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V16 The Double Description method: 
Theoretical framework behind EFM and EP / 

Integration Algorithms 

in „Combinatorics and Computer Science Vol. 1120“ edited by Deza, Euler, Manoussakis, Springer, 1996:91 
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Double Description Method (1953) 
The Double Description method is the basis for simple & efficient algorithms  
for the task of enumerating extreme rays. 

For example, it serves as a framework for popular methods to compute  
elementary flux modes and extreme pathways. 

Analogy with Computer Graphics problem: 

How can one efficiently describe the space 
in a dark room that is lighted by a torch  
shining through the open door? 
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Review: Duality of Matrices 

Left: all points above the dividing line (the shaded area) fulfill the condition x ≥ 0.  
Middle: the points in the grey area fulfill the conditions x1 ≥ 0 and x2 ≥ 0.  

But how could we describe the points in the grey area on the right side in a 
correspondingly simple manner?  
Obviously, we could define a new coordinate system (r1, r2) as a new set of 
generating vectors.  
But we could also try to transform this area back into the grey area  
of the middle panel and use the old axes x1 and x2.  

In 2D, this transformation can be obviously best performed by multiplying  
all vectors inside the grey area by a two-dimensional rotation matrix. 

This is the 
duality 
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The Double Description Method 
A pair (A,R) of real matrices A and R is said to be a double description pair or 
simply a DD pair if the relationship 

 A x ≥ 0  if and only if  x = R λ for some λ ≥ 0 
holds. The column size of A has to be equal to the row size of R, say d. 

For such a pair, the set P(A) represented by A as  

is simultaneously represented by R as 

A subset P of ℜd is called polyhedral cone if P = P(A) for some matrix A,  
and A is called a representation matrix of the polyhedral cone P(A). 

Then, we say R is a generating matrix for P.  

Each column vector of a generating matrix R lies in the cone P  
and every vector in P is a nonnegative combination of some columns of R. 
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The Double Description Method 
Theorem 1 (Minkowski‘s Theorem for Polyhedral Cones) 
For any m × n real matrix A, there exists some d × m real matrix R such that (A,R) 
is a DD pair, or in other words, the cone P(A) is generated by R. 

The theorem states that every polyhedral cone  
admits a generating matrix. 

The nontriviality comes from the fact that the row size of R is finite. 
If we allow an infinite size, there is a trivial generating matrix  
consisting of all vectors in the cone. 

Also the converse is true: 
Theorem 2 (Weyl‘s Theorem for Polyhedral Cones) 
For any d × n real matrix R, there exists some m × d real matrix A  
such that (A,R) is a DD pair, or in other words, the set generated  
by R is the cone P(A). 
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The Double Description Method 
Task: how does one construct a matrix R from a given matrix A, and the converse? 

These two problems are computationally equivalent. 
Farkas‘ Lemma shows that (A,R) is a DD pair if and only if (RT,AT) is a DD pair. 

A more appropriate formulation of the problem is to require the minimality of R: 
find a matrix R such that no proper submatrix is generating P(A). 

A minimal set of generators is unique up to positive scaling when we assume the 
regularity condition that the cone is pointed, i.e. the origin is an extreme point of P(A). 

Geometrically, the columns of a minimal generating matrix are in 1-to-1 
correspondence with the extreme rays of P. 

Thus the problem is also known as the extreme ray enumeration problem. 

No efficient (polynomial) algorithm is known for the general problem. 
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Double Description Method: primitive form 
Suppose that the m × d matrix A is given and let 
(This is equivalent to the situation at the beginning of constructing EPs or EFMs where S is given.) 

The DD method is an incremental algorithm to construct  
a d × m matrix R such that (A,R) is a DD  pair. 

Let us assume for simplicity that the cone P(A) is pointed. 

Let K be a subset of the row indices {1,2,...,m} of A and  
let AK denote the submatrix of A consisting of rows indexed by K. 

Suppose we already found a generating matrix R for AK, or equivalently, 
(AK,R) is a DD pair.  If A = AK , we are done. 

Otherwise we select any row index i not in K and try to construct a DD pair 
(AK+i, R‘) using the information of the DD pair (AK,R).  

Once this basic procedure is described, we have an algorithm  
to construct a generating matrix R for P(A). 
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Geometric version of iteration step 
The procedure can be understood geometrically 
by looking at the cut-section C of the cone P(AK) 
with some appropriate hyperplane h in ℜd  
which intersects with every extreme ray of P(AK) 
at a single point. 

Such a cutsection is illustrated in the Figure. 

Here, C is the cube abcdefgh. 
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Geometric version of iteration step 
The newly introduced inequality Ai⋅x ≥ 0 partitions the space ℜd into three parts:  

 Hi
+ = {x ∈ ℜd : Ai⋅x > 0 } 

 Hi
0 = {x ∈ ℜd : Ai⋅x = 0 } 

 Hi
- =  {x ∈ ℜd : Ai⋅x < 0 } 

The intersection of Hi
0 with P and the new extreme points i and j  

in the cut-section C are shown in bold in the Figure. 
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Geometric version of iteration step 
Let J be the set of column indices of the current generating matrix R. 

The rays rj (j ∈J ) are then partitioned into three parts accordingly: 
 J+ = {j ∈ J : rj ∈ Hi

+ } 
 J0 = {j ∈ J : rj ∈ Hi

0 } 
 J-  = {j ∈ J : rj ∈ Hi

- } 

We will call the rays indexed by J+, J0, J- the positive, zero, negative rays  
with respect to i, respectively. 

To construct a matrix R‘ from R, we generate new | J+| × | J-| rays  
lying on the ith hyperplane Hi

0  
- by taking an appropriate positive combination  
of each positive ray rj and each negative ray rj‘ and  
- by discarding all negative rays. 
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Geometric version of iteration step 
The following lemma ensures that we have a DD pair (AK+i ,R‘), and provides the 
key procedure for the most primitive version of the DD method. 

Lemma 3 Let (AK,R) be a DD pair and let i be a row index of A not in K. 

Then the pair (AK+i ,R‘) is a DD pair, where R‘ is the d × |J‘ | matrix with column 
vectors rj (j ∈ J‘) defined by 

 J‘ = J+ ∪ J0 ∪ (J+ × J-), and 
 rjj‘ = (Ai⋅rj)⋅rj‘ – (Ai⋅rj‘)⋅rj for each (j,j‘) ∈J+ × J- 

Proof omitted.  
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Finding seed DD pair 
It is quite simple to find a DD pair (AK,R) when |K| = 1.  
This can serve as the initial DD pair. 

Another simple (and perhaps the most efficient) way to obtain  
an initial DD form of P is by selecting a maximal submatrix AK of A  
consisting of linearly independent rows of A. 

The vectors rj‘s of matrix R are then obtained by solving the system of equations  
  AK R = I 

where I is the identity matrix of size |K|.  

As we have assumed rank(A) = d, i.e. R = AK
-1 ,  

the pair (AK,R) is clearly a DD pair,  
since AK⋅x ≥ 0 ↔ x = AK

-1λ, λ ≥ 0. 
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Primitive algorithm for DoubleDescriptionMethod 

To avoid generating redundant vectors, we will use the zero set or active set Z(x) 
which is the set of inequality indices satisfied by x in P(A) with equality.  

Noting A i• the ith row of A, Z(x) = {i : A i• x = 0} 

This algorithm is very primitive.   
The straightforward implementation 
will be quite useless because the 
size of J increases extremely fast. 

This is because many vectors rjj‘  
generated by the algorithm defined 
in Lemma 3 are unnessary.  
We need to avoid generating 
redundant vectors! 
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Towards the standard implementation 
Two distinct extreme rays r and r‘ of P are adjacent  
if the minimal face of P containing both rays contains no other extreme rays. 

Proposition 7. Let r and r‘ be distinct rays of P.  

Then the following statements are equivalent 
(a) r and r‘ are adjacent extreme rays, 

(b) r and r‘ are extreme rays and the rank of the matrix AZ(r) ∩ Z(r‘) is d – 2, 

(c) if r‘‘ is a ray with Z(r‘‘) ⊃ Z(r) ∩ Z(r‘) then either r‘‘ ≃ r or r‘‘ ≃ r ‘. 
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Towards the standard implementation 
Lemma 8. Let (AK,R) be a DD pair such that rank(AK) = d  
and let i be a row index of A not in K.  

Then the pair (AK+i , R‘) is a DD pair, where R‘ is the d × | J‘| matrix  
with column vectors rj (j ∈ J‘) defined by 

 J‘ = J+ ∪ J0 ∪ Adj 
 Adj = {(j,j‘) ∈ J+ × J- : rj and rj‘ are adjacent in P(AK)} and 
 r = (Ai rj ) rj‘ – (Airj ) rj for each (j,j‘) ∈Adj. 

Furthermore, if R is a minimal generating matrix for P(AK)  
then R‘ is a minimal generating matrix for P(AK+i). 
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Algorithm for standard form of double description method 
This is now a straightforward variation of the DD method which produces a 
minimal generating set for P: 

To implement DDMethodStandard, we must check for each pair of extreme rays 
r and r‘ of P(AK) with Ai r > 0 and Ai r‘ < 0 whether they are adjacent in P(AK).   

This completes our quick look at the Double Description method. 

DDMethodStandard(A) 

such that R is minimal  

Lemma 8  

16. Lecture WS 2016/17 Bioinformatics III 



Bioinformatics III 
17 

V16 – part II – applications of FBA and EFM 
Review: 
(1) The concept of metabolic networks required revising the traditional picture of 
separate biochemical pathways into a densely-woven metabolic network 

(2) Connectivity of substrates in this network follows a power-law (Yeong&Barabasi). 

(3) Constraint-based modeling (FBA) enables  
to analyze the capabilities of cellular metabolism including e.g. 

 - its capacity to predict deletion phenotypes 
 - the ability to calculate the relative flux values of metabolic reactions, and 
 - the capability to identify properties of alternate optimal growth states 
 in a wide range of simulated environmental conditions 

Open questions 
- what parts of metabolism are involved in adaptation to environmental conditions? 
- is there a central essential metabolic core? 
- what role does transcriptional regulation play? 
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Central metabolism of E.coli characterized by EFMs 
Catabolic part: substrate uptake reactions, glycolysis, pentose phosphate pathway, 
TCA cycle, excretion of by-products (acetate, formate, lactate, ethanol) 

Anabolic part: conversions of precursors into building blocks like amino acids, to 
macromolecules, and to biomass. 

Stelling et al. Nature 420, 190 (2002) 
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Metabolic network topology ↔ phenotype 
Question: 
Can the total number of EFMs for given 
conditions be used as quantitative 
measure of metabolic flexibility? 

Δi : deletion mutant of gene i 

µ : ability to grow 

N : number of EFMs enabling wild-type or 
deletion mutants in E. coli to grow 

Shown are results for 90 deletions of 
different individual genes relative to the 
situation for wild-type. 

Stelling et al. Nature 420, 190 (2002) 

Answer: Yes, for more than 90% of 
single gene deletions,  
the number of EFMs for the mutant  
strain was correctly associated  
with the growth phenotype. 
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EFM-based robustness analysis 
The # of EFMs qualitatively indicates whether a mutant is viable or not,  
but does not describe quantitatively how well a mutant grows. 

Define maximal biomass yield Ymax as the optimum of: 

ei is the single reaction rate (growth and substrate uptake)  
in EFM i selected for utilization of substrate Sk. 

Thus, Ymax selects the EFM where most substrate medium  
is converted into biomass ( 0 ≤ Ymax  ≤ 1). 

Stelling et al. Nature 420, 190 (2002) 
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EFM-based robustness analysis 

X-axis: fraction of elementary modes 
operational in the mutants.  

Y-axis: Open squares: relative network 
diameter D(Δi) / D (is essentially 
constant) 

Open circles: maximal growth yield 
of the mutant Ymax(Δi) (open circles)  

Stelling et al. Nature 420, 190 (2002) 

→ Central metabolism of E.coli behaves in a highly robust manner.  

Even mutants with significantly reduced metabolic flexibility ( > 15% or so) 
show a growth yield similar to wild type. 
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Distribution of fluxes in E.coli 

Stoichiometric matrix for E.coli strain MG1655 containing 537 metabolites and 
739 reactions was taken from Palsson et al. 

Apply FBA to characterize solution space  
(all possible flux states under a given condition). 

Nature 427, 839 (2004) 

Aim: understand principles that govern 
the use of individual reactions under 
different growth conditions. 

vj is the flux of reaction j and Sij is the stoichiometric coefficient of reaction j. 
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Optimal states 

Use FBA to compute flux states that optimize cell growth on various substrates. 

Focus on active (non-zero flux) reactions of E.coli. 

Compare growth on glutamate- or succinate-rich substrate media. 

Denote the mass carried by reaction j producing (consuming) metabolite i by  

Observation: 
Fluxes vary widely: e.g. the dimensionless flux of the succinyl coenzyme A 
synthetase reaction is 0.185, whereas the flux of the aspartate oxidase reaction is 
10.000 times smaller, 2.2 × 10-5. 
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Overall flux organization of E.coli metabolic network 
a, Flux distribution for optimized biomass production 
on succinate (black) and glutamate (red) substrates.  

Solid line : power-law fit  

d, Experimentally determined fluxes for reactions of 
the central metabolism of E. coli. 

Clear power-law behaviour.  
Best fit with P(v)∝ v-α with α = 1.  

Both computed and experimental flux distribution 
show wide spectrum of fluxes. 

Almaar et al., Nature 427, 839 (2004) 
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Response to different environmental conditions 

Almaar et al., Nature 427, 839 (2004) 

Is the flux distribution independent of 
environmental conditions? 

Black: Flux distribution for optimized biomass on 
pure succinate substrate.  

Red / green  / blue : 
Flux distributions when an additional 10%, 50%, or 
80% of randomly chosen subsets of the 96 input 
channels (substrates) are added to succinate.  

The flux distribution was averaged over 5,000 
independent random choices of uptake 
metabolites.  

→ Yes, the flux distribution is independent of 
the external conditions. 
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Use scaling behavior to determine local connectivity 
The observed flux distribution is compatible with two different potential local flux 
structures: 
(a) a homogenous local organization would imply that all reactions producing 
(consuming) a given metabolite have comparable fluxes 

(b) a more delocalized „high-flux backbone (HFB)“ is expected if the local flux 
organisation is heterogenous such that each metabolite has a dominant source 
(consuming) reaction. 

Almaar et al., Nature 427, 839 (2004) 
16. Lecture WS 2016/17 

All fluxes vij are the same, say v.  One flux dominates -> replace 
sum by this flux vmax.  
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Characterizing the local inhomogeneity of the flux net 
FBA-computed kY(k) as a function of k, averaged 
over all metabolites shows linear dependence 
k×Y(k) ∝ k0.73 with slope 0.73. 
This is true for incoming and outgoing reactions. 

→ an intermediate behavior is found between 
the two extreme cases discussed before. 

→ the large-scale inhomogeneity observed in the 
overall flux distribution is also valid at the level of 
the individual metabolites. 

The more reactions consume (produce) a given 
metabolite, the more likely a single reaction carries 
most of the flux, see inset (FAD). 

Almaar et al., Nature 427, 839 (2004) 
16. Lecture WS 2016/17 

Inset shows non-zero 
mass flows producing 
(consuming) FAD on a 
glutamate-rich substrate. 
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Clean up metabolic network 
Use simple algorithm that removes for each metabolite systematically all reactions  
but the one providing the largest incoming (outgoing) flux distribution. 

This algorithm uncovers the „high-flux-backbone“ of the metabolism. 

Almaar et al., Nature 427, 839 (2004) 
16. Lecture WS 2016/17 
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High-flux backbone of E.coli metabolic network 

glutamate rich medium     succinate rich medium 

Directed links: Metabolites A and B are connected with an arc from A to B if the reaction with 
maximal flux consuming A is the reaction with maximal flux producing B.  
Shown are all metabolites that have at least one neighbour after completing this procedure.  

Background colours : known biochemical pathways. 

Almaar et al., Nature 427, 839 (2004) 
16. Lecture WS 2016/17 
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FBA-optimized high-flux backbone on glutamate-rich medium 
Blue colored Metabolites (vertices) have 
at least one neighbour in common in 
glutamate- and succinate-rich substrates. 

Red colored nodes have no common 
neighbors („rewiring“) 

Reactions (lines) are coloured  
blue if they are identical in glutamate- and 
succinate-rich substrates,  
green if a different reaction connects the 
same neighbour pair, and  
red if this is a new neighbour pair 
(„rewiring“).  

Almaar et al., Nature 427, 839 (2004) 
16. Lecture WS 2016/17 

Black dotted lines indicate where the disconnected pathways, e.g., folate biosynthesis (4), would 
connect to the cluster through a link that is not part of the HFB.  
Thus, the red nodes and links highlight the predicted changes in the HFB when shifting E. coli 
from glutamate- to succinate-rich media.  
Dashed lines indicate links to the biomass growth reaction.  
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FBA-optimized high-flux backbone on glutamate-rich medium 

Almaar et al., Nature 427, 839 (2004) 

(1) Pentose Phospate   
(2) Purine Biosynthesis 
(3) Aromatic Amino Acids    
(4) Folate Biosynthesis    
(5) Serine Biosynthesis    
(6) Cysteine Biosynthesis     
(7) Riboflavin Biosynthesis    
(8) Vitamin B6 Biosynthesis  
(9) Coenzyme A Biosynthesis   
(10) TCA Cycle 
(11) Respiration  
(12) Glutamate Biosynthesis 
(13) NAD Biosynthesis  
(14) Threonine, Lysine and 

Methionine Biosynthesis 
(15) Branched Chain Amino Acid 

Biosynthesis 
(16) Spermidine Biosynthesis 
(17) Salvage Pathways 

16. Lecture WS 2016/17 

(18) Murein Biosynthesis 
(19) Cell Envelope Biosynthesis 
(20) Histidine Biosynthesis 
(21) Pyrimidine Biosynthesis 
(22) Membrane Lipid Biosynthesis 
(23) Arginine Biosynthesis 
(24) Pyruvate Metabolism  
(25) Glycolysis  
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Interpretation 
Only a few pathways appear disconnected. 

This indicates that although these pathways are part of the HFB, their end product 
is only the second-most important source for another HFB metabolite. 

Groups of individual HFB reactions largely overlap  
with traditional biochemical partitioning of cellular metabolism ☺ 

Almaar et al., Nature 427, 839 (2004) 
16. Lecture WS 2016/17 



Bioinformatics III 
33 

How sensitive is the HFB to changes in the environment? 

Almaar et al., Nature 427, 839 (2004) 

Fluxes of individual reactions on 
glutamate-rich and succinate-rich 
medium.  

Black squares: reactions belonging to 
the HFB,  
blue dots : remaining reactions  

Green squares : reactions in which the 
direction of the flux is reversed.  

Reactions with negligible flux changes 
follow the diagonal (solid line).  

Some reactions are turned off in only 
one of the conditions (shown close to 
the coordinate axes).  

Only reactions in the high-flux territory 
undergo noticeable differences! 

Type I: reactions turned on in one 
conditions and off in the other. 

Type II: reactions remain active but show 
an orders-in-magnitude shift in flux under 
the two different growth conditions. 
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Flux distributions for individual reactions 
Shown is the flux distribution for  
4 selected E. coli reactions on a 
50% random medium.  

Reactions with small fluxes have 
unimodal/gaussian distributions  
(a and c).  
Shifts in growth-conditions only 
lead to small changes of their flux 
values. 

Off-diagonal reactions have 
multimodal distributions (b and 
d), showing several discrete flux 
values under diverse conditions. 

Almaar et al., Nature 427, 839 (2004) 
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Summary  
Metabolic network use is highly uneven (power-law distribution) at the global 
level and at the level of the individual metabolites. 

Whereas most metabolic reactions have low fluxes, the overall activity of the 
metabolism is dominated by several reactions with very high fluxes. 

E. coli responds to changes in growth conditions by reorganizing the rates of 
selected fluxes predominantly within this high-flux backbone. 

Apart from minor changes, the use of the other pathways remains unaltered. 
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The same authors as before used FBA to examine utilization and relative flux rate 
of each metabolite in various simulated environmental conditions for E.coli,  
H. pylori and S. cerevisae: 
For each system they considered 30.000 randomly chosen combinations where 
each uptake reaction is assigned a random value between 0 and 20 mmol/g/h. 

→ adaptation to different conditions occurs by 2 mechanisms: 
(a) flux plasticity: changes in the fluxes of already active reactions. 
E.g. changing from glucose- to succinate-rich conditions alters the flux of 264 
E.coli reactions by more than 20% 

(b) less often, adaptation includes structural plasticity, turning on previously 
zero-flux reactions or switching off active pathways. 
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The two adaptation mechanisms enable a group of reactions that are not subject 
to structural plasticity to be active under all environmental conditions. 

Are these core reactions randomly distributed? 

If typically a fraction q of the metabolic reactions were active under a specific 
growth condition,  
we would expect for n distinct conditions an overlap of at least qn reactions. 
This converges quickly to 0. 

Emergence of the Metabolic Core 
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As the number of conditions increases, the curve converges to a constant marked 
by the dashed line, identifying the metabolic core of an organism. 

Red line : number of reactions that are always active if activity is randomly 
distributed in the metabolic network.  
The fact that it converges to zero indicates that the real core represents a 
collective network effect, forcing a group of reactions to be active in all conditions.  

Emergence of the Metabolic Core 
(a–c) Average relative 
size of the number of 
reactions that are 
always active as a 
function of the 
number of sampled 
conditions (black line). 

16. Lecture WS 2016/17 
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Emergence of the Metabolic Core 
The number of 
metabolic 
reactions (d) and 
the number of 
metabolic core 
reactions (e) in 
the 3 studied 
organisms. 

16. Lecture WS 2016/17 

As the complexity of the organism increases (the prokaryote H. pylori has fewest 
reactions, the prokaryote E. coli has more, and the eukaryote S. cerevisiae has 
most), the number of core reactions decreases. 

Complex organisms have more flexible metabolic networks.  
Fewer reactions are always on. 
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Shown are all reactions that are 
found to be active in each of the 
30,000 investigated external 
conditions.  

Blue: Metabolites that contribute 
directly to biomass formation, 
Red (green): core reactions (links) 
catalyzed by essential (or 
nonessential) enzymes. 
Black-colored links: enzymes with 
unknown deletion phenotype.  

Blue dashed lines: multiple 
appearances of a metabolite (to 
simplify the plot), links with arrows: 
unidirectional reactions.  

Metabolic Core of E.coli: The constantly active reactions form 
a tightly connected cluster! 
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20 out of the 51 metabolites necessary 
for biomass synthesis are not present 
in the core. 
This indicates that they are produced 
(or consumed) in a growth-condition-
specific manner. 

Blue and brown shading: folate and 
peptidoglycan biosynthesis pathways  

White numbered arrows denote 
current antibiotic targets inhibited by: 
(1) sulfonamides, (2) trimethoprim,  
(3) cycloserine, and (4) fosfomycin.   

Metabolic Core of E.coli: The constantly active reactions form 
a tightly connected cluster! 
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The metabolic cores contain 2 types of reactions: 

(a) reactions that are essential for biomass production under all environment 
conditions (81 of 90 in E.coli) 

(b) reactions that assure optimal metabolic performance. 

Metabolic Core Reactions 
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(A) Number of overlapping metabolic reactions in the 
metabolic core of H. pylori, E. coli, and S. cerevisiae.  
The metabolic cores of simple organisms (H. pylori and 
E.coli) overlap to a large extent. 
The largest organism (S.cerevisae) has a much larger 
reaction network that allows more flexbility → the relative 
size of the metabolic core is much lower. 

(B) The fraction of metabolic reactions catalyzed by 
essential enzymes in the cores (black) and outside the 
core in E. coli and S. cerevisiae. 
→ Reactions of the metabolic core are mostly 
essential ones. 

(C) One could assume that the core represents a subset 
of high-flux reactions. This is apparently not the case. 
The distributions of average metabolic fluxes for the 
core and the noncore reactions in E. coli are very 
similar. 

Characterizing the Metabolic Cores 
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-  Adaptation to environmental conditions occurs via structural plasticity and/or 
flux plasticity. 

Here: a surprisingly stable metabolic core of reactions was identified that are 
tightly connected to eachother. 

- the reactions belonging to this core represent potential targets for antimicrobial 
intervention. 

Summary 
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