
12. Lecture WS 2016/17
Bioinformatics III 1

V12 from graph connectivity to network flow
Program for today

Menger‘s theorem

Insert: annotate and compare functional annotations of genes

Flow in networks

Bioinformatics III 2

strict paths
Definition Let W be a set of vertices in a graph G and x another vertex not in W.
A strict x-W path is a path joining x to a vertex in W and
containing no other vertex of W.
A strict W-x path is the reverse of a strict x-W path (i.e. its sequence of vertices
and edges is in reverse order).

Example: Let us consider the u-v separating set W = {y,s,z} in the graph below.

There are four strict u-W paths 〈u,x,y〉, 〈u,r,y〉, 〈u,r,s〉, 〈u,z〉
And three strict W-v paths 〈z,v〉, 〈y,t,v〉, and 〈s,v〉.

12. Lecture WS 2016/17

Bioinformatics III 3

Menger’s Theorem
Theorem 5.3.4 [Menger, 1927] Let u and v be distinct, non-adjacent vertices
in a connected graph G.
Then the maximum number of internally disjoint u-v paths in G
equals the minimum number of vertices needed to separate u and v.

u v

Proof: The proof uses induction on the number of edges.

The smallest graph that satisfies the premises of the theorem
(non-adjacent u and v) is the path graph from u to v of length 2.

The theorem is trivially true for this graph : one cut-vertex, one u-v path.

12. Lecture WS 2016/17

Bioinformatics III 4

Menger’s Theorem
Assume now that the theorem is true for all connected graphs
having fewer than m edges, e.g. for some m ≥ 3.

Suppose that G is a connected graph with m edges, and let k be the
minimum number of vertices needed to separate the vertices u and v.

By Corollary 5.3.2 (number of paths ≤ number of vertices),
it suffices to show that there exist k internally disjoint u-v paths in G.

This is clearly true if k = 1 (since G is connected, there exists a u-v path).

Thus, we will assume k ≥ 2.

12. Lecture WS 2016/17

Bioinformatics III 5

Proof of Menger’s Theorem
Assertion 5.3.4a If G contains a u-v path of length 2,
then G contains k internally disjoint u-v paths.

Proof: Suppose that P = 〈u,e1,x,e2,v〉 is a path in G of length 2.
G – x has fewer edges than G → by the induction hypothesis,
there are at least k – 1 internally disjoint u – v paths in G – x.

Path P is internally disjoint from any of these, and, hence,
there are k internally disjoint u-v paths in G. □

If there is a u-v separating set that contains a vertex adjacent to both vertices
u and v, then Assertion 5.3.4a guarantees the existence of k internally disjoint
u-v paths in G.

The argument for distance (u,v) ≥ 3 is now broken into two cases,
according to the kinds of u-v separating sets that exist in G.

12. Lecture WS 2016/17

Bioinformatics III 6

Proof of Menger’s Theorem
In Case 1 (left picture), there exists a u-v separating set W,
where neither u nor v is adjacent to every vertex of W .

In Case 2 (right picture), no such separating set exists.
Thus, in every u-v separating set for Case 2,
either every vertex is adjacent to u or every vertex is adjacent to v.

12. Lecture WS 2016/17

Bioinformatics III 7

Proof of Menger’s Theorem
Case 1: There exists a u-v separating set W = {w1, w2, ... ,wk } of vertices in G of
minimum size k, such that neither u nor v is adjacent to every vertex in W.

Let Gu be the subgraph induced on the union of the edge-sets
of all strict u-W paths in G,
and let Gv be the subgraph induced on the union of edge-sets
of all strict W-v paths (see Fig. below).

12. Lecture WS 2016/17

Split up graph

Bioinformatics III 8

Proof of Menger’s Theorem
Assertion 5.3.4b: Both of the subgraphs Gu and Gv have more than k edges.

Proof : For each wi ∈ W, there is a u-v path Pwi in G
on which wi is the only vertex of W.
(Otherwise, W – {wi} would still be a u-v separating set, which would contradict the
minimality of W).

The u-wi subpath of Pwi is a strict u-W path that ends at wi.
Thus, the final edge of this strict u-W path is different for each wi.
Hence, Gu has at least k edges.

The only way Gu could have exactly k edges would be if each of these
Strict u-W paths consisted of a single edge joining u and wi, i = 1, ..., k.
But this is ruled out by the condition for Case 1.
Therefore, Gu has more than k edges.

A similar argument shows that Gv also has more than k edges. □
12. Lecture WS 2016/17

Bioinformatics III 9

Proof of Menger’s Theorem
Assertion 5.3.4c: The subgraphs Gu and Gv have no edges in common.

Proof of 5.3.4c: By way of contradiction, suppose that the
subgraphs Gu and Gv have an edge e in common.

By the definitions of Gu and Gv, edge e would then be an edge
of both a strict u-W path and a strict W-v path.

Hence, at least one of the endpoints of e, say x, is not a vertex
in the u-v separating set W (see Fig. below).
This implies the existence of a u-v path in G-W,
which contradicts the definition of W. □

12. Lecture WS 2016/17

Bioinformatics III 10

Proof of Menger’s Theorem
We now define two auxiliary graphs Gu

* and Gv
*:

Gu
* is obtained from G by replacing the subgraph Gv with a new vertex v*

and drawing an edge from each vertex in W to v*, and
Gv

* is obtained by replacing Gu with a new vertex u*
and drawing an edge from u* to each vertex in W (see Fig. below).

12. Lecture WS 2016/17

Proof of 5.3.4d: The following chain of inequalities shows that graph Gu
* has fewer

edges than G.

Bioinformatics III 11

Proof of Menger’s Theorem
Assertion 5.3.4d: Both of the auxiliary graphs Gu

* and Gv
* have fewer edges than G.

Q: Why would this be useful?

A similar argument shows that Gv
* also has fewer edges than G. □

5.3.4c

5.3.4b

since Gu ∪ Gv is a subgraph of G

by the construction of Gu*

12. Lecture WS 2016/17

By the construction of graphs Gu
* and Gv

, every u-v separating set in graph Gu
*

and every u*-v separating set in graph Gv
* is a u-v separating set in graph G.

Hence, the set W is a smallest u-v* separating set in Gu
*

and a smallest u*-v separating set in Gv
*.

Bioinformatics III 12

Proof of Menger’s Theorem
Since Gu

* and Gv
* have fewer edges than G, the induction hypothesis implies the

existence of two collections, Pu
* and Pv

* of k internally disjoint u-v* paths in Gu
* and

k internally disjoint u*-v paths in Gv
*, respectively (see Fig.).

For each wi, one of the paths in Pu
* consists of a u-wi path Pi

‘ in G plus the new
edge from wi to v*, and one of the paths in Pv

* consists of the new edge from u* to
wi followed by a wi-v path Pi

‘‘ in G.

Let Pi be the concatenation of paths Pi
‘ and Pi

‘‘, for i = 1, ..., k.
Then the set {Pi} is a collection of k internally disjoint u-v paths in G. □ (Case 1)

12. Lecture WS 2016/17

Bioinformatics III 13

Proof of Menger’s Theorem
Case 2: Suppose that for each u-v separating set of size k, one of the vertices
u or v is adjacent to all the vertices in that separating set.
will not be proven in lecture

Let P = 〈u,e1,x1,e2,x2, ..., v〉 be a shortest u-v path in G.
By Assertion 5.3.4a, we can assume that P has length at least 3 and that
vertex x1 is not adjacent to vertex v.
By Proposition 5.1.3, the edge-deletion subgraph G – e2 is connected.
Let S be a smallest u-v separating set in subgraph G – e2 (see Fig.).

12. Lecture WS 2016/17

Bioinformatics III 14

Proof of Menger’s Theorem
Then S is a u-v separating set in the vertex-deletion subgraph G – x 1.
Thus, S ∪ {x1} is a u-v separating set in G, which implies that | S | ≥ k – 1, by the
minimality of k. On the other hand, the minimality of
| S | in G – e2 implies that | S | ≤ k, since every u-v separating set in G is also
a u-v separating set in G – e2.

If | S | = k, then, by the induction hypothesis, there are k internally disjoint u-v paths
in G – e2 and, hence, in G.
If | S | = k – 1, then xi ∉ S, i = 1,2 (otherwise S – {xi } would be a u-v separating set
in G – e2, contradicting the minimality of k).
Thus, the sets S ∪ {x1} and S ∪ {x2} are both of size k and both u-v separating sets
of G. The condition for Case 2 and the fact that vertex x1 is not adjacent to v imply
that every vertex in S is adjacent to vertex u.
Hence, no vertex in S is adjacent to v (lest there be a u-v path of length 2).
But then the condition of Case applied to S ∪ { x2 } implies that vertex x2 is adjacent
to vertex u, which contradicts the minimality of path P and completes the proof. □

12. Lecture WS 2016/17

Insert: functional annotation of gene function

•  Functional annotation of genes/gene products: Gene Ontology (GO)

•  significance of annotation: hypergeometric test

•  (mathematical) similarity of GO-terms

12. Lecture WS 2016/17
Bioinformatics III 15

See lecture V3 page 20. There we stated

3) co-functionality
it is realistic to assume that members of a protein complex should have closely
related biological functions -> check whether interaction proteins have
overlapping annotations with terms from Genome Ontology (GO)

Equivalently, we can expect that members of a protein complex should have
higher functional similarity to eachother than random proteins.

The Gene Ontology (GO)
Ontologies are structured vocabularies.

The Gene Ontology consists of 3 trees:

- Biological process (BP)
- molecular function (MF)
- cellular component (localisation).

Shown here is a part of the BP tree.

At the top: most general term (root)

Red: tree leafs (very specific GO terms)
Green: common ancestor
Blue: other nodes.

Arcs: „Y is contained in X“-relations

PhD Dissertation Andreas Schlicker (UdS, 2010)
12. Lecture WS 2016/17

Bioinformatics III 16

Where do the Gene Ontology annotations come from?

Rhee et al. Nature Reviews Genetics 9, 509-515 (2008)
12. Lecture WS 2016/17

Bioinformatics III 17

Signifkance of GO annotations
Very general GO terms such as “cellular metabolic process“

are annotated to many genes in the genome.

Very specific terms belong to a few genes only.

→ One needs to compare how significant the occurrence of a

GO term is in a given set of genes

compared to a randomly selected set of genes of the same size.

This is often done with the hypergeometric test.

12. Lecture WS 2016/17
Bioinformatics III 18

PhD Dissertation Andreas Schlicker (UdS, 2010)

Hypergeometric test

The hypergeometric test is a statistical test.

It can be used to check e.g. whether a biological annotation π is statistically
significant enriched in a given test set of genes compared to the full genome.

▪ N : number of genes in the genome

▪ n : number of genes in the test set

▪ Kπ : number of genes in the genome with annotation π.

▪ kπ : number of genes in test set with annotation π.

The hypergeometric test provides the likelihood that kπ or more genes

that were randomly selected from the genome also have annotation π.

http://great.stanford.edu/

p-value =

12. Lecture WS 2016/17
Bioinformatics III 19

Hypergeometric test

http://great.stanford.edu/
http://www.schule-bw.de/

p-value =

corrects for the number of
possibilities for selecting

n elements from a set of

N elements.

This correction is applied if the
sequence of drawing the
elements is not important.

Select i ≥ kπ genes with
annotation π from the genome.

There are Kπ such genes.

The other n – i genes in the test
set do NOT have annotation π.
There are N – Kπ such genes in
the genome.

The sum runs from kπ
elements to the maximal
possible number of elements.

This is either the number of
genes with annotation π in the
genome (Kπ) or the number of
genes in the test set (n).

12. Lecture WS 2016/17
Bioinformatics III 20

Example

http://great.stanford.edu/

p-Wert =

Is annotation π significantly enriched
in the test set of 3 genes?

Yes! p = 0.05 is (just) significant.

12. Lecture WS 2016/17
Bioinformatics III 21

Information content of GO terms

The likelihood takes values between 0 and 1 and

increases monotonic from the leaf nodes to the root.

Define information content of a node from its likelihood:

A rare node has high information content.

The likelihood of a node t can be defined in 2 ways:

How many genes have annotation t Number of GO terms in subtree below t

relative to the root node? relative to number of GO terms in tree

 .

12. Lecture WS 2016/17
Bioinformatics III 22

PhD Dissertation Andreas Schlicker (UdS, 2010)

Common ancestors of GO terms

Nucl. Acids Res. (2012) 40 (D1):
D559-D564

The most informative
common ancestor (MICA) of
terms t1 und t2 is their
common ancestor with
highest information content.

Typically, this is the closest
common ancestor.

Common ancestors of

two nodes t1 and t2 :

all nodes that are located

on a path from t1 to root AND

on a path from t2 to root.

12. Lecture WS 2016/17
Bioinformatics III 23

Measure functional similarity of GO terms

Schlicker et al. defined the similarity of two GO terms t1 und t2

based on the information content of the most informative common ancestor (MICA)

The following variant worked slightly better in practice:

12. Lecture WS 2016/17
Bioinformatics III 24

PhD Dissertation Andreas Schlicker (UdS, 2010)

Measure functional similarity of two genes
Two genes or two sets of genes A und B typically have more than 1 GO
annotation each. → Consider similarity of all terms i and j:

and select the maxima in all rows and columns:

Compute funsim-Score from scores for BP tree and MF tree:

12. Lecture WS 2016/17
Bioinformatics III 25

PhD Dissertation Andreas Schlicker (UdS, 2010)

Bioinformatics III 26

Flows and Cuts in Networks

The second part of this lecture follows closely chapter 12.1 in
the book on the right on „Flows and Cuts in Networks and
Chapter 12.2 on “Solving the Maximum-Flow Problem“

Flow in Networks can mean
- flow of oil or water in pipelines, electricity
- phone calls, emails, traffic networks ...

Equivalences exist between
max-flow min-cut theorem of Ford and Fulkerson
& the connectivity theorems of Menger

→ this led to the development of efficient algorithms for a
number of practical problems to solve scheduling and
assignment problems.

12. Lecture WS 2016/17

Bioinformatics III 27

Definition: A single source – single sink network is a connected digraph that
has a distinguished vertex called the source with nonzero outdegree and a
distinguished vertex called the sink with nonzero indegree.

Such a network with source s and sink t is often referred to as a s-t network.

Single Source – Single Sink Capacitated Networks

Correspondingly, In(v) denotes the set of arcs that are directed to vertex v:

Definition: A capacitated network is a connected digraph such that each arc e
is assigned a nonnegative weight cap(e), called the capacity of arc e.

Notation: Let v be a vertex in a digraph N. Then Out(v) denotes the set of all
arcs that are directed away from vertex v. That is,

12. Lecture WS 2016/17

Bioinformatics III 28

Notation: For any two vertex subsets X and Y of a digraph N, let 〈X,Y〉 denote
the set of arcs in N that are directed from a vertex in X to a vertex in Y.

Single Source – Single Sink Capacitated Networks

Example: The figure shows a 5-vertex capacitated s-t-network.
If X = {x,v} and Y = {w,t}, then the elements of arc set 〈X,Y〉 are the arc directed
from vertex x to vertex w and the arc directed from vertex v to sink t.

The only element in arc set 〈Y,X〉 is the arc directed from vertex w to vertex v.

A 5-vertex capacitated network with
source s and sink t.

12. Lecture WS 2016/17

Bioinformatics III 29

Definition: Let N be a capacitated s-t-network.
A feasible flow f in N is a function f:EN → R+ that assigns a nonnegative real
number to every vertex v in network N, other than source s and sink t, and that
fulfills the following two conditions
1.  (capacity constraints) f(e) ≤ cap(e), for every arc e in network N.
2.  (conservation constraints)

Feasible Flows

Property 2 above is called the conservation-of-flow condition.
E.g. for an oil pipeline, the total flow of oil going into any juncture (vertex) in the
pipeline must equal the total flow leaving that juncture.

Notation: to distinguish visually between the flow and the capacity of an arc,
we adopt the convention in drawings that when both numbers appear,
the capacity will always be in bold and to the left of the flow.

12. Lecture WS 2016/17

Bioinformatics III 30

Example: The figure shows a feasible flow for the previous network.
Notice that the total amount of flow leaving source s equals 6, which is also the
net flow entering sink t.

Feasible Flows

Definition: The maximum flow f* in a capacitated network N is a flow in N
having the maximum value, i.e. val(f) ≤ val(f*), for every flow f in N.

Definition: The value of flow f in a capacitated network N, denoted with val(f),
is the net flow leaving the source s, that is

12. Lecture WS 2016/17

Bioinformatics III 31

By definition, any nonzero flow must use at least one of the arcs in Out(s).
In other words, if all of the arcs in Out(s) were deleted from network N,
then no flow could get from source s to sink t.

This is a special case of the following definition, which combines the concepts of
partition-cut and s-t separating set.

Cuts in s-t Networks

From V11
Definition: Let G be a graph, and let X1 and X2 form a partition of VG.
The set of all edges of G having one endpoint in X1 and the other endpoint
in X2 is called a partition-cut of G and is denoted 〈X1,X2〉.

From V11
Definition: Let u and v be distinct vertices in a connected graph G.
A vertex subset (or edge subset) S is u-v separating (or separates u and v),
if the vertices u and v lie in different components of the deletion subgraph G – S.

12. Lecture WS 2016/17

Bioinformatics III 32

Definition: Let N be an s-t network, and let Vs and Vt form a partition of VG such
that source s ∈ Vs and sink t ∈ Vt.
Then the set of all arcs that are directed from a vertex in set Vs to a vertex in set
Vt is called an s-t cut of network N and is denoted 〈Vs,Vt〉.

Cuts in s-t Networks

Remark: The arc set Out(s) for an s-t network N is the s-t cut 〈{s},VN – {s}〉, and
In(t) is the s-t cut 〈VN – {t},{t}〉.

12. Lecture WS 2016/17

Bioinformatics III 33

Example. The figure portrays the arc sets Out(s) and In(t) as s-t cuts,
where Out(s) = 〈 {s}, {x,v,w,t} 〉 and In(t) = 〈 {s,x,v,w},{t} 〉.

Cuts in s-t Networks

Example: a more general s-t cut 〈 Vs,Vt 〉 is shown below,
where Vs = {s,x,v} and Vt = {w,t}.

12. Lecture WS 2016/17

Bioinformatics III 34

Proposition 12.1.1 Let 〈 Vs,Vt 〉 be an s-t cut of a network N.
Then every directed s-t path in N contains at least one arc in 〈 Vs,Vt 〉.

Cuts in s-t Networks

Proof. Let P = 〈s = v0,v1,v2, …,vl = t〉 be the vertex
sequence of a directed s-t path in network N.

Since s ∈ Vs and t ∈ Vt, there must be a first vertex vj
on this path that is in set Vt (see figure below).

Then the arc from vertex vj-1 to vj is in 〈 Vs,Vt 〉. □

12. Lecture WS 2016/17

Bioinformatics III 35

Similar to viewing the set Out(s) of arcs directed from source s as the s-t cut
〈 {s}, VN – {s} 〉, the set In(s) may be regarded as the set of „backward“ arcs
relative to this cut, namely, the arc set 〈 VN – {s}, {s}, 〉.

From this perspective, the definition of val(f) may be rewritten as

Relationship between Flows and Cuts

12. Lecture WS 2016/17

Bioinformatics III 36

Lemma 12.1.2. Let 〈 Vs,Vt 〉 be any s-t cut of an s-t network N. Then

Relationship between Flows and Cuts

Proof: For any vertex v ∈ Vs, each arc directed from v is either in 〈 Vs,Vs〉 or in
〈Vs,Vt〉. The figure illustrates for a vertex v the partition of Out(v) into a 4-element
subset of 〈 Vs,Vs〉 and a 3-element subset of 〈 Vs,Vt〉.

Similarly, each arc directed to vertex v is either in 〈 Vs,Vs〉 or in 〈 Vt,Vs〉 . □

12. Lecture WS 2016/17

Bioinformatics III 37

Proposition 12.1.3. Let f be a flow in an s-t network N, and let 〈 Vs,Vt 〉 be any s-t
cut of N. Then

Relationship between Flows and Cuts

Proof: By definition,

And by the conservation of flow

By Lemma 12.1.2.

(1)

(2)

Now enter the right hand sides of (2) into (1) and obtain the desired equality. □

12. Lecture WS 2016/17

Bioinformatics III 38

The flow f and cut 〈{s,x,v},{w,t}〉 shown in the figure illustrate Proposition 12.1.3.

Example

The next corollary confirms something that was apparent from intuition:
the net flow out of the source s equals the net flow into the sink t.

Corollary 12.1.4 Let f be a flow in an s-t network. Then

Proof: Apply proposition 12.1.3 to the s-t cut In(t) = 〈 VN – {t}, {t} 〉. □
12. Lecture WS 2016/17

Bioinformatics III 39

Definition. The capacity of a cut 〈Vs,Vt〉 denoted cap〈Vs,Vt〉, is the sum of the
capacities of the arcs in cut 〈Vs,Vt〉. That is

Example

Definition. The minimum cut of a network N is a cut with the minimum capacity.

Example. The capacity of the cut shown in the previous figure is 13,
And the cut 〈{s,x,v,w},{t}〉 with capacity 10, is the only minimum cut.

12. Lecture WS 2016/17

Bioinformatics III 40

The problems of finding the maximum flow in a capacitated network N and
finding a minimum cut in N are closely related.

These two optimization problems form a max-min pair.

The following proposition provides an upper bound for the maximum-flow
problem.

Maximum-Flow and Minimum-Cut Problems

12. Lecture WS 2016/17

Bioinformatics III 41

Proposition 12.1.5 Let f be any flow in an s-t network, and let 〈Vs,Vt〉 be any s-t cut.
Then

Maximum-Flow and Minimum-Cut Problems

Proof:

 □

12. Lecture WS 2016/17

Bioinformatics III 42

Proof: Let f‘ be any feasible flow in network N.
Proposition 12.1.5 and the premise give

 → f is a maximum flow

On the other hand, let 〈Vs,Vt〉 be any s-t cut. Proposition 12.1.5:
 → K is a minimum cut. □

Corollary 12.1.6 (Weak Duality) Let f* be a maximum flow in an s-t network N,
and let K* be a minimum s-t cut in N. Then

Maximum-Flow and Minimum-Cut Problems

Proof: This follows immediately from proposition 12.1.5.

Corollary 12.1.7 (Certificate of Optimality) Let f be a flow in an s-t network N
and K an s-t cut, and suppose that val(f) = cap(K).
Then flow f is a maximum flow in network N, and cut K is a minimum cut.

12. Lecture WS 2016/17

Bioinformatics III 43

Example The flow for the example network shown in the figure has value 10,
which is also the capacity of the s-t cut 〈{s,x,v,w},{t}〉.
By corollary 12.1.7, both the flow and the cut are optimal for their respective
problem.

Example

A maximum flow and minimum cut.

Corollary 12.1.8 Let 〈Vs,Vt〉 be an s-t cut in a network N, and suppose that f is a
flow such that

Then f is a maximum flow in N, and 〈Vs,Vt〉 is a minimum cut.

12. Lecture WS 2016/17

