V14 extreme pathways / flux balance analysis

14. Lecture WS 2016/17

A torch is directed at an open door
and shines into a dark room ...

What area is lighted ?

Instead of marking all lighted points
individually,

it would be sufficient to characterize
the ,extreme rays® that go through the
corners of the door.

The lighted area is the area between
the extreme rays = linear
combinations of the extreme rays.
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Idea — extreme pathways

Shaded area: Shaded area: EitherS - x=0
x20 x;20Ax,20 (S acts as rotation matrix)

or find optimal vectors
# change coordinate system
from x,, x,to ry, 1.

Duality of two matrices Shaded area:
S andR. ry20ar,z20

Edwards & Palsson PNAS 97, 5528 (2000)
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Stoichiometric matrix

Stoichiometric matrix S: RO IREY, e ,
m % n matrix with : | &) | ! vy V2 Vo Vg Vg Vgidy by by
o 2@ @@ — @ (G220 0 010 0 0|8
stochiometries of the : ) V'l/@ PR b A S I I ¢
. | A : 0O 0 0 #1 0 #1,0 -1 0 E
n reactions as columns and ! e ! 0 +1 41 0 0 0,0 0 -1 |ty
| 1y 0 0 -1 «1 -1 0 :0 0 cof
participations of U @ _____ @’_’ N
m metabolites as rows. I ® |
_..@_,@@A.@"é_.(@%.
The stochiometric matrix is an | \ TS
[ Ty’ |
important part of the in silico : ® &
pz T TTTTTTTTT
model. Pr Py l;,\ . o @- - N:

. . 1 0 1 Vs 4 '
With the matrix, the methods of 0 1 o BT - R ;) S - L
extreme pathway and elementary =% § (% - O |8

2 2 2| b v :
mode analyses can be used to SR | ©® @
generate a unique set of pathways P3 SRR
P1, P2, and P3 that allow to i :

-~ @—-@%40 ~-©
express all steady-state fluxes as | &\ & .
linear combinations of P1 — P3. Papin et al. TIBS 28, 250 (2003) N\ l
' ’ : @0 - @
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Extreme Pathways

introduced into metabolic analysis by the lab of Bernard Palsson
(Dept. of Bioengineering, UC San Diego). The publications of this lab

|
are available at http://gcrg.ucsd.edu/publications/index.html l b,

The extreme pathway
technique is based

_— : Y
on the stoichiometric _»@ ’ 2 @
matrix representation

of metabolic networks. \

O
System boundary LS

©)
A

>

JU

All external fluxes are
defined as pointing outwards.

Mass balance constraints 0. ;
2 Internal flux constraints

-1 0 o 0 0 0 -1 o o o]|°| [0]
0, 20, j=1..6
1 -1 1. 6 0 o0 0 -1 o0 O D
Us
o 1 -1 -1 1 -1 o 0 o O i o
Ug
- 0 ¢ 0 1 0 -1 O 0 ‘hano ‘Neiraints
SChI”Ing Letscher, Palsson, 1 0 0 b, Exchange flux constraints
o o o o0 o 1 0O 0 0 -1 [0

J. theor Biol. 203, 229 (2000) -
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Extreme Pathways — algorithm - setup

The algorithm to determine the set of extreme pathways for a reaction network

follows the pinciples of algorithms for finding the extremal rays/ generating

vectors of convex polyhedral cones.

Combine n x n identity matrix (I) with the transpose of the stoichiometric

matrix ST. | serves for bookkeeping.

L= = R —
|
b
=

o @ ©

Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)
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separate internal and external fluxes

Examine constraints on each of the exchange fluxes as given by
a=b;<f
If the exchange flux is constrained to be positive — do nothing.

If the exchange flux is constrained to be negative — multiply the
corresponding row of the initial matrix by -1.

If the exchange flux is unconstrained — move the entire row to a temporary
matrix T(®).

This completes the first tableau T,

Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)
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idea of algorithm

(1) Identify all metabolites that do not have an unconstrained exchange flux
associated with them.

The total number of such metabolites is denoted by w.

The example system contains only one such metabolite, namely C (u = 1).

b

What is the main idea of this step? .
- We want to find balanced extreme pathways
that don‘t change the concentrations of
metabolites when flux flows through

(input fluxes are channelled to products not to rE e
accumulation of intermediates).

- The stochiometrix matrix describes the coupling of each reaction to the
concentration of metabolites X.

- Now we need to balance combinations of reactions that leave concentrations
unchanged. Pathways applied to metabolites should not change their

concentrations — the matrix entries need to be brought to O.
Schilling, Letscher, Palsson,
J. theor. Biol. 203, 229 (2000)
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keep pathways that do not change
concentrations of internal metabolites
(2) Begin forming the new matrix T® by copying
all rows from T( -1 which already contain a zero in
the column of ST that corresponds to the first
metabolite identified in step 1, denoted by index C.

(Here 3rd column of ST.) A BC D E
1 10 1,0, 0i 0

B 0;.1:.1:.0:0

1 0i 1:1. 0. 0

(0) = SRR SN SR SRR SRR S WU SR S SR S

T 1 0: 0:i-1: 1i 0

1 0i 0i1: -1; 0

1| 0o 01l 00 1

T =" |1 Al 1] of of o

Schilling, Letscher, Palsson, J. theor. Biol. 203, 229 (2000)
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balance combinations of other pathways

(3) Of the remaining rows in T(-1) add together

all possible combinations of rows which contain
values of the opposite sign in column C, such that
the addition produces a zero in this column.

TO =

Schilling, et al.
JTB 203, 229
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1 -1 11 0 0 0
1 o 1| 1 0 0

1 0 11 -1 0 0

1 0 0l -1 1 0

1 0 o 1] -1 0

1 0 0l -1 0 1

1 0 0 0 0 o] 1 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 -1 0 1 0
0 1 0 0 0 1 0 -1 0 0 1
0 0 1 0 1 0 0 1 0o -1 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0o -1 1
3 8 9 10 M
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remove “non-orthogonal” pathways

(4) For all rows added to T( in steps 2 and 3 check that no row exists that is a
non-negative combination of any other rows in T®) .

One method for this works as follows:
let A(i) = set of column indices j for which the elements of row i = 0.

For the example above Then check to determine if there exists

A(1) ={2,3,4,5,6,9,10,11} another row (h) for which A(i) is a
A(2)={1,4,5,6,7,8,9,10,11} subset of A(h).

A@3) ={1,3,5,6,7,9,11}

A4)={1,3,4,5,7,9,10} If A(i) C A(h), i =h

A(5) ={1,2,4,6,7,9,11} where

A(6) ={1,2,3,6,7,8,9,10,11} A@)={j:T,;=0,1=<j=<(ntm)}

A(7)={1,2,3,4,7,8,9} then row i must be eliminated from T®

Schilling et al.

JTB 203, 229

14. Lecture WS 2016/17 Bioinformatics Il
10



repeat steps for all internal metabolites

(5) With the formation of T() complete steps 2 — 4 for all of the metabolites that do
not have an unconstrained exchange flux operating on the metabolite,
incrementing i by one up to u. The final tableau will be T,

Note that the number of rows in T will be equal to k, the number of extreme
pathways.

Schilling et al.

JTB 203, 229
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balance external fluxes

(6) Next we append T to the bottom of T, (In the example here u = 1.)
This results in the following tableau:

T(E) =

Schilling et al.
JTB 203, 229
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balance external fluxes

(7) Starting in the n+7 column (or the first non-zero column on the right side),
if T, ,+7) = O then add the corresponding non-zero row from T(®)to row i so as to
produce 0 in the n+7-th column.

This is done by simply multiplying the corresponding row in T by T, n+1) @nd
adding this row to row /.

Repeat this procedure for each of the rows in the upper portion of the tableau so
as to create zeros in the entire upper portion of the (n+7) column.

When finished, remove the row in T(®) corresponding to the exchange flux for the
metabolite just balanced.

Schilling et al.
JTB 203, 229
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balance external fluxes

(8) Follow the same procedure as in step (7) for each of the columns on the right
side of the tableau containing non-zero entries.

(In our example we need to perform step (7) for every column except the middle
column of the right side which correponds to metabolite C.)

The final tableau T(na) will contain the transpose of the matrix P containing the
extreme pathways in place of the original identity matrix.

Schilling et al.

JTB 203, 229
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T(final) —

PT =

Schilling et al.
JTB 203, 229
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pathway matrix
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Extreme Pathways for model system

2 pathways pg and p, are not shown in the bottom fig. ‘
because all exchange fluxes with the exterior are 0.
Such pathways have no net overall effect on the
functional capabilities of the network.

They belong to the cycling of reactions v,/vs and v,/vs.

Uy
\ /
el =i (O

V, :
11 ol o| of o of 1] 1| o] o -
p1 System boundary @ b,
ol 1|1 1 o| ol o| o o| of o P~
ol 1] of 1| ol o| of 1| 1| o P;
ol 1] of o| of 1| of 1| of 1 P, | \
ol of 1 o 1] o] o 1| 1| o0 P4
ol ol of 1| 1| o| o o| of o Ps
ol of of o 1| 1| of of 1] 1 Ps
P J
Schilling et al.
Extreme
JTB 203, 229 pathways
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How reactions appear in pathway matrix

In the matrix P of extreme pathways, each column is an EP and each row

corresponds to a reaction in the network.
The numerical value of the i j-th element corresponds to the relative flux level

through the /-th reaction in the j-th EP.

Reaction Network

-0 L0—@—

N
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Stoichiometric Matrix Pathway Matrix
EP, EP, EP,

Vi Va2 vz vy vs Vs by by by (2 2 2) v
-1 0 0 0 0 0 +1 0 0)A 1o1| v
+1 -2 -2 0 0 0 0 o0 0B 010 v,
0 #1 0 0 -1 -1 0 0 0|C 01 1| v,
S=[0 0 1 -1 +1 0 0 o0 o0|D P=(0 0 1| v
0 0 0 +1 0 +1 0 -1 0 |E 100 v
0 +1 41 0 0 0 0 0 -1|bp 22 2| b,
0 0 -1 +41 -1.0 0 0 0)cof 11 1| b,
111) b

:Papin, Price, Palsson,
Genome Res. 12, 1889 (2002)
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Properties of pathway matrix

After normalizing P to a matrix with entries 0 or 1,
the symmetric Pathway Length Matrix P ,, can be calculated:

P, =P -P

where the values along the diagonal correspond to the length of the EPs.

Pathway Length
(2 2 2) 1 1 1 Comments:
1 01 1 0 1 1) The lengths of EP,, EP,,and
01 0 EP; are 6, 6, and 7, respectively,
010 EP, EP. EP, the highlighted diagonal elements
011 0 1 1 . &4 EP, of the final matrix.
P=10 0 1 » P=10 0 1 » P eP= 6 5 EP, 2) EP, and EP; have a shared
1 00 1 00 7)EpP, length of 5 (indicated by the
2 2 2 1 1 1 circle). As seen in the schematics
111 11 above, they share reactions v,, v,
b, b, and b,
a1 1) 11 1 i

The off-diagonal terms of P, are the number of reactions that a pair of extreme
pathways have in common.

Papin, Price, Palsson, Genome Res. 12, 1889 (2002)

14. Lecture WS 2016/17 Bioinformatics Il
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Properties of pathway matrix

One can also compute a reaction participation matrix P, from P:
P, =P-P'

where the diagonal correspond to the number of pathways in which the given
reaction participates.

Reaction Participation Comments: C

1) The number of extreme pathways
in which each reaction participates is
indicated in the diagonal elements,
v as highlighted in the final matrix.
v, These can then be expressed as a
percentage of the total number of
extreme pathways. For example,
4 reaction v, has a participation value
of 3. Since there are 3 extreme
pathways, this can be expressed as
100% reaction participation.

<
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-

1
]
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2) The off diagonal terms can
indicate correlated groups of
reactions. Reactions v, b, b, and
b, participate in 3 pathways. They
also have a shared participation of 3,
meaning they act as a correlated
group (indicated by circles).

—_—— N O O = o= O N
e - - -

— e e O O et e O e

1
1
0
1
1 » I;oi' =
0
1
1
1

Papin, Price, Palsson, Genome Res. 12, 1889 (2002)
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EP Analysis of H. pylori and H. influenza

Table 1. Number of Reactions Involved in the Production

Amino acid synthesis in Heliobacter pylori vs. o [t

H. pylori Essential Utilized
Heliobacter influenza studied by EP analysis o peee o | oeew
Tryptophan 32 105
Tyrosine 28 101
Cysteine 25 102
Table 4. Summary of the Statistical Analyses of Extreme Pathway Lengths Glycine 22 97
Lysine 22 102
ot LT Serine 16 91
ol Threonine 14 96
Target product Number of EPs  average  maximum  minimum  coefficient of variation Asparagine 12 91
Aspanagine 340 44 54 28 15% ettt L ol
Aspartic Acid 491 43 52 24 14% Glutamic Add 7 91
Cysteine 1022 59 71 45 10% Glutamine 6 91
Clutamine 315 41 53 23 18% - A A
Glutamic Acid 493 41 53 25 17% Equimolar Amino Acids 85 140
Glycine 377 51 60 38 10% E. coli Ratio Amino Acids 85 140
Lysine 611 54 66 39 12% H. influenzae Essential Utilized
Proline 867 43 56 15 16%
Serine 355 45 54 i 12% Target product reactions reactions
Threonine 469 48 60 31 14% g
Tryptophan 1958 64 73 51 6% Histidine 51 112
Tyrosine 1008 58 68 44 7% Tryptophan 4 108
Equimalar Amino Acids 6032 106 12 99 2% Phenylalanine 36 108
E. coli Ratio Amino Acids 5553 106 n2 99 2% Tyrosine 26 108
Methionine 34 106
Pathway length Isoleucine 3] 108
H. infiuenzae Lysine 31 108
Target product Number of EPs  average  maximum  minimum  coefficient of variation Glycine 29 82
Alani 1739 36 49 18 10% Jnreonine 2 1
anine z
Asparagine 445 39 52 29 13% SAeSm;ag ine gg g?
Clutamine 690 37 46 28 11% o e 2 97
Glycine 456 39 48 35 7% Glﬁamine 21 102
Histidine 1507 65 74 61 3% Proli 18 103
Isoleucine 1480 47 61 37 9% bl
Leucine 3884 42 55 31 10% Valine 17 102
Lysine 1168 47 61 37 9% Alanine 12 99
Methionine 1343 48 63 40 8%
Phenylalanine 1758 51 64 43 7% See Fig. 3 for the indicated network inputs and outputs. Essential
’;;0]'"9 2253 ;; g; §g :(‘)x reactions refers to the number of reactions thatwere used in every
ine extreme pathway (region | in Fig. 4). Utilized reactions refers to
Threonine 1318 42 55 32 10% the number of reactions that were used at least once in the set of
Tryptophan 3540 58 69 49 6% extreme pathways for the production of the associated product
et Lo = = o s (region Il in Fig. 4). The individual amino acids are sorted in de-
scending order according to the number of essential reactions.
) . e ) ) Equimolar amino acids refers to the set of amino acids in
The coefficient of variation is the standard deviation normalized to the average (expressed as a percent). Equimolar equimolar ratios. £. colfratio amino acids refers to the set of amino
amino acids refers to the set of amino acids in equimolar ratios. £. colf ratioamino acids refers to the set of amino adds acids in ratios analogous to those seen in £ colf biomass.

in ratios analogous to those seen in £ colf biomass. EPs, extreme pathways.

Papin, Price, Palsson, Genome Res. 12, 1889 (2002)
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Summary — Extreme Pathways

Extreme Pathway Analysis is a standard technique for analysis of metabolic
networks.

Number of EPs can become extremely large — hard to interpret.
EP is an excellent basis for studying systematic effects of reaction cut sets.

It will be very important to consider the interplay of metabolic and regulatory
networks.

14. Lecture WS 2016/17 Bioinformatics Il
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Metabolic networks are scale-free ©

Review of 2 contrasting network topologies.

Exponential Scale-free c
a, Representative structure of networks

generated by the Erdos—Reényi model.

b, For a random network the probability, P(k

- that a node has k links - peaks strongly at k
oo d

a
= <k> and decays exponentially for large k. b
log k

log P(k)

¢, In the scale-free network most nodes

have only a few links, but a few nodes, called §

hubs (dark), have many links.
<k>

d, P(k) for a scale-free network has no well- / .
k

defined peak, and for large k it decays as a

power-law, P(k) = k¥, appearing as a straight
line with slope - on a log—log plot.

Jeong et al. Nature 407, 651 (2000)

Bioinformatics Il
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Connectivity distributions P(k) for substrates
a, Archaeoglobus fulgidus (archae);

b, E. coli (bacterium); 100 v
¢, Caenorhabditis elegans (eukaryote) 107
d, The connectivity distribution 102E
averaged over 43 organisms. < 10‘35
1074E
x-axis: metabolites participating in k 10°F
reactions 106" ' u I i
y-axis (P(k)). number/frequency of 107 -

such metabolites 10 B
1072 .
log—log plot, counts separately the < 107 ]
incoming (In) and outgoing links (Out) 107 ;
for each substrate. 10°F e B
Kk, (k,,) corresponds to the number of 1070 1c|12 | ”“1mol3' 100 100 151 | ”“1“6]2' T
reactions in which a substrate K K
participates as a product (educt). Jeong et al. Nature 407, 651 (2000)

Bioinformatics Il
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Properties of metabolic networks
a, The histogram of the biochemical pathway a

o

3X105 T T T T T T T
lengths, /, in E. coli. - 1 _°F .
_ 2x10% {1 8 -
b, The average path length (diameter) for each = i 1 23l % %HH& % H{ i}
of the 43 organisms. a0y F L 1 B[ ]
N : number of metabolites in each organism 04537567809 500 400 600
c I d N
¢, d, Average number of incoming links (c) or 4t o, 2 41 i 25 4
outgoing links (d) per node for each organism. L7 2% et 4 Lo 2% 2% 1
90Ing (d)p ganl NS—mﬁ% - N3—Eﬁ+£% i ]
= 1 . |
e, The effect of substrate removal on the 2 65260660860 560260 600800
metabolic network diameter of E. coli. e - "
g a Hub
% 15F o Random 2l
In the top curve (red) the most connected =
substrates are removed first. In the bottom o
curve (green) nodes are removed randomly. M 0535 20 30 20 50 60
= 60 corresponds to 8% of the total number of M
substrates in found in E. coli. b—d, Archaea (magenta), bacteria (green) and

eukaryotes (blue) are shown.
Jeong et al. Nature 407, 651 (2000)

Bioinformatics Il
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Flux balancing

Any chemical reaction requires mass conservation. EPA ijB
A
P
Therefore one may analyze metabolic systems t
by requiring mass conservation. pAZB*} AB
Only required: knowledge about stoichiometry of metabolic pathways.
For each metabolite X : Steady state: concentrations are constant
=> flux in = flux out
dxi /dt = Vsynthesized - Vused dA B(t)
+ Vtransported_in - Vtransported_out 2d—t = GAQB — LAQB = 0

14. Lecture WS 2016/17 Bioinformatics Il
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Flux balancing

Under steady-state conditions, the mass balance constraints in a metabolic
network can be represented mathematically by the matrix equation:

S-v=0

where

-the matrix S is the stoichiometric matrix and

-the vector v represents all fluxes in the metabolic network, including the internal
fluxes, transport fluxes and the growth flux.

14. Lecture WS 2016/17 Bioinformatics Il
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Flux balance analysis

Since the number of metabolites is generally smaller than the number of reactions
(m < n) the flux-balance equation is typically underdetermined.

Therefore there are generally multiple feasible S v
flux distributions that satisfy the mass balance constraints.
The set of solutions are confined to the nullspace of matrix S.

14. Lecture WS 2016/17 Bioinformatics Il
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Null space: space of feasible solutions

Consider
0 2 1 Sy _ (o
3 -1 1 =) 7 Lo
X3
Corresponds to 2uytay = 0 ___ 2wy = -3
3r1 —x9o+x3 = 0 2r1 = —I3
_a’
=> only one free parameter: x3 null space: 7 = _a
2a
Add inequalities for external fluxes
(here, e.g.:x3 = 0) flux 2

=> feasible solutions fora > 0 A null space

Generally: null space is a cone,
constraints select part of it

A€ solutions

-
flux 1

14. Lecture WS 2016/17 Bioinformatics Il
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Feasible solution set for a metabolic reaction network

The steady-state operation of the
metabolic network is restricted to the
region within a pointed cone, defined
as the feasible set.

The feasible set contains all flux vectors
that satisfy the physicochemical
constrains.

Thus, the feasible set defines the
capabilities of the metabolic network.
All feasible metabolic flux distributions
lie within the feasible set.

Edwards & Palsson PNAS 97, 5528 (2000)

14. Lecture WS 2016/17 Bioinformatics Il
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True biological flux

To find the ,true” biological flux in cells (— e.g. Heinzle, Wittmann / UdS)
one needs additional (experimental) information,
or one may impose constraints

a <v, <p,
on the magnitude of each individual metabolic flux.
The intersection of the nullspace and the region

defined by those linear inequalities defines a
region in flux space = the feasible set of fluxes.

In the limiting case, where all constraints
on the metabolic network are known, such
as the enzyme kinetics and gene
regulation, the feasible set may be reduced
to a single point. This single point must lie
within the feasible set.

14. Lecture WS 2016/17 Bioinformatics Il
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E.coli in silico

Best studied cellular system: E. coli.

In 2000, Edwards & Palsson constructed an in silico representation of
E.coli metabolism.

There were 2 good reasons for this:

(1) genome of E.coli MG1655 was already completely sequenced,

(2) Because of long history of E.coli research, biochemical literature, genomic
information, metabolic databases EcoCyc, KEGG contained biochemical or
genetic evidence for every metabolic reaction included in the in silico
representation. In most cases, there existed both.

Edwards & Palsson

PNAS 97, 5528 (2000)

14. Lecture WS 2016/17 Bioinformatics Il
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Genes included in in silico model of E.coli

Table 1. The genes Induded In the E. coll metabollc genotype (21)

Edwards & Palsson

PNAS 97, 5528 (2000)
14. Lecture WS 2016/17

Central metabolism (EMP, PPP,
TCA cycle, ebectron transport)

Alternative carbon source

Amino acid metabolism

Purine & pyrimidine
metabolsm

Vitamin & cofactor metabolism

Lipid metabolism

Cellwall metabolism

Traraport processes

aced, aceB, acek, acef, ackA, acnd, anB, acs, adhE, agp, appl, appC, atpd, atpl, atpC, atpl, atpk, atpf,
atpG, atph, atpl, opdA, opdB, cyddC, cypedl), cyod, cyol, cyol, cpol) did eno, fha, fbp, fdhE, fdnG, fdnk,
fard, fdols, fdokd, faol, frdA, frdB, frdC, frdD, fumd, fummB, fumC galM goepd, gapC 1, gapC 2, gicB,
9lgh, gigC. glgP. glk. aipA, alnb, gipC, Glpl, GitA, gnd, gamA, g, fyak, hyaR, byaC, hybA, hybC,
hycB, hyck, bk, byeG, icdA, IetD, IdhA, Ipdh, malP, mdh, ndh, nuod, nuol, nuwok, nuof, nuo(, nuok,
nocy, nuol, nuok, nuct, nuolM, nuwoll, pekh, pfkA, pfiB, pflA, pflB, pRC, pRD, pai, pgk, pnth, pntd ppc,
ppsh, pea, purT, pyih, pykF, tpe, tpid, N B, sdhd, wthB, schC, sdhd, sfcd, sudh, sucB, sucC, such), tal8,
thtd, thtB tpil, trxB zwrf pgl(30), maod (20)

adhl, achE, agaY, agaZ, aldA, aldB, aldH, acal, aral a2, bglX, cpsG, deoh, fruk fucA, fud, fuck fucO,
galE, gall, gall, galt), gatl) gatY, gk, ook, greK. gntV, gpsd, lacZ, mank, medh, mtiD, nagh, nagh,
nand, pfkB, pgi pgm, rbsK, rhad, rhal, rhal), st treC, ayld, xylB

adi ok, alr, ansh, ansB argh, avgl argC, argD, argE, argF, arglG, argh, avgl avaki, avol aroC, arol) arck,
arof, oz, avoH, arok, arol, asd, asnd, asnB, aspA, aspl, avth, cacdh, cavA, carB, cysC, cysD), cysE, opsH,
cyd, oysd, cysK cysM, o, dadh, dadX, dapd, dapf dapl), dapk, dapF, duih, gabl), gabT, gadA, gads,
gdih, gik, gind, gitB, gith, g4, goal, hisd, hisB, hisC, hisD, Wi, hisG, hisH, fvsl i, B G i,
iNE, G T, G2 dvH, i, ML A, kDL MG, lewh, leuB, leuC leul), lysd, lysC metA, metd, metC,
metE, meth, metk, matl, phed, prod, poB, proC, prsd, putd, sdaf,, sdall serd, serB, serC, spel, speB,
speC, spel), spek, spef, tdcB, tdh, thvA, thrl theC, tnad, rpd, trpd, opC tiph, rpk tynd, A, ol
y9iG, ygit aleB (42), depC(43), pat (44), prr (44), sad (48), methyithioadonosine nudeosidase (46),
S-mothylthioribose kinaze (46), S-methylthoriboze-i-phosphate isomeraze (46), adenosyl homocystainaze
(A7), 1-cystone desuhydrase (A4), glutaminaseA (44), glutaminase B (A1)

add, adk amn, ap¢, cdd, cmk, codd, ded, deod, deol), dat, dut, gmk, gpe, gk guad, gual, guaC, hpt
mutT, ndk, nrdA, nrdB, ed 0, ovdE, edF, purd, purB, pwC, parD, purk, pwrk, purl, purk, porl, purM,
porl, purT, pyeB, pyC pyeD, pyvE, pyrf, pyrG, pyrt pyrl ok, thyl, trok, uck, udp, upp, wshA, xapd, yicF,
CMP glycosyhse (48)

acps, biod, biof bioD, bioF, coad, cyok, cys, enth, entfl, ent(, entD, ertt, entf, epd, fold, folC, foll, folf,
folk, folf, govh, govl govT, gt giph, gor, gshd, gshl hemd, hemB herC, hemD, harok, herf, hamt,
hemK, heml, heroM, hemX, hemY, ivC, kg lpdA, mend, menl menC, menlD, menE, menk, menG, metf,
mutT, nad4, nadB, nadC, nadk, ntpd, pabd, pabB, pabC, pank, panC, panl) pdxA, pdxB, pdaH, pdxd,
pdak, prcB, purl, ribA, ribB ribD, ribE, ribH, v C thiC, thiE, thif, thiG, thit, thr(, ubid, wbiB, ubvC, wbiG,
ubit, ubX, yaaC, yoic, nadD (49), nadF (49), nadG (49), panE (50), pacA (49), pncC (49), thi8 (51), thiD (1),
thik (51), thal (51), thiM (51), thiN (81), wbiE (52), ub¥ (52), arabinose-5-phosphate isomerase (22),
phasphopantothenate-aysteine ligase (Y0), phosphopantothonate-cys teine decarboxylase (Y0),
phaspho-pantetheine adenylyltransferase (Y0), dephosphoCol kinase (50), NMN glycohydrolase (49)

acch, acch, accl), atoR, cdh, cdsA, cls, dgkA, fabD, fabH, fadB, gpsh, spd ispB, pgpB, pgd, pxd ps=A pgpd
(53)

defids, dllB, galf, galll, gimS, gioU, Fer8, kdsh, kdsB, kdtA, lpxf, lowB, lpxC, lpxD, mraY, msbB mudk, muwB,
marC, murl, murk, murf, mwG, muel, tfaC, rfal), rfaf, rfaG, rfal, rfal, ifal, ushd, glmM (54), lpod (55),
rfak (55), tetraacyldisaccharide 4' kinase (55), 3-deoxy-o-manno-octulosonic-acid §-phosphate
phosphatase (B5)

arak, araf, ava, araH, xgT, avol, artl art), artM, artP, artQ ben(), cadB, chad, chall chaC, cmth, cme8,
codB, cre, oych, cysA, cysP ops T ol oW ol detA, doud, deul, dppd, dppB, dppC, dppl, dppf, fadl,
focA, frad, fril, fuch, gab®, galP, gath, gatl gatC, gink, ginP. ginQ glpF, gipT, git), gitk, gitl, gitP, glts,
gntT, gpt, hisd hisM, hisP, b=, bpt, kdpd, kdpB, kdpC, kgtR lacY, lamB, wF, G, Indd, lvd, WK, M,
1P, lysP, malE, malf, malG, malk, malX, manX, man¥, manZ, melB, mgll, mglB. mglC, mtid, mu, nagk,
nanT, nhad, haB, nupC, nupG, oppd, oppB, oppC, oppd, opp¥, pank, pheF. pith, pitB, pnuC, pot4, pot#,
potC, potD, potk, potf, potG, potH, potl, prof, proV, proW, proX, psth, p=tB, pstC pstS, pesh, ptsG, ptsi
ptsi, ptsP purB, puth, rhed, rbsB, rbsC, rbsD, rhaT, saph, sapB sapl), sbp, sdaC, stdh 1, stdd 2, stl8 tdeC,
naB, wed el trkA, trkG, trkH, tx P, ugpd, ugpB, LgpEC, LR, wak, xapd, xylE, xylF, xplG, ayiH,
fruF (B6), gntS (57), matD (43), pouE (49), sar (56)
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E.coli in silico — Flux balance analysis
Define «; = 0 for irreversible internal fluxes,
o; = - for reversible internal fluxes (use biochemical literature)

Transport fluxes for PO,%, NH;, CO,, SO,%, K*, Na* were unrestrained.

For other metabolites 0 <V, <v"™ except for those that are able to leave the
metabolic network (i.e. acetate, ethanol, lactate, succinate, formate, pyruvate etc.)

Find particular metabolic flux distribution in feasible set by linear programming.
LP finds a solution that minimizes a particular metabolic objective —Z
(subject to the imposed constraints) where e.g.

L = Ec v—cv>

When written in this way, the flux balance analysis (FBA) method finds the
solution that maximizes the sum of all fluxes = gives maximal biomass.

Edwards & Palsson, PNAS 97, 5528 (2000)
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Linear programming

Linear programming is a technique for the
optimization of a linear objective function,
subject to linear equality and linear inequality
constraints.

lts feasible region is a convex polytope, which
is a set defined as the intersection of finitely
many half spaces, each of which is defined by a
linear inequality.

lts objective function is a real-valued linear
function defined on this polyhedron.

A linear programming algorithm finds a point in
the polyhedron where this function has the
smallest (or largest) value if such a point exists.

14. Lecture WS 2016/17 Bioinformatics Il

www.wikipedia.org

A pictorial representation of a
simple linear program with 2
variables and 6 inequalities. The
set of feasible solutions is
depicted in yellow and forms a
polygon, a 2-dimensional
polytope.

The linear cost function is
represented by the red line and
the arrow: The arrow indicates the
direction in which we are
optimizing.
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Linear programming

Linear programs are problems that can be expressed in canonical form as
maximize c¢'x
subjectto Ax<b
and x>0

where X represents the vector of variables (to be determined), ¢ and b are vectors of
(known) coefficients, A is a (known) matrix of coefficients, and (.)" is the matrix
transpose.

The expression to be maximized or minimized is called the objective function (c'x in
this case).

The inequalities Ax < b and x =2 0 are the constraints which specify a convex polytope
over which the objective function is to be optimized.

14. Lecture WS 2016/17 Bioinformatics Il
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Integer linear programming

If all of the unknown variables are required to be integers, then the problem is called
an integer programming (IP) or integer linear programming (ILP) problem.

In contrast to linear programming, which can be solved efficiently in the worst case,
integer programming problems are in many practical situations NP-hard.

The branch and bound algorithm is one type of algorithm to solve ILP problems.

www.wikipedia.org
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Rerouting of metabolic fluxes

(Black) Flux distribution for the wild-type.

(Red) zwf- mutant. Biomass yield is 99% of
wild-type result.

(Blue) zwf- pnt- mutant. Biomass yield is
92% of wildtype result.

Note how E.coli in silico circumvents
removal of one critical reaction (red arrow)
by increasing the flux through the
alternative G6P — PGP reaction.

Edwards & Palsson PNAS 97, 5528 (2000)

14. Lecture WS 2016/17 Bioinformatic




E.coli in silico

Examine changes in the metabolic capabilities caused by hypothetical gene
deletions.

To simulate a gene deletion, the flux through the corresponding enzymatic
reaction was restricted to zero.

Compare optimal value of mutant (Z,..¢) to the ,wild-type“ objective Z
Z

mutant

Z
to determine the systemic effect of the gene deletion.

Edwards & Palsson

PNAS 97, 5528 (2000)
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Gene deletions in central intermediary metabolism

1.4 1

Maximal biomass yields . i
12 1 Q 8 8 §

on glucose for all 23 b ot 338,359,988 3, 3,588

1- §S§EE§§§§§§§EEE§838882&§§%5§§q§§&§
possible single gene g = a

S
deletions in the central ~ § °°7 .33 $ 85
metabolic pathways Né 08 1 < (e
(gycolysis, pentose 04 -
phosphate pathway 02 lo @ %
. . : s

(PPP), TCA, respiration). o0 % AR

The results were generated in a simulated aerobic environment with glucose as the carbon
source. The transport fluxes were constrained as follows: glucose = 10 mmol/g-dry weight
(DW) per h; oxygen =15 mmol/g-DW per h.

The maximal yields were calculated by using FBA with the objective of maximizing growth.

Yellow bars: gene deletions that reduced the maximal biomass yield of Z to less than

95% of the in silico wild type Z,,.

mutant

Edwards & Palsson PNAS 97, 5528 (2000)
14. Lecture WS 2016/17 Bioinformatics Il
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Interpretation of gene deletion results

The essential gene products were involved in the 3-carbon stage of glycolysis,
3 reactions of the TCA cycle, and several points within the pentose phosphate
pathway (PPP).

The remainder of the central metabolic genes could be removed while E.coli in
silico maintained the potential to support cellular growth.

This suggests that a large number of the central metabolic genes can be removed
without eliminating the capability of the metabolic network to support growth under
the conditions considered.

Edwards & Palsson PNAS 97, 5528 (2000)
14. Lecture WS 2016/17 Bioinformatics Il
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Table 2. Comparison of the predicted mutant growth

E. COIi in Silico — Val idation characteristics from the gene deletlon study to published

experimental results with single mutants

Gene glc al succ ac
+ and — means growth or no growth. aceh i -
. acef o
+ means that suppressor mutations have acetf: ,
ac +1+
been observed that allow the mutant @ xn == o
H d +/+
strain to grow. oo s
eno! -1+ -+ - —I-
fba -+
. . fop +/+ o b o = b
4 virtual growth media: frd +i HE HE
. qap —f— e —f— —f—
glc: glucose, gl: glycerol, succ: ok A ’
. (X
succinate, ac: acetate. gnd eE o
mdhtt +:’+ +i+ +1+ '
ndh +/+ +i+
gt +/+ +/+
In 68 of 79 cases, the prediction was ot e '
. . T pgi* +1+ +/— +/—
consistent with exp. predictions. ® Pok S
gl it
pntAB +/+ +/+ +i+
. . ppct +/+ -+ +Ii+
Red and yellow circles: predicted i " i
mutants that eliminate or reduce growth. ity L
sdh4BCD +/+ ol —=I-
+1+ — I+ -+
Edwards & Palsson ® i‘;{;"ﬁ - !
tpit* -1+ e e - —]—
PNAS 97, 5528 (2000) o e e
14. Lecture WS 2016/17 Bioinformatics Il " " e o
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Summary - FBA

FBA analysis constructs the optimal network utilization simply using the
stoichiometry of metabolic reactions and capacity constraints.

For E.coli the in silico results are mostly consistent with experimental data.

FBA shows that the E.coli metabolic network contains relatively few critical gene
products in central metabolism.

However, the ability to adjust to different environments (growth conditions) may be
diminished by gene deletions.

FBA identifies ,the best" the cell can do, not how the cell actually behaves under a
given set of conditions. Here, survival was equated with growth.

FBA does not directly consider regulation or regulatory constraints on the
metabolic network. This can be treated separately (see future lecture).

Edwards & Palsson PNAS 97, 5528 (2000)
14. Lecture WS 2016/17 Bioinformatics Il
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