## V18 – Kinetic Motifs in Signaling Pathways

-Types of kinetic motifs in signaling pathways

- -Application to cell cycle
- -Circadian clocks



#### **Linear Response**

E.g., protein synthesis and degradation (see lecture V8)

S = signal (e.g., concentration of mRNA)R = response (e.g., concentration of a protein)

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R$$

At steady state (which implies S = const):

$$\frac{dR}{dt}\Big|_{R=R_{ss}} = 0 \quad \Longrightarrow \quad R_{ss} = \frac{k_0 + k_1 S}{k_2} = \frac{k_0}{k_2} + \frac{k_1}{k_2} S$$

Rss linearly dependent on S







#### phosphorylation/dephosphorylation



"forward": R is converted to phosphorylated form RP "backward": RP can be dephosphorylated again to R  $S + R \implies RP$   $RP \implies R + T$  $\frac{dRP}{dt} = k_1 SR - k_2 RP = k_1 S(R_{tot} - RP) - k_2 RP$ 

Find steady state for RP: linear until saturation

$$RP_{ss} = \frac{k_1 R_{tot} S}{k_1 S + k_2} = \frac{R_{tot} S}{S + k_2 / k_1} = \frac{R_{tot} S}{S + S_0}$$

Output T proportional to RP level:

$$\frac{dT}{dt} = k_2 RP$$



 $R_{tot} = I, S_0 = I$ 

#### **Enzyme: Michaelis-Menten-kinetics**



 $S \leftarrow K_{on} \xrightarrow{E} K_{off} \xrightarrow{FS} K_{off}$  Reaction rate:  $V = k_{off} ES$ 

Steady state: k

$$k_{on}E \cdot S = k_{off}ES$$



$$ES = rac{k_{on} E \cdot S}{k_{off}} = rac{E \cdot S}{K_M}$$

Total amount of enzyme is constant:

$$E_T = E + ES \implies ES = E_T \frac{S}{S + K_M}$$

turnover: 
$$V = V_{max} \, {S \over S + K_M}$$

#### **The MM-equation**



#### **Sigmoidal Characteristics with MM kinetics**



Same topology as before with Michaelis-Menten kinetics for phosphorylation and dephosphorylation.

$$\frac{dRP}{dt} = \frac{k_1 S \left(R_t - RP\right)}{R_0 + \left(R_t - RP\right)} - \frac{k_2 RP}{RP_0 + RP} \stackrel{!}{=} 0$$

$$V = V_{max} \; rac{S}{S+K_M} \; \; {
m this means that S} \; = {
m R_t} - {
m RP} \ {
m K_M} = {
m R_0}$$

Quadratic equation for RP  $k_2 RP(R_o + (R_t - R_p)) = k_1 S(R_t - RP)(RP_0 + RP)$ 

=> sigmoidal characteristics
 (threshold behavior)
 often found in signalling cascades



$$R_t = 10, R_0 = RP_0 = 1, k_1 = k_2 = 1$$

#### **Graded Response**



Linear, hyperbolic, and sigmoidal characteristic give the same steady state response independent of the previous history => no hysteresis

BUT: In fast time-dependent scenarios, delay may lead to a modified response

#### **Time-dependent Sigmoidal Response**



Direct implementation:

$$v_1 = \frac{Sk_1R}{R_0 + R}$$
  $v_2 = \frac{k_2RP}{RP_0 + RP}$ 

Parameters:  $kI = I \pmod{s}^{-1}$ ,  $k2 = I s^{-1}$ ,  $R_0 = RP_0 = I \mod I$ Initial conditions:  $R = I0 \mod, RP = 0$ 

Time courses for S = I, I.5, and 2, RP(0) = 0:

equilibrium is reached faster for stronger signal



#### Adaption - "sniffer"



Linear response modulated by a second species X

$$\frac{dX}{dt} = k_3 S - k_4 X \qquad \qquad \frac{dR}{dt} = k_1 S - k_2 X R$$

Steady state: R<sub>ss</sub> independent of S

$$X_{ss} = \frac{k_3}{k_4}S \qquad \qquad R_{ss} = \frac{k_1k_4}{k_2k_3}$$

R changes transiently when S changes, then goes back to its basal level.

found in smell, vision, chemotaxis, ...

Note: response strength  $\Delta R$  depends on rate of change of S.

=> non-monotonous relation for R(S)



$$k_1 = 30, k_2 = 40, k_3 = k_4 = 5$$

#### **Positive Feedback**



$$\frac{dR}{dt} = k_4 EP(R) + k_1 S - k_2 R$$

| dEP | _ | $k_3R ~ E$             |   | $k_5 EP$             |
|-----|---|------------------------|---|----------------------|
| dt  | _ | $\overline{EP_0 + EP}$ | _ | $\overline{E_0 + E}$ |



Feedback via R and EP => high levels of R will stay

#### "one-way switch" via bifurcation

Found in processes that are "final": frog oocyte maturation, apoptosis, ...

#### **Mutual Inhibition - Toggle Switch**



$$\frac{dR}{dt} = k_1 S - k_2 R - k_4 E(R)$$

$$\frac{dEP}{dt} = \frac{k_3RE}{EP_0 + EP} - \frac{k_5EP}{E_0 + E}$$



Sigmoidal "threshold" in E <=> EP leads to bistable response (hysteresis): **toggle switch** (dt. *Kippschalter*)

Converts continuous external stimulus into two well defined stable states:

- lac operon in bacteria
- activation of M-phase promoting factor in frog eggs

#### **Negative Feedback**



S controls the "demand" for R

#### => homeostasis

found in biochemical pathways, no transient changes in R for steps in S (cf. "sniffer")



#### **Negative Feedback with Delay**





Cyclic activation X => YP => RP => X => **Oscillations** (in a range of S)

$$\frac{dX}{dt} = k_0 + k_1 S - k_2 X - k_7 RP X$$
$$\frac{dYP}{dt} = \frac{k_3 X Y}{Y_0 + Y} - \frac{k_4 YP}{YP_0 + YP}$$
$$\frac{dRP}{dt} = \frac{k_5 YP R}{R_0 + R} - \frac{k_6 RP}{RP_0 + RP}$$

Proposed mechanism for **circadian clocks** 

#### **Substrate-Depletion Oscillations**



R is produced in an **autocatalytic** reaction from X, finally **depleting** X...

Similar to Lotka-Volterra system (autocatalysis for X, too):





When to take the **next step**???

## **Simplified Version of Cell Cycle Control System**



#### G1 => S — Toggle Switch



Tyson et al, Curr. Op. Cell Biol. 15 (2003) 221

#### **Mutual Inhibition**



Assume: CycB:CdkI:CKI is stable <=> dissociation is very slow



#### **Rate Equations: Toggle Switch**



Stoichiometric matrix

"(C)" = catalyst

|    | RI  | R2         | R3         | R4         |
|----|-----|------------|------------|------------|
| Α  | -1  |            |            |            |
| S  | (C) |            |            |            |
| R  | Ι   | <b>–</b> I | (C)        |            |
| Е  |     | (C)        | <b>–</b> I | I          |
| EP |     |            | I          | <b>–</b> I |
| Х  |     | I          |            |            |

$$\frac{dR1}{dt} = k_1 A S$$
$$\frac{dR2}{dt} = k_2 R E$$
$$\frac{dR3}{dt} = \frac{k_3 R E}{E_0 + E}$$
$$\frac{dR4}{dt} = \frac{V_4 EP}{EP_0 + EP}$$

$$\frac{dR}{dt} = \frac{dR1}{dt} - \frac{dR2}{dt} = k_1 A S - k_2 R E$$
$$\frac{dE}{dt} = \frac{dR4}{dt} - \frac{dR3}{dt}$$

#### **Rate Equations: G1/S Module**



|                    | RI | R2 | R3  | R4 | R5 | R6 |
|--------------------|----|----|-----|----|----|----|
| СусВ               | -  |    |     |    |    |    |
| CdkI               | -  |    |     |    |    |    |
| CycB:Cdk1          | Ι  | -1 | (C) |    |    | Ι  |
| СКІ                |    | -1 | -1  | I  |    | I  |
| CKI:P <sub>3</sub> |    |    | I   | -1 |    |    |
| CKI:P₃             |    |    |     |    | -1 |    |
| CycB:Cdk1:CKI      |    |    |     |    |    | -  |

| $\frac{d[\text{CycB:Co}]}{dt}$ | $\frac{dR1}{dt}$ - | $-\frac{dR2}{dt}$   | $+\frac{dR6}{dt}$ |                   |
|--------------------------------|--------------------|---------------------|-------------------|-------------------|
| $\frac{d[\text{CKI}]}{dt} =$   | $rac{dR4}{dt}$ -  | $-\frac{dR3}{dt}$ - | $-rac{dR2}{dt}$  | $+\frac{dR6}{dt}$ |

#### **Comparison: Matrices**





|    | RI         | R2         | R3         | R4 |
|----|------------|------------|------------|----|
| Α  | <b>–</b> I |            |            |    |
| S  | (C)        |            |            |    |
| R  | I          | <b>–</b> I | (C)        |    |
| Е  |            | (C)        | <b>–</b> I | Ι  |
| EP |            |            | I          | -1 |
| X  |            |            |            |    |

|               | RI | R2 | R3  | R4 | <b>R5</b> | R6 |
|---------------|----|----|-----|----|-----------|----|
| СусВ          | -1 |    |     |    |           |    |
| CdkI          | -1 |    |     |    |           |    |
| CycB:Cdk1     | Ι  | -1 | (C) |    |           | Ι  |
| CKI           |    | -1 | -1  | I  |           | I  |
| CKI:P₃        |    |    | Ι   | -1 |           |    |
| CKI:P₃        |    |    |     |    | -1        |    |
| CycB:Cdk1:CKI |    | I  |     |    |           | -1 |

Difference: catalysts vs. substrates

#### **Comparison: Equations**



$$\frac{dR1}{dt} = k_1 A S$$

$$\frac{dR2}{dt} = k_2 R E$$

$$\frac{dR3}{dt} = \frac{k_3 R E}{E_0 + E}$$

$$\frac{dE}{dt} = \frac{dR1}{dt} - \frac{dR2}{dt} = k_1 A S - k_2 R E$$

$$\frac{dR3}{dt} = \frac{k_3 R E}{E_0 + E}$$

$$\frac{dE}{dt} = \frac{dR4}{dt} - \frac{dR3}{dt} = \frac{k_3 R E}{E_0 + E} - \frac{V_4 EP}{EP_0 + EP}$$



Rename species => same rate equations => same behavior

## **Predicted Behavior: G1 => S**

Signal: cell growth = concentration of CycB, CdkI

Response: activity (concentration) of CycB:CdkI



Toggle switch:

=> above critical cell size, CycB:CdkI activity will switch on



Tyson et al, Curr. Op. Cell Biol. 15 (2003) 221

#### G2 => M



**Dual toggle** switch:

• mutual activation between

CycB:Cdk1 and Cdc25 (phosphatase that activates the dimer)

mutual inhibition between
 CycB:Cdk1 and Wee1
 (kinase that inactivates the dimer)

=> when the cell **grows** further during the second gap phase G2, the activity of CycB:Cdk1 will **increase** by a further **step** 

## M => G1

## **Negative feedback** loop oscillator

- i) CycB:CdkI activates anaphase promoting complex (APC)
- ii) APC-P activates Cdc20
- iii) Cdc20:APC-P degrades CycB



#### **Behavior**:

at a critical cell size

CycB:Cdk1 activity increases and decreases again

- => at low CycB:Cdk1 level, the G1/S toggle switches off again,
  - => cell cycle completed

#### **Overall Behavior**



GI/S toggle => bistability

M/GI oscillator

G2/M toggle => bistability

Tyson et al, Curr. Op. Cell Biol. 15 (2003) 221

## **Circadian clocks in mammals and plants**

Most organisms (animals, plants, fungi and cyanobacteria) enhance their fitness by coordinating their development with daily environmental changes through molecular timekeepers (circadian clocks)

**Mammals** display circadian rhythms in behavioural and physiological processes, such as

- sleep
- feeding
- blood pressure and
- metabolism

Roles in **plants** e.g.:

- opening of flowers in the morning and their closure at night

Circadian rhythms are guided by **external light–dark signals** that are integrated through intrinsic central and peripheral molecular clocks

McClung Plant Cell 18, 792 (2006)

## **Circadian rhythms**

(1) Circadian rhythms are the subset of biological rhythms with period of 24 h. The term circadian combines the Latin words "circa" (about) and "dies" (day).

(2) Circadian rhythms are **endogenously generated** and **self-sustaining**.

They persist under constant environmental conditions, typically constant light (or dark) and constant temperature. Under these controlled conditions, the free-running period of **24 h** is observed.

(3) For all circadian rhythms the **period** remains relatively **constant** 

over a range of ambient temperatures.

This is thought to be one property of a general mechanism that buffers the clock against changes in cellular metabolism.

McClung Plant Cell 18, 792 (2006)

#### **Basic molecular elements of mammalian clocks**



This is the **minimal scheme** for the mammalian clock.

It requires several interconnecting transcriptional, translational and posttranslational loops to achieve gene expression with circadian periodicity (a) 2 TFs **CLOCK** and **BMAL1** heterodimerize.

(b) BMA1:CLOCK binds to the
E-boxes in the promoters of
-the *PER* and *CRY* genes,
- and of clock-controlled genes,

and activate their transcription.

(c) The translated PER and CRY proteins dimerize in the cytosol, enter the nucleus and **inhibit** CLOCK-BMAL1– activated transcription.

Sancar, Nat. Struct. Mol. Biol. 15, 23 (2008)

## **Circuit of circadian rhythms in mammals**



Figure 1. A network of transcriptional-translational feedback loops constitutes the mammalian circadian clock.

Ko & Takahashi Hum Mol Genet 15, R271 (2006)

# Are circadian rhythms relevant for bioinformatics?

#### A circadian gene expression atlas in mammals: Implications for biology and medicine

Ray Zhang<sup>a,1</sup>, Nicholas F. Lahens<sup>a,1</sup>, Heather I. Ballance<sup>a</sup>, Michael E. Hughes<sup>b,2</sup>, and John B. Hogenesch<sup>a,2</sup>

<sup>a</sup>Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and <sup>b</sup>Department of Biology, University of Missouri, St. Louis, MO 63121

- RNA-seq and DNA arrays to quantify transcriptomes of 12 mouse organs at 2 hour/6 hour intervals

- **Circadian genes**: defined as genes that oscillate with 24 hour-period (project on sine/cosine functions)



## **Globally oscillating genes in mouse tissue**





Only 10 genes oscillated in all organs:

*Arntl, Dbp, Nr1d1, Nr1d2, Per1, Per2*, and *Per3* (core clock factors – **as expected**), and *Usp2, Tsc22d3*, and *Tspan4*.

Usp2 - Ubiquitin carboxyl-terminal hydrolase 2

Tsc22d3 - TSC22 domain family protein 3

Tspan4 - The protein encoded by this gene is a member of the transmembrane

4 superfamily, also known as the tetraspanin family.

## Overlap of genes/organs (B), how many expected (C)?



Also non-coding RNAs show circadian expression (at lower frequencies).

No individual ncRNA oscillated in more than five organs.

(ncRNA expression is known to be organ-specific).

Conserved ncRNAs means that they are conserved between human and mouse.

#### (A) Phases + overlap, (B) similarity



Most circadian genes show organ-specific expression (small overlap).

#### Peaks often at dawn and dusk.

Cluster tissues by similarity white fat skeletal muscle of peak phases cerebellum Tree in panel B shows that brainstem developmentally related organs hypothalamus tend to share circadian genes .

#### **Three Examples**



Pik3r1

18 24 30 36 42 48 54 60

time (CT)

Bioinformatics 3 – WS 16/17

IGF1

IGF1R →(

PIK3

V 18 -

time throughout body.

organs.

However PIK3r1 (regulatory

subunit for PIK3) peaks at

different times in different



All of them oscillate only in kidney!

#### Many drug-targets show circadian expression



Relevance: drug response will differ significantly depending on day/night time of application

Unclear whether these effects are taken into account during clinical studies

#### **Relevance: mouse -> humans. drugs**

Table 1. Drugs of the top-100 best-seller list that target circadian genes and have half-life < 6h

| Rank | Sales, \$ | Trade name    | Indications                              | Circadian-gene targets                 | targets oscillate |
|------|-----------|---------------|------------------------------------------|----------------------------------------|-------------------|
| 2    | 1.46 b    | Nexium        | Gastritis, GERD, Esophagitis             | Atp4a                                  | L                 |
| 5    | 1.28 b    | Advair Diskus | Asthma, Chronic obstructive pulmonary di | Serpina6, Pgr, Nr3c2, Adrb2, Pla2g4a   | Lu, H, L, K, S, A |
| 11   | 794 m     | Rituxan       | Rheumatoid arthritis, Non-Hodgkin's lymp | Fcgr2b, Ms4a1, Fcgr3                   | L, K, S           |
| 20   | 538 m     | Diovan        | Hypertension, Heart failure              | Slc22a6, Agtr1a, Slco1b2, Car4, Kcnma  | H, AG, L, K, S    |
| 27   | 431 m     | Vyvanse       | Attention deficit hyperactivity disorder | Adra1b                                 | L                 |
| 32   | 392 m     | Tamiflu       | Influenza                                | Neu2, Neu1, Ces1g, Slc22a8, Slc15a1,   | Lu, L, BF, K, C   |
| 33   | 383 m     | Ritalin       | Attention deficit hyperactivity disorder | SIc6a4                                 | AG, K             |
| 37   | 348 m     | AndroGel      | Hypogonadism                             | Slc22a4, Slc22a3, Ar, Cyp1a1, Cyp2b10  | Lu, H, BS, WF, AG |
| 38   | 346 m     | Lidoderm      | Pain                                     | Slc22a5, Cyp2b10, Egfr, Abcb1a         | Lu, H, AG, BF, L, |
| 44   | 304 m     | Seroquel XR   | Bipolar disorder, Major depressive disor | Htr2c, Htr1b, Htr2a, Chrm2, Drd4, Adr  | Lu, H, BS, WF, AG |
| 45   | 289 m     | Viagra        | Erectile dysfunction                     | Cyp1a1, Pde6g, Abcc5, Abcc10, Pde5a,   | Lu, H, BS, WF, AG |
| 47   | 281 m     | Niaspan       | Hyperlipidemia                           | Slco2b1, Slc22a5, Qprt, Slc16a1        | Lu, H, BS, AG, WF |
| 48   | 279 m     | Humalog       | Diabetes mellitus T2                     | lgf1r                                  | K                 |
| 49   | 274 m     | Alimta        | Mesothelioma, Nonsmall cell lung cancer  | Tyms, Atic, Gart, Slc29a1              | Lu, H, BS, BF, L, |
| 54   | 267 m     | Combivent     | Asthma, Chronic obstructive pulmonary di | Slc22a5, Slc22a4, Chrm2, Adrb1, Adrb2  | Lu, H, BS, BF, K, |
| 56   | 262 m     | ProAir HFA    | Asthma, Chronic obstructive pulmonary di | Adrb1, Adrb2                           | Lu, K, S          |
| 62   | 240 m     | Janumet       | Diabetes mellitus T2                     | Slc47a1, Slc22a2, Prkab1, Abcb1a, Dpp4 | H, BS, AG, Hy, L, |
| 66   | 236 m     | Toprol XL     | Hypertension, Heart failure              | Slc22a2, Adrb1, Adrb2, Abcb1a          | Lu, H, AG, BF, L, |
| 71   | 220 m     | Vytorin       | Hyperlipidemia                           | Hmgcr, Cyp2b10, Soat1, Abcc2, Anpep,   | Lu, H, BS, AG, BF |
| 78   | 209 m     | Aciphex       | Gastritis, GERD, Esophagitis             | Cyp1a1, Atp4a, Abcg2                   | Lu, H, BS, WF, L, |
| 90   | 189 m     | Lunesta       | Insomnia                                 | Ptgs1, Tspo, Gabra3                    | Lu, H, AG, K      |
| 98   | 173 m     | Prilosec      | Gastritis, GERD, Esophagitis             | Cyp1a1, Atp4a, Abcg2, Cyp1b1, Abcb1a   | Lu, H, BS, WF, AG |
| 99   | 171 m     | Focalin XR    | Attention deficit hyperactivity disorder | Slc6a4                                 | AG, K             |

Rank and sales are based on USA 2013 Q1 data from Drugs.com. A, aorta; AG, adrenal gland; BF, brown fat; BS, brainstem; C, cerebellum; H, heart; Hy, hypothalamus; K, kidney; L, liver; Lu, lung; S, skeletal muscle; WF, white fat.

#### About half of top-100 drugs have half lives < 6 hours!

. . .

\_