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Graph Basics 
A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

Degree distribution P(k)

k 0 1 2 3 4

P(k) 0 3/7 1/7 1/7 2/7

Random network:
also called the "Erdös-Renyi model“:
-  start with set of given nodes
-  then add links randomly
P(k) = "Poisson“ (will show this on the
next slides)

Scale-free network:
-  grow network stepwise 
-  Add links according to preferential 

attachment “rule” between new nodes 
and existing nodes

P(k) = power law (dt. Potenzgesetz)
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Connected Components 

3

Connected graph  <=>  there is a path between all pairs of nodes

In large (random) networks:  complete {V} is often not connected
→ identify connected subsets {Vi}  with  {V} = U {Vi} 
 → connected components (CC)

#CC = 5
Nmax  = 15
Nmin   = 1
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Connectivity of the Neighborhood 
How many of the neighboring vertices are themselves neighbors?
=> this is measured by the clustering coefficient C(k)

Number of possible undirected edges between k nodes:

nk   is the actual number of edges between the neighbor nodes.

Fraction of actual edges ≅ clustering coefficient

green:k = 2,  nk = 1   →   C = 1

red: k = 4,  nk = 2 →   C = 1/3

Note: clustering coeff. is sometimes also defined via fraction of possible triangles

blue: k = 1, nk = ? →   C is not defined
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Clustering Coefficient of a Graph 
Data:  Ci for each node i   →  N values

Statistics:

average at fixed k 

→

k

C
i, C

(k
), 

<
C

>

average over all nodes 

→

Note: it is also possible to average the C(k)
⇒ This yields a different value for <C> !!!
because no weighting is done for different occupancy of k’s.
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Basic Types: (1) Random Network 
Generally:  N vertices connected by L edges

More specific:  distribute the edges randomly between the vertices

Maximal number of links between N vertices:

=> probability p for an edge between two randomly selected nodes:

=> average degree λ

path lengths in a random network grow with  ln(N) => “small world”
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Random Network:  P(k) 
Network with N vertices,  L edges
=> probability for a random link:

Probability that random node has links to k other particular nodes:

Probability that random node has links to any k other nodes:

Limit of large graph:   N →  oo, p = λ / N
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Random Network:  P(k) 
Many independently placed edges  =>  Poisson statistics

k P(k | λ = 2)

0 0.14

1 0.27

2 0.27

3 0.18

4 0.090

5 0.036

6 0.012

7 0.0034

8 0.00086

9 0.00019

10 3.82e-05
=> Small probability for k >> λ
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Basic Types:  (2) Scale-Free 
Growing network a la Barabasi and Albert (1999):
• start from a small "nucleus“ of m0 connected nodes
• add new node with n links
• connect new links to existing nodes with probability pi proportional to 
degree ki of each existing node (preferential attachment;  

in BA-model β = 1=> "the rich get richer"

Properties:
• this leads to a power-law degree distribution: 

• self-similar structure with highly connected hubs (no intrinsic length scale)

  => average path length grows with ln (N) / ln(ln(N))
  => this grows much slower than for random graphs
       => “very small world”

with γ = 3 for the BA model
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The Power-Law Signature 

Power law

Take log on both sides:

Plot log(P) vs. log(k)  =>  straight line

Note: for fitting γ against experimental data it is often better to use the integrated P(k)
=> integral smoothes the data
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Scale-Free:  Examples 
The World-Wide-Web:

=> growth via links to portal sites

Flight connections between airports
=> large international hubs, small local airports

Protein interaction networks
=> some central,
    ubiquitous proteins

http://a.parsons.edu/~limam240/blogimages/16_full.jpg
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Saturation:  Ageing + Costs 
Example:  network of movie actors (with how many other actors did 

an actor appear in a joint movie?)

Each actor makes new acquaintances for ~40 years before retirement
=> limits maximum number of links

Example:  building up a physical computer network

It gets more and more expensive for a network hub to grow further
=> number of links saturates

cost
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Hierarchical,  Regular, Clustered… 

Tree-like network with similar degrees
=> like an organigram
     => hierarchic network

All nodes have the same degree 
and the same local neighborhood
=> regular network

Note:  most real-world networks are somewhere in between the basic types

P(k) for these example networks? (finite size!)
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C(k) for a Random Network 

Probability to have exactly m edges between the k neighbors

Clustering coefficient when m edges exist between k neighbors

In this way, we pick the m start nodes for the m edges from the k nodes.

Average C(k) for degree k:

→  C(k) is independent of k
     <=> same local connectivity throughout the network
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The Percolation Threshold 
Connected component  =  all vertices that are connected by a path

Very few edges
⇒ only CCs 
of size 2

Many edges
→ graph is one CC

Percolation 
transition at 
λ = 2

Identify:
Ncc = number of connected 
         components (clusters)

(green)
Nmax = size of the largest 
           cluster (red)

For λ > 2:  
“giant component”
exists

average degree λ
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"percolation"

Percolation Transition 
Example:  regular square lattice,  N = 25 nodes,  Lmax = 40 links between

next neighbors

L = 3
λ = 0.24

Ncc = 22
Nmax = 2

L = 11
λ = 0.88

Ncc = 14
Nmax = 4

L = 22
λ = 1.76

Ncc = 3
Nmax = 15

L = 24
λ = 1.92

Ncc = 1
Nmax = 25

percolation = "spanning structure" emerges (long range connectivity)
    for an infinite square lattice:  percolation transition at λ = 2
here:  finite size effect  <=>  fewer possible links at the boundaries
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Clusters in scale free graphs 

Scale-free network  <=>  no intrinsic scale
 → same properties at any k-level
      →  same local connectivity
          → C(k) = const.

k

C
i, C

(k
), 

<
C

>

"Real" biological data
→ missing links
    →  multiple clusters

Is the metabolic 
network of a cell 
fully connected?
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Algorithms on Graphs 
How to represent a graph in the computer?

1. Adjacency list
=> list of neighbors for each node

1:
2:
3:
4:
5:
6:
7:

(3)
(3)
(1, 2, 4, 5)
(3, 5, 6)
(3, 4, 6, 7)
(4, 5)
(5)

Note: for weighted graphs store pairs of (neighbor label, edge weight)

+ minimal memory requirement
+ vertices can easily be added or removed

– requires O(λ) time to determine 
   whether a certain edge exists
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Graph Representation II 
2. Adjacency matrix
→ N x N matrix with entries Muv

     Muv = weight when edge between u and v exists, 
              0 otherwise

1 2 3 4 5 6 7
1 – 0 1 0 0 0 0
2 0 – 1 0 0 0 0
3 1 1 – 1 1 0 0
4 0 0 1 – 1 1 0
5 0 0 1 1 – 1 1
6 0 0 0 1 1 – 0
7 0 0 0 0 1 0 –

→ symmetric for undirected graphs

+ fast O(1) lookup of edges
– large memory requirements
– adding or removing nodes is expensive 

Note: very convenient in programming 
languages that support sparse multi-
dimensional arrays
=> Perl
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Graph Representation III 
3. Incidence matrix
→ N x M matrix with entries Mnm

     Mnm = weight when edge m ends at node n
               0 otherwise

e1 e2 e3 e4 e5 e6 e7
1 1
2 1
3 1 1 1 1
4 1 1
5 1 1 1
6 1 1
7 1

e1

e2

e3

e4

e5

e6

e7

 → for a plain graph there are 
     two entries per column

→ directed graph: 
     indicate direction via sign (in/out)

The incidence matrix is a special 
form of the stoichiometric matrix 
of reaction networks.
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The Shortest Path Problem 

Edsger Dijkstra
(1930-2002):

Problem:
Find the shortest path from a given vertex 
to the other vertices of the graph (Dijkstra 1959).

We need (input): • weighted graph G(V, E)
• start (source) vertex s in G

We get (output): • shortest distances d[v] between s and v
• shortest paths from s to v

Idea: Always proceed with the 
closest node
 →  greedy algorithm

Real world application:
 →  GPS navigation devices
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Dijkstra Algorithm 0 

Initialization: for all nodes v in G: 
    d[v] = oo 
    pred[v] = nil 

d[s] = 0 distance from source to source = 0

distance and path to all other 
nodes is still unknown

node 1 2 3 4 5 6 7

d 0 oo oo oo oo oo oo

pred – – – – – – –

In the example:  s = 1

   d[v]   = length of path from s to v
pred[v] = predecessor node on the shortest path
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Dijkstra I 

Iteration: Q = V 
while Q is not empty: 
   u = node with minimal d 

   if d[u] = oo: 
      break 

   delete u from Q 

   for each neighbor v of u: 
      d_temp = d[u] + d(u,v) 

      if d_temp < d[v]: 
         d[v] = d_temp 
         pred[v] = u 

return pred[]C 

Save {V} into working copy Q

choose node closest to s

exit if all remaining nodes 
are inaccessible

calculate distance to u's 
neighbors

if new path is shorter
=> update
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Dijkstra-Example 
1) Q = (1, 2, 3, 4, 5, 6, 7)

2) Q = (2, 3, 4, 5, 6, 7)

3)
Q = (2, 3, 5, 6, 7)

4) Q = (2, 5, 6, 7)
node 1 2 3 4 5 6 7

d 0 26 21 12 30 37 42
pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 oo

pred – 3 4 1 4 4 –

node 1 2 3 4 5 6 7
d 0 oo 21 12 30 37 oo

pred – – 4 1 4 4 –

node 1 2 3 4 5 6 7
d 0 oo 23 12 oo oo oo

pred – – 1 1 – – –
Q = V 
while Q is not empty: 
   u = node with minimal d 

   if d[u] = oo: 
      break 

   delete u from Q 

   for each neighbor v of u: 
      d_temp = d[u] + d(u,v) 

      if d_temp < d[v]: 
         d[v] = d_temp 
         pred[v] = u 

return pred[]C 
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Example contd. 
Q = (2, 5, 6, 7)4)

Q = (6, 7)

Q = (7)Final result:

d(1, 7) = 42 path = (1, 4, 3, 2, 7)

Q = (5, 6, 7)5)

d(1, 6) = 37 path = (1, 4, 6)  or (1,4,5,6)

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2
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Beyond Dijkstra 

Graphs with positive and negative weights
→ Bellman-Ford-algorithm

If there is a heuristic to estimate weights:  
→ improve efficiency of Dijkstra
     → A*-algorithm

Dijkstra works for directed and undirected graphs with
  non-negative weights.

Straight-forward implementation:  O(N2)
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Graph Layout 
Task: visualize various interaction data: 
e.g. protein interaction data (undirected):  

  nodes – proteins 
  edges – interactions 

metabolic pathways (directed) 
  nodes – substances 
  edges – reactions 

regulatory networks (directed):  
  nodes – transcription factors + regulated proteins 
  edges – regulatory interaction 

co-localization (undirected) 
  nodes – proteins 
  edges – co-localization information 

homology (undirected/directed) 
  nodes – proteins 
  edges – sequence similarity (BLAST score) 
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Graph Layout Algorithms 
Graphs encapsulate relationship between objects
→ drawing gives visual impression of these relations

Good Graph Layout:  aesthetic
• minimal edge crossing
• highlight symmetry (when present in the data)
• even spacing between the nodes

Many approaches in literature (and in software tools), 
most useful ones usually NP-complete (exponential runtime)

Most popular for straight-edge-drawing:
→ force-directed:  spring model or spring-electrical model
→ embedding algorithms like H3 or LGL



Bioinformatics 3 – WS 16/17 V 2  – 29

Force-Directed Layout 

Peter Eades (1984):  graph layout heuristic

→  "Spring Embedder'' algorithm. 

•  edges →  springs 
   vertices →  rings that connect the springs 

•  Layout by dynamic relaxation

 → lowest-energy conformation

→ "Force Directed'' algorithm

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html 
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Energy and Force 

Energy increases when 
you go up the hill 

Energy: describes the 
altitude of the landscape 

You need more force 
for a steeper ascent 

Force: describes the 
change of the altitude, 
points downwards. 
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Spring Embedder Layout 
Springs regulate the mutual distance between the nodes
• too close → repulsive force
• too far → attractive force

Spring embedder algorithm:
• add springs for all edges
• add loose springs to all non-adjacent vertex pairs

Total energy of the system:

xi, xj = position vectors for nodes i and j
lij     = rest length of the spring between i and j
R    = spring constant (stiffness)

Problem: lij have to be determined a priori, e.g., from network distance
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Spring Model Layout 
Task:  find configuration of minimal energy

In 2D/3D:  force = negative gradient of the energy

→ Iteratively move nodes "downhill" along the gradient of the energy
    → displace nodes proportional to the force acting on them

Problems:
• local minima
• a priori knowledge of all spring lengths
 → works best for regular grids



Bioinformatics 3 – WS 16/17 V 2  – 33

The Spring-Electrical-Model 
More general model than spring embedder model:  use two types of forces

1) attractive harmonic force between connected nodes (springs)

2) repulsive Coulomb-like force between all nodes
    "all nodes have like charges" →  repulsion

one uses usually the same 
spring constant k for all edges

either Qij = Q  or, e.g., Qij = ki kj 

Repulsion pushes all nodes apart,  springs pull connected nodes together
→ workhorse method for small to medium sized graphs

→ Do-it-yourself in Assignment 2 <=
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Spring-Electrical Example 

http://www.it.usyd.edu.au/~aquigley/3dfade/ 
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Force-Directed Layout:  Summary 
Analogy to a physical system 
=> force directed layout methods tend to meet various aesthetic standards: 

Side-effect: vertices at the periphery tend to be closer to each other 
than those in the center… 

• efficient space filling,  
• uniform edge length (with equal weights and repulsions) 
• symmetry 
• smooth animation of the layout process (visual continuity) 

Force directed graph layout → the "work horse" of layout algorithms.  

Not so nice: the initial random placement of nodes and even very small 
changes of layout parameters will lead to different representations. 
(no unique solution) 
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Runtime Scaling 
Force directed layout:

loop until convergence: 

   calculate forces: 
      L springs 
      N(N-1)/2 charge pairs 

   move vertices 

   output positions 

O(N2)!!!

Several possible 
arrangements!!!
(local minima)

→ force directed layout suitable for small to medium graphs (≤ O(1000) nodes?)

Speed up layout by:

• multi-level techniques to overcome local minima

• clustering (octree) methods for distant 
groups of nodes →  O(N log N)
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H3 Algorithm 

Tamara Munzner (1996-1998): H3 algorithm  
 → interactively visualize large data sets of ∼100.000 nodes. 

Two problems of force directed layout:
• runtime scaling
• 2D space for drawing the graph

Spanning tree: connected acyclic subgraph that contains all the vertices of the 
original graph, but does not have to include all the links 

→ find a minimum-weight spanning tree through a graph with weighted edges,  
     where domain-specific information is used to compute the weights 

• focusses on quasi-hierarchical graphs  
 → use a spanning tree as the backbone of a layout algorithm 

• graph layout in exponential space (projected on 2D for interactive viewing) 
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Spanning Tree 

Idea: remove links until graph has tree structure, keep all nodes connected
→ spanning tree

Some algorithms work only/better on trees

Minimal spanning tree = spanning tree with the least total weight of the edges

Greedy Kruskal-Algorithm:

→ iteratively choose unused edge 
     with smallest weight,
     if it does not lead to a circle!

greedy <=> base choice on current state,
                  (locally optimal choice)
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Kruskal - Example 

Minimum spanning tree
weight = 66

Proof that there is no spanning tree 
with a lower weight?
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Cone Layout 

Place the nodes according to their hierarchy
starting from the root node
→ direction indicates lineage

For arbitrary graphs
→ how to get weights?
→ which node is the root?
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Exponential Room 

PhD thesis Tamara Munzner, chapter 3 

In Euklidian space:  circumference of a circle grows linear:

U = 2πr 

In hyperbolic space:

U = 2π sinh r 

→ exponentially growing space
     on the circle

For (cone) graph layout
→ there is enough room 
     for yet another level

Also: mappings of the 
complete hyperbolic space
→ finite volume of Euklidian space
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Models of hyperbolic space 

PhD thesis Tamara Munzner, chapter 3 
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GIFs don't work here… 

http://www.caida.org/tools/visualization/walrus/gallery1/

H3:  + layout based on MST →  fast
       + layout in hyperbolic space →  enough room
       – how to get the MST for biological graphs????
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Summary 
What you learned today:

Next lecture:

→ Local connectivity:  clustering

→ shortest path: Dijkstra algorithm

→ graph layout:  force-directed and embedding schemes

→ biological data to build networks from

→ spanning tree: Kruskal algorithm

→ random graphs vs. scale-free graphs


