
12. Lecture WS 2016/17 
Bioinformatics III 1 

V12 from graph connectivity to network flow 
Program for today 

Menger‘s theorem 

Insert: annotate and compare functional annotations of genes 

Flow in networks 
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strict paths 
Definition Let W be a set of vertices in a graph G and x another vertex not in W. 
A strict x-W path is a path joining x to a vertex in W and  
containing no other vertex of W.  
A strict W-x path is the reverse of a strict x-W path (i.e. its sequence of vertices 
and edges is in reverse order). 

Example: Let us consider the u-v separating set W = {y,s,z} in the graph below. 

There are four strict u-W paths 〈u,x,y〉, 〈u,r,y〉, 〈u,r,s〉, 〈u,z〉  
And three strict W-v paths 〈z,v〉, 〈y,t,v〉, and 〈s,v〉. 
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Menger’s Theorem 
Theorem 5.3.4 [Menger, 1927] Let u and v be distinct, non-adjacent vertices  
in a connected graph G.  
Then the maximum number of internally disjoint u-v paths in G  
equals the minimum number of vertices needed to separate u and v. 

u v 

Proof: The proof uses induction on the number of edges. 

The smallest graph that satisfies the premises of the theorem  
(non-adjacent u and v) is the path graph from u to v of length 2.  

The theorem is trivially true for this graph : one cut-vertex, one u-v path. 
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Menger’s Theorem 
Assume now that the theorem is true for all connected graphs  
having fewer than m edges, e.g. for some m ≥ 3. 

Suppose that G is a connected graph with m edges, and let k be the  
minimum number of vertices needed to separate the vertices u and v. 

By Corollary 5.3.2 (number of paths ≤ number of vertices),  
it suffices to show that there exist k internally disjoint u-v paths in G.  

This is clearly true if k = 1 (since G is connected, there exists a u-v path).  

Thus, we will assume k ≥ 2. 
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Proof of Menger’s Theorem 
Assertion 5.3.4a If G contains a u-v path of length 2,  
then G contains k internally disjoint u-v paths.  

Proof: Suppose that P = 〈u,e1,x,e2,v〉 is a path in G of length 2. 
G – x has fewer edges than G → by the induction hypothesis,  
there are at least k – 1 internally disjoint u – v paths in G – x.  

Path P  is internally disjoint from any of these, and, hence,  
there are k internally disjoint u-v paths in G. □ 

If there is a u-v separating set that contains a vertex adjacent to both vertices  
u and v, then Assertion 5.3.4a guarantees the existence of k internally disjoint  
u-v paths in G.  

The argument for distance (u,v) ≥ 3 is now broken into two cases,  
according to the kinds of u-v separating sets that exist in G. 
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Proof of Menger’s Theorem 
In Case 1 (left picture), there exists a u-v separating set W,  
where neither u nor v is adjacent to every vertex of W . 

In Case 2 (right picture), no such separating set exists.  
Thus, in every u-v separating set for Case 2,  
either every vertex is adjacent to u or every vertex is adjacent to v. 
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Proof of Menger’s Theorem 
Case 1: There exists a u-v separating set W = {w1, w2, ... ,wk } of vertices in G of 
minimum size k, such that neither u nor v is adjacent to every vertex in W. 

Let Gu be the subgraph induced on the union of the edge-sets  
of all strict u-W paths in G,  
and let Gv be the subgraph induced on the union of edge-sets  
of all strict W-v paths (see Fig. below). 
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Split up graph 
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Proof of Menger’s Theorem 
Assertion 5.3.4b: Both of the subgraphs Gu and Gv have more than k edges. 

Proof : For each wi ∈ W, there is a u-v path Pwi in G  
on which wi is the only vertex of W.  
(Otherwise, W – {wi} would still be a u-v separating set, which would contradict the 
minimality of W).  

The u-wi subpath of Pwi  is a strict u-W path that ends at wi. 
Thus, the final edge of this strict u-W path is different for each wi.  
Hence, Gu has at least k edges. 

The only way Gu could have exactly k edges would be if each of these  
Strict u-W paths consisted of a single edge joining u and wi, i = 1, ..., k.  
But this is ruled out by the condition for Case 1.  
Therefore, Gu has more than k edges.  

A similar argument shows that Gv also has more than k edges. □ 
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Proof of Menger’s Theorem 
Assertion 5.3.4c: The subgraphs Gu and Gv have no edges in common. 

Proof of 5.3.4c: By way of contradiction, suppose that the  
subgraphs Gu and Gv have an edge e in common.  

By the definitions of Gu and Gv, edge e would then be an edge  
of both a strict u-W path and a strict W-v path.  

Hence, at least one of the endpoints of e, say x, is not a vertex  
in the u-v separating set W (see Fig. below).  
This implies the existence of a u-v path in G-W,  
which contradicts the definition of W. □ 
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Proof of Menger’s Theorem 
We now define two auxiliary graphs Gu

* and Gv
*:  

Gu
* is obtained from G by replacing the subgraph Gv with a new vertex v*  

and drawing an edge from each vertex in W to v*, and  
Gv

* is obtained by replacing Gu with a new vertex u*  
and drawing an edge from u* to each vertex in W (see Fig. below). 
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Proof of 5.3.4d: The following chain of inequalities shows that graph Gu
* has fewer 

edges than G. 
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Proof of Menger’s Theorem 
Assertion 5.3.4d: Both of the auxiliary graphs Gu

* and Gv
* have fewer edges than G. 

Q: Why would this be useful? 

A similar argument shows that Gv
* also has fewer edges than G. □ 

5.3.4c 

5.3.4b 

since Gu ∪ Gv is a subgraph of G 

by the construction of Gu* 
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By the construction of graphs Gu
* and Gv

*, every u-v* separating set in graph Gu
* 

and every u*-v separating set in graph Gv
* is a u-v separating set in graph G. 

Hence, the set W is a smallest u-v* separating set in Gu
*  

and a smallest u*-v separating set in Gv
*. 
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Proof of Menger’s Theorem 
Since Gu

* and Gv
* have fewer edges than G, the induction hypothesis implies the 

existence of two collections, Pu
* and Pv

* of k internally disjoint u-v* paths in Gu
* and 

k internally disjoint u*-v paths in Gv
*, respectively (see Fig.). 

For each wi, one of the paths in Pu
* consists of a u-wi path Pi

‘ in G plus the new 
edge from wi to v*, and one of the paths in Pv

* consists of the new edge from u* to 
wi followed by a wi-v path Pi

‘‘ in G. 

Let Pi be the concatenation of paths Pi
‘ and Pi

‘‘, for i = 1, ..., k.  
Then the set {Pi} is a collection of k internally disjoint u-v paths in G. □ (Case 1) 
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Proof of Menger’s Theorem 
Case 2: Suppose that for each u-v separating set of size k, one of the vertices  
u or v is adjacent to all the vertices in that separating set. 
will not be proven in lecture  

Let P = 〈u,e1,x1,e2,x2, ..., v〉 be a shortest u-v path in G.  
By Assertion 5.3.4a, we can assume that P has length at least 3 and that  
vertex x1 is not adjacent to vertex v. 
By Proposition 5.1.3, the edge-deletion subgraph G – e2 is connected. 
Let S be a smallest u-v separating set in subgraph G – e2 (see Fig.). 

12. Lecture WS 2016/17 



Bioinformatics III 14 

Proof of Menger’s Theorem 
Then S is a u-v separating set in the vertex-deletion subgraph G – x 1.  
Thus, S ∪ {x1} is a u-v separating set in G, which implies that | S | ≥ k – 1, by the 
minimality of k. On the other hand, the minimality of 
| S | in G – e2 implies that | S | ≤ k, since every u-v separating set in G is also  
a u-v separating set in G – e2. 

If | S | = k, then, by the induction hypothesis, there are k internally disjoint u-v paths 
in G – e2  and, hence, in G.  
If | S | = k – 1, then xi ∉ S, i = 1,2 (otherwise S – {xi } would be a u-v separating set 
in G – e2, contradicting the minimality of k). 
Thus, the sets S ∪ {x1} and S ∪ {x2} are both of size k and both u-v separating sets 
of G. The condition for Case 2 and the fact that vertex x1 is not adjacent to v imply 
that every vertex in S is adjacent to vertex u. 
Hence, no vertex in S is adjacent to v (lest there be a u-v path of length 2). 
But then the condition of Case applied to S ∪ { x2 } implies that vertex x2 is adjacent 
to vertex u, which contradicts the minimality of path P and completes the proof. □ 
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Insert: functional annotation of gene function 

•  Functional annotation of genes/gene products: Gene Ontology (GO) 

•  significance of annotation: hypergeometric test 

•  (mathematical) similarity of GO-terms 
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See lecture V3 page 20. There we stated

3) co-functionality
it is realistic to assume that members of a protein complex should have closely 
related biological functions -> check whether interaction proteins have 
overlapping annotations with terms from Genome Ontology (GO)

Equivalently, we can expect that members of a protein complex should have 
higher functional similarity to eachother than random proteins.



The Gene Ontology (GO) 
Ontologies are structured vocabularies. 

The Gene Ontology consists of 3 trees: 

- Biological process (BP) 
- molecular function (MF) 
- cellular component (localisation). 

Shown here is a part of the BP tree. 

At the top: most general term (root) 

Red: tree leafs (very specific GO terms) 
Green: common ancestor 
Blue: other nodes.  

Arcs: „Y is contained in X“-relations 

PhD Dissertation Andreas Schlicker (UdS, 2010) 
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Where do the Gene Ontology annotations come from? 

Rhee et al. Nature Reviews Genetics 9, 509-515 (2008) 
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Signifkance of GO annotations 
Very general GO terms such as “cellular metabolic process“  

are annotated to many genes in the genome. 

Very specific terms belong to a few genes only. 

→ One needs to compare how significant the occurrence of a  

GO term is in a given set of genes  

compared to a randomly selected set of genes of the same size. 

This is often done with the hypergeometric test.   
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PhD Dissertation Andreas Schlicker (UdS, 2010) 



Hypergeometric test 

The hypergeometric test is a statistical test. 

It can be used to check e.g. whether a biological annotation π is statistically 
significant enriched in a given test set of genes compared to the full genome.  

▪  N : number of genes in the genome 

▪  n : number of genes in the test set 

▪  Kπ : number of genes in the genome with annotation π. 

▪  kπ : number of genes in test set with annotation π. 

The hypergeometric test provides the likelihood that kπ or more genes  

that were randomly selected from the genome also have annotation π.  

http://great.stanford.edu/ 

p-value = 
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Hypergeometric test 

http://great.stanford.edu/ 
http://www.schule-bw.de/ 

p-value = 

corrects for the number of 
possibilities for selecting   

n elements from a set of   

N elements. 

This correction is applied if the 
sequence of drawing the 
elements is not important. 

Select i ≥ kπ genes with 
annotation π from the genome.  

There are Kπ such genes. 

The other n – i genes in the test 
set do NOT have annotation π. 
There are N – Kπ such genes in 
the genome. 

The sum runs from  kπ 
elements to the maximal 
possible number of elements. 

This is either the number of 
genes with annotation π in the 
genome (Kπ) or the number of 
genes in the test set (n). 
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Example 

http://great.stanford.edu/ 

p-Wert = 

Is annotation π significantly enriched 
in the test set of 3 genes? 

Yes! p = 0.05 is (just) significant.  
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Information content of GO terms 

The likelihood takes values between 0 and 1 and  

increases monotonic from the leaf nodes to the root. 

Define information content of a node from its likelihood: 

A rare node has high information content. 

The likelihood of a node t can be defined in 2 ways: 

How many genes have annotation t  Number of GO terms in subtree below t 

relative to the root node?             relative to number of GO terms in tree   

   . 
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Common ancestors of GO terms 

Nucl. Acids Res. (2012) 40 (D1): 
D559-D564 

The most informative 
common ancestor (MICA) of 
terms t1 und t2 is their 
common ancestor with 
highest information content. 

Typically, this is the closest 
common ancestor. 

Common ancestors of  

two nodes t1 and t2 :  

all nodes that are located  

on a path from  t1 to root AND  

on a path from t2 to root. 
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Measure functional similarity of GO terms 

Schlicker et al. defined the similarity of two GO terms t1 und t2 

based on the information content of the most informative common ancestor (MICA) 

The following variant worked slightly better in practice: 
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Measure functional similarity of two genes 
Two genes or two sets of genes A und B typically have more than 1 GO 
annotation each. → Consider similarity of all terms i and j: 

and select the maxima in all rows and columns: 

Compute funsim-Score from scores for BP tree and MF tree: 
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Flows and Cuts in Networks 

The second part of this lecture follows closely chapter 12.1 in 
the book on the right on „Flows and Cuts in Networks and 
Chapter 12.2 on “Solving the Maximum-Flow Problem“ 

Flow in Networks can mean  
- flow of oil or water in pipelines, electricity 
- phone calls, emails, traffic networks ... 

Equivalences exist between  
max-flow min-cut theorem of Ford and Fulkerson 
& the connectivity theorems of Menger 

→ this led to the development of efficient algorithms for a 
number of practical problems to solve scheduling and 
assignment problems.  
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Definition: A single source – single sink network is a connected digraph that 
has a distinguished vertex called the source with nonzero outdegree and a 
distinguished vertex called the sink with nonzero indegree. 

Such a network with source s and sink t is often referred to as a s-t network. 

Single Source – Single Sink Capacitated Networks 

Correspondingly, In(v) denotes the set of arcs that are directed to vertex v: 

Definition: A capacitated network is a connected digraph such that each arc e 
is assigned a nonnegative weight cap(e), called the capacity of arc e. 

Notation: Let v be a vertex in a digraph N. Then Out(v) denotes the set of all 
arcs that are directed away from vertex v. That is, 
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Notation: For any two vertex subsets X and Y of a digraph N,  let 〈X,Y〉  denote 
the set of arcs in N that are directed from a vertex in X to a vertex in Y. 

Single Source – Single Sink Capacitated Networks 

Example: The figure shows a 5-vertex capacitated s-t-network. 
If X = {x,v} and Y = {w,t}, then the elements of arc set 〈X,Y〉 are the arc directed 
from vertex x to vertex w and the arc directed from vertex v to sink t. 

The only element in arc set 〈Y,X〉 is the arc directed from vertex w to vertex v. 

A 5-vertex capacitated network with 
source s and sink t. 
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Definition: Let N be a capacitated s-t-network.  
A feasible flow f in N is a function f:EN → R+ that assigns a nonnegative real 
number to every vertex v in network N, other than source s and sink t, and that 
fulfills the following two conditions 
1.    (capacity constraints) f(e) ≤ cap(e), for every arc e in network N. 
2.    (conservation constraints) 

Feasible Flows 

Property 2 above is called the conservation-of-flow condition. 
E.g. for an oil pipeline, the total flow of oil going into any juncture (vertex) in the 
pipeline must equal the total flow leaving that juncture. 

Notation: to distinguish visually between the flow and the capacity of an arc,  
we adopt the convention in drawings that when both numbers appear,  
the capacity will always be in bold and to the left of the flow. 
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Example: The figure shows a feasible flow for the previous network. 
Notice that the total amount of flow leaving source s equals 6, which is also the 
net flow entering sink t.  

Feasible Flows 

Definition: The maximum flow f* in a capacitated network N is a flow in N 
having the maximum value, i.e. val(f) ≤ val(f*), for every flow f in N. 

Definition: The value of flow f in a capacitated network N, denoted with val(f),  
is the net flow leaving the source s, that is  
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By definition, any nonzero flow must use at least one of the arcs in Out(s).  
In other words, if all of the arcs in Out(s) were deleted from network N,  
then no flow could get from source s to sink t. 

This is a special case of the following definition, which combines the concepts of 
partition-cut and s-t separating set. 

Cuts in s-t Networks 

From V11 
Definition: Let G be a graph, and let X1 and X2 form a partition of VG. 
The set of all edges of G having one endpoint in X1 and the other endpoint  
in X2 is called a partition-cut of G and is denoted 〈X1,X2〉. 

From V11 
Definition: Let u and v be distinct vertices in a connected graph G.  
A vertex subset (or edge subset) S is u-v separating (or separates u and v),  
if the vertices u and v lie in different components of the deletion subgraph G – S. 
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Definition: Let N be an s-t network, and let Vs and Vt form a partition of VG such 
that source s ∈ Vs and sink t ∈ Vt. 
Then the set of all arcs that are directed from a vertex in set Vs to a vertex in set 
Vt is called an s-t cut of network N and is denoted 〈Vs,Vt〉. 

Cuts in s-t Networks 

Remark: The arc set Out(s) for an s-t network N is the s-t cut 〈{s},VN – {s}〉, and  
In(t) is the s-t cut 〈VN – {t},{t}〉. 
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Example. The figure portrays the arc sets Out(s) and In(t) as s-t cuts,  
where Out(s) = 〈 {s}, {x,v,w,t} 〉 and In(t) = 〈 {s,x,v,w},{t} 〉. 

Cuts in s-t Networks 

Example: a more general s-t cut 〈 Vs,Vt 〉 is shown below,  
where Vs = {s,x,v} and Vt = {w,t}. 
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Proposition 12.1.1 Let 〈 Vs,Vt 〉 be an s-t cut of a network N.  
Then every directed s-t path in N contains at least one arc in 〈 Vs,Vt 〉. 

Cuts in s-t Networks 

Proof. Let P = 〈s = v0,v1,v2, …,vl = t〉 be the vertex 
sequence of a directed s-t path in network N.  

Since s ∈ Vs and t ∈ Vt, there must be a first vertex vj 
on this path that is in set Vt (see figure below).  

Then the arc from vertex vj-1 to vj is in 〈 Vs,Vt 〉. □ 
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Similar to viewing the set Out(s) of arcs directed from source s as the s-t cut 
〈 {s}, VN – {s} 〉, the set In(s) may be regarded as the set of „backward“ arcs 
relative to this cut, namely, the arc set 〈 VN – {s}, {s}, 〉. 

From this perspective, the definition of val(f) may be rewritten as 

Relationship between Flows and Cuts 
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Lemma 12.1.2. Let 〈 Vs,Vt 〉 be any s-t cut of an s-t network N. Then 

Relationship between Flows and Cuts 

Proof: For any vertex v ∈ Vs, each arc directed from v is either in 〈 Vs,Vs〉 or in  
〈Vs,Vt〉. The figure illustrates for a vertex v the partition of Out(v) into a 4-element 
subset of 〈 Vs,Vs〉 and a 3-element subset of 〈 Vs,Vt〉. 

Similarly, each arc directed to vertex v is either in 〈 Vs,Vs〉 or in 〈 Vt,Vs〉 . □ 
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Proposition 12.1.3. Let f be a flow in an s-t network N, and let 〈 Vs,Vt 〉 be any s-t 
cut of N. Then 

Relationship between Flows and Cuts 

Proof: By definition,  

And by the conservation of flow 

By Lemma 12.1.2. 

(1) 

(2) 

Now enter the right hand sides of (2) into (1) and obtain the desired equality. □ 
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The flow f and cut 〈{s,x,v},{w,t}〉 shown in the figure illustrate Proposition 12.1.3. 

Example 

The next corollary confirms something that was apparent from intuition: 
the net flow out of the source s equals the net flow into the sink t. 

Corollary 12.1.4 Let f be a flow in an s-t network. Then 

Proof: Apply proposition 12.1.3 to the s-t cut In(t) = 〈 VN – {t}, {t} 〉. □ 
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Definition. The capacity of a cut 〈Vs,Vt〉 denoted cap〈Vs,Vt〉, is the sum of the 
capacities of the arcs in cut 〈Vs,Vt〉. That is 

Example 

Definition. The minimum cut of a network N is a cut with the minimum capacity. 

Example. The capacity of the cut shown in the previous figure is 13,  
And the cut 〈{s,x,v,w},{t}〉 with capacity 10, is the only minimum cut. 
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The problems of finding the maximum flow in a capacitated network N and 
finding a minimum cut in N are closely related. 

These two optimization problems form a max-min pair. 

The following proposition provides an upper bound for the maximum-flow 
problem. 

Maximum-Flow and Minimum-Cut Problems 
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Proposition 12.1.5 Let f be any flow in an s-t network, and let 〈Vs,Vt〉 be any s-t cut. 
Then  

Maximum-Flow and Minimum-Cut Problems 

Proof:  

 □ 
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Proof: Let f‘ be any feasible flow in network N.  
Proposition 12.1.5 and the premise give 

      → f is a maximum flow 

On the other hand, let 〈Vs,Vt〉 be any s-t cut. Proposition 12.1.5:  
       → K is a minimum cut. □ 

Corollary 12.1.6 (Weak Duality) Let f* be a maximum flow in an s-t network N, 
and let K* be a minimum s-t cut in N. Then  

Maximum-Flow and Minimum-Cut Problems 

Proof: This follows immediately from proposition 12.1.5. 

Corollary 12.1.7 (Certificate of Optimality) Let f be a flow in an s-t network N  
and K an s-t cut, and suppose that val(f) = cap(K). 
Then flow f is a maximum flow in network N, and cut K is a minimum cut. 
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Example The flow for the example network shown in the figure has value 10, 
which is also the capacity of the s-t cut 〈{s,x,v,w},{t}〉. 
By corollary 12.1.7, both the flow and the cut are optimal for their respective 
problem. 

Example 

A maximum flow and minimum cut. 

Corollary 12.1.8 Let 〈Vs,Vt〉 be an s-t cut in a network N, and suppose that f is a 
flow such that  

Then f is a maximum flow in N, and 〈Vs,Vt〉 is a minimum cut.    
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