample trajectory

time step	HHQ	PQS	C3	C5	C3:G3	C5:G3	PqsA	PqsBCD	PqsE
10	0	0	0	0	1	1	0	0	0
11	1	1	0	0	0	0	1	1	1
12	2	1	0	0	0	0	0	0	0
13	2	1	0	0	0	0	0	0	0
14	2	1	0	0	0	0	0	0	0
15	2	1	0	0	0	0	0	0	0
16	0	2	0	1	0	0	0	0	0
17	0	2	0	0	0	1	0	0	0
18	1	2	0	0	0	0	1	1	1
19	2	1	1	0	0	0	0	0	0
20	0	1	0	1	1	0	0	0	0
21	0	2	0	0	0	1	1	1	1
22	2	1	1	0	0	0	1	1	1
23	2	1	0	1	0	0	0	0	0
24	0	2	0	1	0	1	0	0	0
25	1	1	1	0	0	1	1	1	1
26	2	2	0	0	0	0	1	1	1
27	1	2	1	0	0	0	0	0	0
28	0	2	1	0	1	0	0	0	0

Simulation start

Start from minimal initial conditions (no complexes formed) that get the QS system started.

Green: complex C5 between HHQ and PqsR.

Orange: complex C3 of the *pqs* system between PQS and **PqsR**

Blue: second complex of AI–2 and **RhIR**.

Red: first complex of AI–I and **LasR**

Bioinformatics 3 – WS 16/17

Tune PQS production rate

The conversion of HHQ into PQS (dashed grey line in bottom Fig.) was designed to **occur randomly** with a certain **probability**.

The right figure shows how the autoinducer HHQ and pyocyanin levels depend on the reaction rate of this process.

Due to the activation of pyocyanin biosynthesis by PqsE and the production of PqsE by the complex C5 using HHQ, the pyocyanin level (red) is **independent** of the reaction rate.

Kesarwani *et dl.* reported that the HHQ concentration is about 12% of the PQS concentration in the beginning of the stationary growth phase.

To match this experimental finding, we used a conversion frequency of 55%.

Bioinformatics 3 – WS 16/17

In the presence of PqsBCD inhibitors, the external HHQ and PQS levels are noticeably decreased with a high dependence of the inhibition level.

E.g. a PqsBCD inhibitor with inhibition level of 30% reduces the external HHQ level by ca. 80% and the external PQS level by ca. 55% (relative to 0 % inhib).

Indeed, in experiments a PqsD inhibitor reduced the HHQ concentration by 77% and that of PQS by 42%. \rightarrow Good match!

Enzyme inhibition. Inhibition of PqsBCD with

varying inhibition levels.

Fig. shows the predicted effect of weak and strong PqsR receptor antagonists on the internal HHQ and PQS levels and on the pyocyanin level.

As long as < 60% of PqsR is blocked, the pyocyanin level is only very slightly decreased.

In contrast, there **exist** PqsR antagonists with affinity in the low micromolar range that indeed reduce the pyocyanin concentration (IC_{50} : 87 μ M).

Further, it was reported that PqsR antagonists with K $_D$ values in a low nanomolar range **reduce** the pyocyanin formation by about 75% at 3 μ M.

This **discrepancy** suggests that pyocyanin production is co–regulated by further functionally unknown proteins that may or may not be connected to the *pqs* system.

VIO – 26

Add new putative reactions to form

Table 1 Possible reactions to form pyocyanin

	••••
Notation	Reaction
<u>R1</u>	PqsE → pyocyanin
R2	C3:G3 → pyocyanin
R3	C5:G3 → pyocyanin
R4	$PqsR \longrightarrow pyocyanin$
R5	$PqsH \longrightarrow pyocyanin$
R6	$PqsA \longrightarrow pyocyanin$
R7	$PqsBCD \longrightarrow pyocyanin$
R8	$PqsR + DHQ \longrightarrow pyocyanin$
R9	$PqsH + HHQ \longrightarrow pyocyanin$
R10	$PqsH + PQS \longrightarrow pyocyanin$
R11	$PqsH + DHQ \longrightarrow pyocyanin$
R12	$PqsA + HHQ \longrightarrow pyocyanin$
R13	PqsA + PQS → pyocyanin
R14	$PqsA + DHQ \longrightarrow pyocyanin$
R15	$PqsBCD + HHQ \longrightarrow pyocyanin$
R16	$PqsBCD + PQS \longrightarrow pyocyanin$
R17	$PqsBCD + DHQ \longrightarrow pyocyanin$
R18	$PqsE + HHQ \longrightarrow pyocyanin$
R19	$PqsE + PQS \longrightarrow pyocyanin$
<u>R20</u>	$PqsE + DHQ \longrightarrow pyocyanin$
R21	PqsR + PqsE + HHQ → pyocyanir
R22	$PqsR + PqsE + PQS \longrightarrow pyocyanin$
<u>R23</u>	PqsR + PqsE + DHQ → pyocyanir
<u>R24</u>	PqsR + PqsE → pyocyanin

Table I chows all theoretically possible reactions to form pyocyanin whereby pyocyanin is regulated either via PqsE and therefore by PqsR (labeled as underlined) or via PqsA, PqsBCD, and therefore PqsR (as bold).

Pyocyanin is positively regulated by PqsE (and therefore also PqsR) in reactions labeled as underlined, by PqsA and PqsBCD (and therefore also PqsR) in reactions labeled in bold, as well as by both in reactions labeled in italic.

Behavior of updated networks

Table 2 Behavior of updated networks

Network	Used reactions		Results		
		PqsA ⁻ -PqsBCD ⁻	PqsE	PqsR antagonists	PqsBCD inhibitors
N1	R1, R2		Pyocyanin	Pyocyanin	
N2	R18			Pyocyanin	
N3	R19			Pyocyanin	PQS
N4	R20, R2		Pyocyanin	Pyocyanin	
N5	R1, R2, R4	Pyocyanin	Pyocyanin	Pyocyanin	
N6	R18, R4	Pyocyanin	Pyocyanin	Pyocyanin	
N7	R19, R4	Pyocyanin	Pyocyanin	Pyocyanin	PQS
N8	R20, R2, R4	Pyocyanin	Pyocyanin	Pyocyanin	
N9	R21				
N10	R22				PQS
N11	R23, R2		Pyocyanin	Pyocyanin	
N12	R24, R2		Pyocyanin	Pyocyanin	

Table entries denote deviations (too high levels) from the expected behavior.

We consider the networks N9 and N10 as being the closest to literature.

Results / Conclusions

Results

•rule-based simulations fulfill the behavior expected from literature considering the external level of autoinducers.

•In the presence of PqsBCD inhibitors, the external HHQ and PQS levels are indeed clearly reduced. The magnitude of this effect strongly depends on the inhibition level.

•It seems that the pyocyanin pathway is incomplete.

Conclusions

•To match experimental observations we suggest a modified network topology in which PqsE and PqsR act as receptors and an autoinducer as ligand that up-regulate pyocyanin in a concerted manner.

•While the PQS biosynthesis is more appropriate as target to inhibit the HHQ and PQS formation, blocking the receptor PqsR that regulates the biosynthesis reduces the pyocyanin level stronger.

Can Boolean Networks be predictive?

Generally: \rightarrow quality of the **results** depends on the quality of the **model** \rightarrow quality of the model depends on the quality of the **assumptions**

Assumptions for the Boolean network description:

- (• subset of the species considered
- only discrete density levels
- conditional yes-no causality
- discretized propagation steps

- \rightarrow reduced system state space)
- \rightarrow dynamic balances lost, reduced to oscillations \rightarrow no continuous processes
- \rightarrow timing of concurrent paths?

"You get what you pay for"

Understand Blood development (hematopoeisis) with the help of Boolean Networks

Blood development represents one of the **earliest stages** of **organogenesis**. The production of primitive erythrocytes is required to support the growing embryo.

Blood has long served as a model to study organ development owing to the **accessibility** of blood cells and the availability of markers for specific cell populations.

Blood development is initiated at **gastrulation** from multipotent Flk1⁺ mesodermal cells (Flk1⁺ is a marker gene for this developmental stage.)

These cells initially have the potential to form either blood, endothelium and smooth muscle cells.

Flk1 and Runx1 staining in E7.5 mesoderm and blood band, respectively

The first wave of primitive hematopoiesis originates from Flk1⁺ mesoderm, with all hematopoietic potential in the mouse contained within the Flk1⁺ population from E7.0 onwards.

In this study, cells were flow sorted into single Flk1⁺ cells at E7.0 (primitive streak, PS), E7.5 (neural plate, NP) and E7.75 (head fold, HF) stages.

E8.25 cells were subdivided into putative blood and endothelial populations by isolating GFP⁺ cells (four somite, 4SG) and Flk1⁺GFP⁻ cells (4SFG⁻), respectively

Moignard et al., Nature Biotech. 33, 269 (2015) V 10 – 32

Bioinformatics 3 – WS 16/17

Studied cells

Cells were sorted from multiple embryos at each time point, with 3,934 cells going on to subsequent analysis.

Total cell numbers and numbers of cells of appropriate phenotypes present in each embryo were estimated from fluorescenceactivated cell sorting (FACS) data.

Moignard et al., Nature Biotech. 33, 269 (2015)

Cell type	Number of embryos	Cells sorted	Cells retained	Percentage retained
PS	12	725	624	86.1
NP	9	637	552	86.7
HF	8	1,184	1,005	84.9
4SG	3	1,085	983	90.6
4SFG	- 4	858	770	89.7
Total	36	4,489	3,934	87.6

Number of cells grows as embryo development progresses

Assay gene expression in single cells

Cell type	Number of embryos	Cells sorted	Cells retained	Percentage retained
PS	12	725	624	86.1
NP	9	637	552	86.7
HF	8	1,184	1,005	84.9
4SG	3	1,085	983	90.6
4SFG	- 4	858	770	89.7
Total	36	4,489	3,934	87.6

Discard cells that did not express all 4 house-keeping genes, or for which their expression was more than 3 standard deviations from the mean. Gene expression in single cells assayed with PCR for:

- 33 transcription factors known to be involved in endothelial and hematopoietic development
-9 marker genes (needed for FACS-

sorting)

-4 **house-keeping genes** (needed for quality checks and normalization)

FFFFFF		111111
FFFFFF	O	777777
FFFFFF		111111
17777777		111111
17777777	-	333333
3333333	And in case of the local division of the loc	333333
3333333		333333
3333333	Contraction of the local division of the loc	333333
3333333	Contract of the local division of the local	333333
3333333		333333
3333333		333333
LEEEEE		333333
LELLEL		333883
LLLLLL		333333
LLLLLL	0	333333
A.A.A.A.A.A.		44444

www.fluidigm.com

Hierarchical clustering of gene expression data

Dimensionality reduction: diffusion maps

Similarity of expression in cells *i* and *j* :

$$P(i,j) = \frac{1}{Z_i} \exp\left(\frac{-\left(x_i - x_j\right)^2}{\varepsilon}\right)$$

P(i,j) is normalized so that $\sum_{i=1}^{i} P(i,j) = 1$

The cells are organized in 2D or 3D such that the Euclidean distance between the cells corresponds to the diffusion metric P(i,j).

The quantity P(i,j) can then be interpreted as the **transition probability** of a diffusion process between cells.

Axes: eigenvectors of matrix P with largest eigenvalues.

Moignard et al., Nature Biotech. 33, 269 (2015) ¹⁰ -

Who regulates hematopoiesis? Design Boolean Network

Determine suitable **expression thresholds** for each gene to categorize its expression levels into **binary** on / off states.

Note that less than 0.1% of the possible states has been observed.

State graph (largest connected component) of 1448 states reaching all 5 stages.

Add **edges** to connect all those pairs of states that differ in the on/off levels of a single gene (and are identical otherwise), see right side with labeled edges.

Idea behind this: these transitions can be best interpreted. Bioinformatics 3 – WS 16/17

Automatic derivation of rules for Boolean Network

We are given:

-a set of variables V, corresponding to genes,

- an undirected graph G = (N, E)

where each node $n \in N$ is labeled with a state $s: V \rightarrow \{0,1\}$, and each edge $\{s_1, s_2\} \in E$ is labeled with the single variable that changes between state s_1 and s_2 .

We are also given a designated set $I \subseteq N$ of **initial vertices** and a designated set $F \subseteq N$ of **final vertices**, along with a **threshold** t_i for each variable $v_i \in V$.

Optimality criteria for rules

Our rule synthesis method searches for an orientation of *G*, along with an update function $u_i:\{0,1\}^n \rightarrow \{0,1\}$ for each variable $v_i \in V$, such that the following conditions hold:

1. For each edge (s_1, s_2) labeled with variable v_i in the orientated graph, the update function for v_i takes state s_1 to state s_2 : $u_i(s_1) = s_2(i)$.

2. The number of states in which no transitions induced by the update functions are **missing** is **maximized**.

3. Every **final vertex** $f \in F$ is **reachable** from some initial vertex $i \in I$ by a directed path in the orientated graph.

Allowed complexity of the rules

We restrict the update function u_i to have the form:

 $f_1 \wedge \neg f_2$ where f_j is a Boolean formula that has **and-nodes** of in-degree two, **or-nodes** of arbitrary in-degree, and where f_1 has a maximum depth of N_i and f_2 has a maximum depth of M_i .

 N_i and M_i are given as parameters to the method.

The search for edge orientations and associated Boolean update rules is encoded as a Boolean satisfiability (SAT) problem.

Generated rules for Boolean Network

Gene	Synthesised update functions	% Non-observed	Motifs present
		transitions disallowed (N _i)	
Scl	Fli1	98	Yes
Etv2	Notch1	96	Yes
Fli1	Etv2	96	Yes
	Sox7	97	Yes
Lyl1	Sox7	92	Yes
Sox7	Sox17∨ HoxB4	82	No (Sox missing)
Erg	$(HoxB4 \land Lyl1) \lor Sox17$	84	Yes
-	(HoxB4 ∧ Tal1) ∨ Sox17	83	Yes
Notch1	Sox7	94	Yes
Gata1	Gfi1b ∧ Lmo2	86	Yes
	Gfi1b ∧ Hhex	84	No (Hhex missing)
	Gfi1b ∧ Ets1	84	Yes
HoxB4	(Lyl1 ∧ Ets1) ∧ ¬Gata1	65	Yes
	(Lyl1 ∨ Nfe2) ∧ ¬Gata1	65	Yes
	(Lyl1 ∨ Ikaros) ∧ ¬Gata1	65	No (Ikaros missing)
Sox17	Lyl1 ∧ ¬Gfi1b	77	No (Gfi missing)
	(Eto2 ∧ Sox7) ∧ ¬Gfi1b	76	No (Gfi missing)
	(Eto2 ∧ Tal1) ∧ ¬Gfi1b	75	No (Gfi missing)
Ets1	Notch1	96	Yes
Gfi1	Gata1 ∧ ¬Sox17	88	Yes
	Nfe2 ∧ ¬Sox17	88	Yes
Gfi1b	Nfe2 ∧ Myb	87	Yes
	Pu.1 ∧ Ikaros	86	No (Ikaros missing)
	Pu.1 ∧ Nfe2	86	Yes
	Pu.1 ∧ Myb	86	Yes
Eto2	Sox7	93	No (Sox missing)
	Hhex	92	No (Hhex missing)
	Ets1 \ Fli1	94	No (Ets missing)
Hhex	Sox7	97	No (Sox missing)
	Notch1	93	No (Rbpj missing)
Ikaros	Nfe2∨ Gfi1b	84	Yes
	Nfe2 ∨ Gata1	83	Yes
	Nfe2 ∨ Gfi1	82	Yes
Lmo2	Sox7∨ Gfi1	79	Yes
	Sox7∨ Erg	79	Yes
	Sox7∨ HoxB4	77	Yes
Nfe2	Ikaros	78	Yes
Pu.1	Gfi1 ∨ Erg	67	Yes
Myb	HoxB4	64	Yes

Additional validity check of the postulated rules:

check whether regulated genes contain **TF-binding motifs** in their promoters (right column).

This is the case for 70% of the rules.

Moignard et al., Nature Biotech. 33, 269 (2015)

Bioinformatics 3 – WS 16/17

Core network controlling hematopoiesis

Derived core network of 20 TFs.

Red edges: activation **Blue** edges: repression

Predict effects of perturbations as validation

Simulate overexpression and knockout experiments for each TF. Assess ability of the network to reach wildtype or new stable states.

Network stable states for wt and Sox7 overexpression.

Enforced expression of Sox7 (that is normally downregulated) stabilized the endothelial module and an inability to reach any of the blood-like states.

Sox7 is predicted to regulate more targets than any other TF, suggesting that perturbing its expression could have important downstream consequences

Control experiments

(b) Colony assays with or without doxycycline
 from genotyped E8.25 embryos from
 iSox7⁺rtTA⁺ mice crossed with wild types.

(**c**) Quantification of primitive erythroid colonies after 4 days.

Embryos carrying both transgenes (rtTA/ iSox7) showed a **50% reduction of primitive erythroid colony formation** following doxycycline-induced *Sox7* expression compared to controls.

This suggests, in agreement with modeling data and gene expression patterns, that downregulation of *Sox7* is important for the specification of primitive erythroid cells.

In iSox7-mouse, overexpression of Sox7 is stimulated by inducing the Sox7-promoter by addition of the chemical doxycycline (+Dox).

Conclusions

Cells destined to become blood and endothelium arise at all stages of the analyzed time course rather than in a synchronized fashion at one precise time point, consistent with the gradual nature of gastrulation.

Using an automated Boolean Network synthesis toolkit we identified a core network of 20 highly connected TFs, which could reach 8 stable states representing blood and endothelium.

We validated model predictions to demonstrate e.g. that Sox7 blocks primitive erythroid development.

 \rightarrow Boolean Networks can be predictive and may guide experiments.