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Dynamic Modelling: Rate Equations + 
Stochastic Propagation 
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Mass Action Kinetics 
Most simple dynamic system:  inorganic chemistry 

Consider reaction A + B <=> AB 

Association:  probability that A finds and reacts with B 
=> changes proportional to densities of A and of B 

Dissociation:  probability for AB to break up 
=> changes proportional to density of AB 

Interesting quantities:  
(changes of) densities of A, B, and AB 

<=> 

density =  
number of particles 

unit volume 

How to put this 
into formulas? 

1 mol  =  1 Mol / Liter   =  6.022 x 1023 x (0.1 m)–3  = 0.6  nm–3 

This means that proteins cannot reach 1 mol concentrations. Why? 
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Mass Action II 
Again: A + B <=> AB 

Objective: mathematical description for the changes of 
[A], [B], and [AB] 

Consider [A]: 

Loss due to association A + B => AB Gain due to dissociation AB => A + B 

A has to find B 
=> LA depends on [A] and [B] 

AB falls apart 
=> GA depends only on [AB] 

phenomenological 
proportionality 

constant
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Mass Action !!! 

A + B <=> AB 

For [A]: 

For [B]: 

we just found: 

for symmetry reasons 

For [AB]: exchange gain and loss 

time course  =  initial conditions + dynamics 

with [A](t0), [B](t0), and [AB](t0)  =>  complete description of the system 
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A Second Example 

Slightly more complex: A + 2B <=> AB2 

Association: • one A and two B have to come together 
• forming one complex AB2 requires two units of B 

Dissociation: one AB2 decays into one A and two B 

Put everything together 
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Some Rules of  Thumb 

Sign matters:   Gains with "+", losses with "–" 

A + 2B <=> AB2 "A is produced when AB2 falls apart or  
is consumed when AB2 is built from one A and two B" 

Logical conditions:  "…from A and B" 
“and” corresponds to "×"      “or” corresponds to "+" 

Stoichiometries: one factor for each educt (=> [B]2) 
prefactors survive 

Mass conservation: terms with "–" have to show up with "+", too 

6 17. Lecture WS 2016/17 Bioinformatics III 



A Worked Example 
Lotka-Volterra population model 

R1: A + X  =>  2X prey X lives on A 
R2: X + Y  =>  2Y predator Y lives on prey X 
R3: Y  =>  B predator Y dies 

Rates for the reactions Changes of the metabolites 

R1 R2 R3

A –1

X 1 –1

Y 1 –1

B 1

stoichiometric 
matrix S 

=> change of X:  
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Setting up the Equations 

With and 

we get: 

Plug in to get: 

or 

amounts 
processed per 

reaction 

speeds of 
the 

reactions 
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How Does It Look Like? 
Lotka–Volterra:    assume  A = const,   B ignored 

time 

X
, 

Y 

X Y 

k1 = k2 = k3 = 0.3 

Steady State: when the populations do not change anymore 

=> 

With k1 = k2 = k3 = 0.3  and  A = 1 =>  X = Y = 1 

=> cyclic population changes 

Steady state = 
fluxes balanced 
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From rates to differences 

Rate equation: 

Reaction: 

derivative of A(t)  =  some function 

Taylor expansion for  
displacement t around t0 = 0: 

Truncate this expansion after second term (linear approximation): 
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From rates to differences II 
Linear approximation to (true) A(t): 

initial condition increment error 

For          : 

Use linear approximation for small time step Δt: 

This is the so-called 
"forward Euler" algorithm 
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“Forward Euler” algorithm 

General form: 

relative error: 1st order algorithm 

relative error decreases with 1st power of step size Δt
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Black: ideal dynamic trajectory, red: dynamics integrated by forward Euler algorithm
Right side: integration time steps are half of left side -> smaller error



Example: chained reactions 

Relative error vs. Δt  
at t = 10: 

A, B

time step Δt

re
la

ti
ve

 e
rr

or

C

Reaction: 

Time evolution: 

time

co
nc

en
tr

at
io

ns

A
C

BA

B

C

Δt = 1

Δt = 10

runtime α (Δt)–1 
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Example Code:  Forward Euler 

A  =>  B  =>  C 

Iterate: 

Important: 

first calculate all derivatives, 
then update densities! 
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What is the “correct” time step? 

Approximation works for: 

=> 

Here: 

=> 

Note 1:  
read “«” as  “a few percent”

time

co
nc

en
tr

at
io

ns

A
C

BA

B

C

Δt = 1

Δt = 10
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From Test Tubes to Cells 

Rate equations  <=>  description via densities 

density  = indistinguishable particles 
volume element 

=> density is a continuum measure, 
     independent of the volume element 

"half of the volume => half of the particles" 

When density gets very low 
=> each particle matters 

Examples: 
~10 Lac repressors per cell, chemotaxis, 
transcription from a single gene, … 
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Density Fluctuations 
N = 100

N = 1000 N = 10000

N = 10
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Spread: Poisson Distribution 
Stochastic probability that k events occur follows the Poisson distribution 
(here: event = "a particle is present"):  

k = 0, 1, 2, … 
λ > 0 is a parameter 

Average: Variance: 

Relative spread (error): 

Avg. number of particles per unit volume 

relative uncertainty 

100 

10% 

1000 

3% 

1 Mol 

1e-12 

=> Fluctuations are negligible for "chemical" test tube situations 
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Reactions in the Particle View 
Consider association:  

A + B  =>  AB 

Continuous rate equation: 

Number of new AB in volume V during Δt: 

Density “picture”  Particle “picture” 
reaction rate kAB  =>   reaction probability PAB 

19 17. Lecture WS 2016/17 Bioinformatics III 



Units! 

A + B  =>  AB 

Consider: 

Change in the number of AB: Association probability: 

Units: 

<=> 

Continuous case 

<=> 

Stochastic case 
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Direct Implementation 

Note: both versions are didactic implementations 

A + B  =>  AB 
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Example: Chained Reactions 

A  =>  B  =>  C 

k1 = k2 = 0.3   (units?)

N
A
, N

B
, N

C
 [

N
A

0]

Rates: 

Time course from continuous rate equations (benchmark): 

22 17. Lecture WS 2016/17 Bioinformatics III 



Stochastic Implementation 

k1 = k2 = 0.3 

A 

B 

C 

A0 = 1000  particles initially 

Values at t = 7 (1000 runs) 

A 
B C 

A
, B

, C
 / 

A
0 

t = 7 

fre
qu

en
cy

 
=> Stochastic version exhibits fluctuations 

A => B => C 
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Less Particles => Larger Fluctuations 
A0 = 100     shown are 4 different runs 

A
, B

, C
 /

 A
0

A
, B

, C
 /

 A
0

A
, B

, C
 /

 A
0

A
, B

, C
 /

 A
0
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Even Less Particles 
A0 = 30 

A
, B

, C
 /

 A
0

A
, B

, C
 /

 A
0

A
, B

, C
 /

 A
0

A
, B

, C
 /

 A
0
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Spread vs. Particle Number 

A0 = 1000

A0 = 100

A0 = 30

A
B C

BA

A B
C

fre
qu

en
ci

es
 

Poisson:  
relative fluctuations 

Repeat calculation 1000 times 
and record values at t = 7. 

Fit distributions with Gaussian 
(Normal distribution) 

<A> = 0.13,  wA = 0.45 

<B> = 0.26,  wB = 0.55 

<C> = 0.61,  wC = 0.45 
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Stochastic Propagation 
Naive implementation: 

 For every timestep:
events = 0
For every possible pair of A, 
B:

get random number r ∈ [0, 1)
if r ≤ PAB:

events++
AB += events
A, B –= events

Features of this implementation 
+ very simple 
+ direct implementation of the  
   underlying process 

– costly runtime O(N2) 
– first order approximation 

=> how to do better??? 

Determine complete  
probability distribution 
=> Master equation 

More efficient 
propagation 

=> Gillespie algorithm 

– one trajectory at a time 
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A Fast Algorithm 

D. Gillespie, J. Phys. Chem. 81 (1977) 2340–2361

28 17. Lecture WS 2016/17 Bioinformatics III 



Gillespie – Step 0 

Consider decay reaction: A  =>  Ø  (this model describes e.g. the radioactive decay) 

Probability for one reaction in (t, t+Δt) with  A(t) molecules  =  A(t) k Δt 

Naive Algorithm: 
  A = A0
  For every timestep:

get random number r ε 
[0, 1)
if r ≤ A*k*dt:

A = A-1

It works, but: A*k*dt << 1  for reasons of (good) accuracy 
=> many many steps where nothings happens 

=> Use adaptive stepsize method? 
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Gillespie – Step 1 
Idea:  Figure out when the next reaction will take place! 

(In between the discrete events nothing happens anyway … :-) 

Suppose there are  A(t) molecules in the system at time t 

f(A(t), s) = probability that with A(t) molecules the next reaction takes place in 
                interval (t+s, t+s+ds)  with  ds => 0 

g(A(t), s) = probability that with A(t) molecules no reaction occurs in (t, t+s) 

Then: 

No reaction during (t, t+s): 

probability for reaction in (t+s, t+s+ds)
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Probability for (No Reaction) 
Now we need g(A(t), s) 

Extend g(A(t), s) a bit: 

Replace again A(t+s) by A(t) and rearrange: 

With g(A, 0) = 1  ("no reaction during no time") 

=> Distribution of waiting times between discrete reaction events: 

Life time = average waiting time: 
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Exponentially Distributed Random Numbers 

Exponential probability distribution: 

Solve for s: 

 A = A0
 While(A > 0):

get random number r ε [0, 1)
t = t + s(r)
A = A - 1

r 
ε

 [
0,

1]

life time

Simple Gillespie algorithm for the decay reaction A  =>  Ø : 
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Gillespie vs. Naive Algorithm 
Naive: Gillespie: 

"What is the probability 
that an event will occur 
during the next Δt?" 

"How long will it take until 
the next event?" 

=> small fixed timesteps => variable timesteps 

=> 1st order approximation => exact 

t

N
A

t

N
A

• Gillespie
• naive
- analytic

• Gillespie
• naive
- analytic
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Gillespie – Complete 

For an arbitrary number of reactions (events): 

(i) determine probabilities for the individual reactions:  αi   i = 1, …, N 
total probability  α0 = Σ αi  

(ii) get time s until next event in any of the reactions: 

(iii) Choose the next reaction j from: 

(iv) update time and particle numbers 
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An Example with Two Species 

Reactions: A + A  =>  Ø k1 A + B  =>  Ø k2 Ø  =>  A k3 Ø  =>  B k4 

Continuous rate equations: 

Stationary state: 

with k1 = 10–3 s–1 k2 = 10–2 s–1 k3 = 1.2 s–1 k4 = 1 s–1 

=>  Ass = 10,  Bss = 10 
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Stochastic Simulation 

A + A  =>  Ø
k1

A + B  =>  Ø
k2

Ø  =>  A
k3

Ø  =>  B
k4
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Distribution of Stationary States 

k1 = 10–3 s–1 k2 = 10–2 s–1 k3 = 1.2 s–1 k4 = 1 s–1

Continuous model:  
Ass = 10,   Bss = 10 

From long–time Gillespie runs: 
<A> = 9.6,   <B> = 12.2 <=> 

A + A  =>  Ø
k1

A + B  =>  Ø
k2

Ø  =>  A
k3

Ø  =>  B
k4
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Stochastic vs. Continuous 

For many simple systems:   
             stochastic solution looks like noisy deterministic solution 

Yet in some cases, stochastic description gives qualitatively different results 

• swapping between two stationary states 

• noise-induced oscillations 

• Lotka-Volterra with small populations 

• sensitivity in signalling 
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Two Stationary States 

Reactions: F. Schlögl, Z. Physik 253 (1972) 147–162

k1 = 0.18 min–1 k2 = 2.5 x 10–4 min–1 k3 = 2200 min–1 k4 = 37.5 min–1With:

Stationary states: As1 = 100,   As2 = 400 (stable) Au = 220  (unstable) 

Rate equation: 

=> Depending on initial conditions (A(0) <> 220),  
     the deterministic system goes into As1 or As2 (and stays there). 
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Two States – Stochastic 

=> Fluctuations can drive the system from one stable state into another 
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Self-Induced Stochastic Resonance 

System 2A + B  =>  3A k1 Ø  =>  B k4 Ø  <=>  A k2 

k3 

Compare the time evolution from 
initial state (A, B) = (10, 10) 
in deterministic and stochastic 
simulations. 

=> deterministic simulation 
converges to and stays at fixed 
point (A, B) = (10, 1.1e4) 

=> periodic oscillations in the 
stochastic model 
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Stochastic dynamics of PP complex assembly 
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Stochastic simulations,  
4096 compartments on 2D lattice, 
association rates set to 100,  
dissociation rates set to 1 
CUDA implementation of Gillespie algorithm 



Gillespie-type simulation of PP complex assembly 
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Summary 

• Mass action kinetics  
  => solving (integrating) differential equations for time-dependent behavior 
  => Forward-Euler: extrapolation, time steps 

• Stochastic Description 
  => why stochastic? 
  => Gillespie algorithm 
  => different dynamic behavior 
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