Bioinformatics 3

V 2 – Clusters, Dijkstra, and Graph Layout

Mon, Oct 31, 2016

Graph Basics

A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

Degree distribution *P*(*k*)

3/7

1/7

1/7

2/7

Random network:

also called the "Erdös-Renyi model":

- start with set of given nodes
- then add links randomly P(k) = "Poisson" (will show this on the next slides) $P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$

Scale-free network:

- grow network stepwise
- Add links according to preferential attachment "rule" between new nodes and existing nodes

P(k) = power law (dt. Potenzgesetz)

0

P(k)

Connected Components

Connected graph <=> there is a path between all pairs of nodes

In large (random) networks: complete $\{V\}$ is often not connected \rightarrow identify connected subsets $\{V_i\}$ with $\{V\} = \bigcup \{V_i\}$

 \rightarrow connected components (CC)

Connectivity of the Neighborhood

How many of the neighboring vertices are themselves neighbors? => this is measured by the **clustering coefficient** C(k)

Number of possible undirected edges between k nodes:

 $n_{max} = rac{k(k-1)}{2}$

 n_k is the actual number of edges between the neighbor nodes.

Fraction of actual edges \cong clustering coefficient $C(k, n_k) = \frac{2n_k}{k(k-1)}$

green: k = 2, $n_k = 1 \rightarrow C = 1$ red: k = 4, $n_k = 2 \rightarrow C = 1/3$ blue: k = 1, $n_k = ? \rightarrow C$ is not defined

Note: clustering coeff. is sometimes also defined via fraction of possible triangles

Clustering Coefficient of a Graph

Data: C_i for each node $i \rightarrow N$ values

Note: it is also possible to average the C(k) \Rightarrow This yields a different value for $\langle C \rangle$!!! because no weighting is done for different occupancy of k's.

Basic Types: (1) Random Network

Generally: N vertices connected by L edges

More specific: **distribute** the edges **randomly** between the vertices

Maximal number of links between N vertices:

$$L_{max} = \frac{N(N-1)}{2}$$

=> **probability** *p* for an edge between two randomly selected nodes:

$$p = \frac{L}{L_{max}} = \frac{2L}{N(N-1)}$$

=> average degree λ

$$\lambda = \frac{2L}{N} = p(N-1)$$

path lengths in a random network grow with $ln(N) \Rightarrow$ "small world"

Random Network: P(k)

Network with *N* vertices, *L* edges => probability for a random link:

$$p = rac{2L}{N(N-1)}$$

Probability that random node has links to k other particular nodes:

$$W_k = p^k (1-p)^{N-k-1}$$

Probability that random node has links to any k other nodes:

$$P(k) = \binom{N-1}{k} W_k = \frac{(N-1)!}{(N-k-1)! \, k!} \, W_k$$

Limit of large graph: $N \rightarrow oo, p = \lambda / N$

$$\lim_{N \to \infty} P(k) = \lim_{N \to \infty} \frac{N!}{(N-k)! \, k!} \, p^k \, (1-p)^{N-k}$$

$$= \lim_{N \to \infty} \left(\frac{N(N-1) \dots (N-k+1)}{N^k} \right) \, \frac{\lambda^k}{k!} \, \left(1 - \frac{\lambda}{N} \right)^N \, \left(1 - \frac{\lambda}{N} \right)^{-k}$$

$$= 1 \qquad \lambda^k k! \quad e^{-\lambda} \qquad 1$$

$$= \frac{\lambda^k}{k!} \, e^{-\lambda}$$

Bioinformatics 3 – WS 16/17

Random Network: P(k)

Many independently placed edges => **Poisson statistics**

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

=> Small probability for $k >> \lambda$

k	$P(k \mid \lambda = 2)$
0	0.14
1	0.27
2	0.27
3	0.18
4	0.090
5	0.036
6	0.012
7	0.0034
8	0.00086
9	0.00019
10	3.82e-05

Basic Types: (2) Scale-Free

Growing network a la Barabasi and Albert (1999):

- start from a small "nucleus" of m_0 connected nodes
- add new node with *n* links
- connect new links to existing nodes with probability p_i proportional to degree k_i of each existing node (preferential attachment;

=> "the rich get richer"
$$p_i = \left(\frac{k_i}{\sum k_i}\right)^{\beta}$$
 in BA-model β = I

Properties:

• this leads to a power-law degree distribution:

 $P(k) \propto k^{-\gamma}$ with γ = 3 for the BA model

• self-similar structure with highly connected hubs (no intrinsic length scale)

=> this grows much slower than for random graphs

=> "very small world"

9

The Power-Law Signature

Power law

$$P(k) \, \propto \, k^{-\gamma}$$

Take log on both sides:

$$\log(P(k)) = -\gamma \log(k)$$

Plot log(P) vs. log(k) => straight line

Note: for fitting γ against experimental data it is often better to use the integrated P(k) => integral smoothes the data

$$\int_{k_0}^k P(k) dk \; = \; \left[- rac{k^{-(\gamma-1)}}{\gamma}
ight]_{k_0}^k$$

Scale-Free: Examples

The World-Wide-Web:

=> growth via links to portal sites

Flight connections between airports

=> large international hubs, small local airports

Protein interaction networks => some central, ubiquitous proteins

http://a.parsons.edu/~limam240/blogimages/16_full.jpg

Saturation: Ageing + Costs

Example: network of movie actors (with how many other actors did an actor appear in a joint movie?)

Each actor makes new acquaintances for ~40 years before retirement => limits maximum number of links

Example: building up a physical computer network

It gets more and more expensive for a network hub to grow further => number of links saturates

Hierarchical, Regular, Clustered...

Tree-like network with similar degrees => like an organigram

=> hierarchic network

All nodes have the same degree and the same local neighborhood => regular network

P(k) for these example networks? (finite size!)

Note: most real-world networks are somewhere in between the basic types

C(k) for a Random Network

Clustering coefficient when m edges exist between k neighbors

$$C(k,m) = rac{2m}{k(k-1)}$$

Probability to have exactly m edges between the k neighbors

$$W(m) = \binom{k}{m} p^m (1-p)^{\frac{k(k-1)}{2}-m}$$

In this way, we pick the m start nodes for the m edges from the k nodes.

Average *C*(*k*) for degree *k*:

$$C(k) = \frac{\sum_{m=0}^{\frac{k(k-1)}{2}} W(m) C(k,m)}{\sum_{m=0}^{\frac{k(k-1)}{2}} W(m)} = \dots = p$$

→ C(k) is independent of k
<=> same local connectivity throughout the network

The Percolation Threshold

Connected component = all vertices that are connected by a path

Percolation Transition

Example: regular square lattice, N = 25 nodes, $L_{max} = 40$ links between next neighbors

percolation = "spanning structure" emerges (long range connectivity) for an infinite square lattice: percolation transition at $\lambda = 2$ here: finite size effect <=> fewer possible links at the boundaries

Clusters in scale free graphs

Algorithms on Graphs

How to **represent** a graph in the **computer**?

I. Adjacency list

=> list of neighbors for each node

- I: (3)
- 2: (3)
- 3: (1, 2, 4, 5)
- 4: (3, 5, 6)
- 5: (3, 4, 6, 7)
- 6: (4, 5)
- 7: (5)

- + minimal memory requirement
- + vertices can easily be added or removed
- requires $O(\lambda)$ time to determine whether a certain edge exists

Note: for weighted graphs store pairs of (neighbor label, edge weight)

Graph Representation II

2. Adjacency matrix

- $\rightarrow N \ge N \mod uv$ $M_{uv} = weight when edge between u and v exists,$ 0 otherwise
- \rightarrow symmetric for undirected graphs
- + fast O(I) lookup of edges
- large memory requirements
- adding or removing nodes is expensive

Note: very convenient in programming languages that support sparse multidimensional arrays => Perl

	1	2	3	4	5	6	7
1	_	0	1	0	0	0	0
2	0	_	1	0	0	0	0
3	1	1	_	1	1	0	0
4	0	0	1	_	1	1	0
5	0	0	1	1	_	1	1
6	0	0	0	1	1	—	0
7	0	0	0	0	1	0	_

Graph Representation III

3. Incidence matrix

- $\rightarrow N \times M \text{ matrix with entries } M_{nm}$ $M_{nm} = \text{weight when edge } m \text{ ends at node } n$ 0 otherwise
- → for a plain graph there are two entries per column
- → directed graph: indicate direction via sign (in/out)

The incidence matrix is a special form of the stoichiometric matrix of reaction networks.

e1

e3

e4

e5

5

6

e6

e7

The Shortest Path Problem

Problem:

Find the shortest path from a given vertex to the other vertices of the graph (Dijkstra 1959).

We need (input):

weighted graph G(V, E)
start (source) vertex s in G

We get (output):

- shortest distances d[v] between s and v
- shortest paths from s to v

Edsger Dijkstra (1930-2002):

- Idea: Always proceed with the closest node
 - \rightarrow greedy algorithm

Real world application:

 \rightarrow GPS navigation devices

Dijkstra Algorithm 0

d[v] = length of path from s to v
pred[v] = predecessor node on the shortest path

Dijkstra I

Iteration:

```
O = V
while Q is not empty:
   u = node with minimal d
   if d[u] = oo:
      break
   delete u from Q
   for each neighbor v of u:
       d \text{ temp} = d[u] + d(u, v)
       if d \text{ temp } < d[v]:
          d[v] = d \text{ temp}
          pred[v] = u
return pred[]C
```

Save $\{V\}$ into working copy Q

choose node closest to s exit if all remaining nodes are inaccessible

calculate distance to *u*'s neighbors

if new path is shorter => update

Dijkstra-Example

I)	1 12 25 6	Q	Q = (1, 2, 3, 4, 5, 6, 7)									
		node	1	2	3	4	5	6	7			
	17 22	d	0	00	23	12	00	00	00			
	2 5 3 7	pred	-	—	1	1	—	—	-	\circ = V		
2)	16	Q = (2, 3, 4, 5, 6, 7)								<pre>while Q is not empty: u = node with minimal d</pre>		
,	23	node	1	2	3	4	5	6	7	if $d[u] = oo:$		
		d	0	00	21	12	30	37	00	bleak		
		pred	—	-	4	1	4	4	-	for each neighbor v of u:		
2)	(1) (12) (4) (25) (6)	Q	Q = (2, 3, 5, 6, 7)							$d_{temp} = d[u] + d(u,v)$		
3)		node	1	2	3	4	5	6	7	$d[v] = d_{temp}$		
	23 9 5	d	0	26	21	12	30	37	00	pred[v] = u		
	5 3 17 22	pred	–	3	4	1	4	4	-	return pred[]C		
	16											
4)	(1) 12 (4) 25 (6) Q = (2, 5, 6, 7)											
7)		node	1	2	3	4	5	6	7			
	9 5	d	0	26	21	12	30	37	42			
	5 3 17 22	pred	-	3	4	1	4	4	2			
	16											

Example contd.

Q = (2 , 5, 6, 7)									
node	1	2	3	4	5	6	7		
d	0	26	21	12	30	37	42		
pred	-	3	4	1	4	4	2		
Q = (5 .	6, 7)								
node	1	2	3	4	5	6	7		
d	0	26	21	12	30	37	42		
pred	—	3	4	1	4	4	2		
Q = (6, 7) Q = (7)									
node	1	2	3	4	5	6	7		
d	0	26	21	12	30	37	42		
pred	_	3	4	1	4	4	2		
d(1, 7) = 42 path = $(1, 4, 3, 2, 7)$									
d(1,6) =	d(1, 6) = 37 path = (1, 4, 6) or (1, 4, 5, 6)								

Final result:

Beyond Dijkstra

Dijkstra works for directed and undirected graphs with **non-negative** weights.

Straight-forward implementation: $O(N^2)$

Graphs with positive and negative weights

 \rightarrow **Bellman-Ford**-algorithm

If there is a heuristic to estimate weights: → improve efficiency of Dijkstra

 \rightarrow **A***-algorithm

Graph Layout

Task: visualize various interaction data:

e.g. protein interaction data (undirected):

nodes – proteins edges – interactions

metabolic pathways (directed)

nodes – substances

edges – reactions

regulatory networks (directed):

nodes – transcription factors + regulated proteins edges – regulatory interaction

co-localization (undirected)

nodes – proteins edges – co-localization information

homology (undirected/directed)

nodes – proteins

edges - sequence similarity (BLAST score)

Graph Layout Algorithms

Graphs encapsulate relationship between objects

 \rightarrow drawing gives **visual impression** of these relations

Good Graph Layout: **aesthetic**

- minimal edge crossing
- highlight symmetry (when present in the data)
- even spacing between the nodes

Many approaches in literature (and in software tools), most useful ones usually NP-complete (exponential runtime)

Most popular for **straight-edge-drawing**:

- → **force-directed**: spring model or spring-electrical model
- → embedding algorithms like H3 or LGL

Force-Directed Layout

Peter Eades (1984): graph layout heuristic \rightarrow "Spring Embedder" algorithm. • edges \rightarrow springs vertices \rightarrow rings that connect the springs • Layout by dynamic relaxation \rightarrow lowest-energy conformation

→ "Force Directed" algorithm

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html

Energy and Force

Energy: describes the altitude of the landscape

E(x) = mgh(x)

Energy increases when you go up the hill You need more force for a steeper ascent

$$F(x) = -rac{dE(x)}{dx}$$

Force: describes the change of the altitude, points downwards.

Spring Embedder Layout

Springs regulate the mutual distance between the nodes

- too close \rightarrow repulsive force
- too far \rightarrow attractive force

Spring embedder algorithm:

- add springs for all edges
- add loose springs to all non-adjacent vertex pairs

Total energy of the system:
$$E = \sum_{i=1}^{|V|-1} \sum_{j=i+1}^{|V|} rac{R}{l_{ij}^2} \left(|x_i-x_j|-l_{ij}
ight)^2$$

 x_i, x_j = position vectors for nodes *i* and *j*

- I_{ij} = rest length of the spring between *i* and *j*
- R = spring constant (stiffness)

Problem: *l_{ij}* have to be determined a priori, e.g., from network distance

Spring Model Layout

Task: find configuration of **minimal energy**

In 2D/3D: force = negative gradient of the energy

of the energy

$$\vec{F}(\vec{x}) = -\nabla E(\vec{x}) = -\begin{pmatrix} \frac{\partial E}{\partial x} \\ \frac{\partial E}{\partial y} \\ \frac{\partial E}{\partial z} \end{pmatrix}$$

→ Iteratively **move** nodes "**downhill**" along the gradient of the energy → displace nodes **proportional** to the **force** acting on them

Problems:

- local minima
- a priori knowledge of all spring lengths
- \rightarrow works best for regular grids

The Spring-Electrical-Model

More general model than spring embedder model: use two types of forces

I) attractive harmonic force between connected nodes (springs)

 $F_{ij}^h = -k |r_i - r_j|$ one uses usering con

one uses usually the same spring constant *k* for all edges

2) repulsive Coulomb-like force between all nodes

"all nodes have like charges" \rightarrow repulsion

$$F_{ij}^c = rac{Q_{ij}}{|r_i - r_j|^2}$$
 either Q_{ij} = Q or, e.g., Q_{ij} = k_i k_j

Repulsion pushes all nodes apart, springs pull connected nodes together → workhorse method for small to medium sized graphs

 \rightarrow Do-it-yourself in Assignment 2 <=

Spring-Electrical Example

http://www.it.usyd.edu.au/~aquigley/3dfade/

Force-Directed Layout: Summary

Analogy to a physical system

=> force directed layout methods tend to meet various **aesthetic** standards:

- efficient space filling,
- uniform edge length (with equal weights and repulsions)
- symmetry
- smooth **animation** of the layout process (visual continuity)

Force directed graph layout \rightarrow the "**work horse**" of layout algorithms.

Not so nice: the **initial random placement** of nodes and even very small changes of layout parameters will lead to **different representations**. (no unique solution)

Side-effect: vertices at the periphery tend to be closer to each other than those in the center...

Runtime Scaling

 \rightarrow force directed layout suitable for small to medium graphs ($\leq O(1000)$ nodes?)

Speed up layout by:

- **multi-level** techniques to overcome local minima
- **clustering** (octree) methods for distant groups of nodes $\rightarrow O(N \log N)$

H3 Algorithm

Two problems of force directed layout:

- runtime scaling
- 2D space for drawing the graph

Tamara Munzner (1996-1998): H3 algorithm

- \rightarrow interactively visualize large data sets of ~100.000 nodes.
 - focusses on quasi-hierarchical graphs
 - \rightarrow use a **spanning tree** as the backbone of a layout algorithm
 - graph layout in **exponential space** (projected on 2D for interactive viewing)

Spanning tree: connected acyclic subgraph that contains all the vertices of the original graph, but does not have to include all the links

→ find a minimum-weight spanning tree through a graph with weighted edges, where **domain-specific information** is used to compute the **weights**

Spanning Tree

Some algorithms work only/better on trees

Idea: remove links until graph has tree structure, keep all nodes connected → spanning tree

Minimal spanning tree = spanning tree with the least total weight of the edges

Greedy **Kruskal**-Algorithm:

→ iteratively choose unused edge with smallest weight, if it does not lead to a circle!

greedy <=> base choice on current state, (locally optimal choice)

Kruskal - Example

Proof that there is no spanning tree with a **lower** weight?

Minimum spanning tree weight = 66

Cone Layout

Place the nodes according to their hierarchy starting from the root node → direction indicates lineage

For arbitrary graphs → how to get weights? → which node is the root?

Exponential Room

In Euklidian space: circumference of a circle grows linear:

 $U = 2\pi r$

In hyperbolic space:

 $U = 2\pi \sinh r$

- → exponentially **growing** space on the circle
- For (cone) graph layout → there is **enough room** for yet another level

Also: **mappings** of the complete hyperbolic space → finite volume of Euklidian space

Models of hyperbolic space

GIFs don't work here...

http://www.caida.org/tools/visualization/walrus/gallery1/

- H3: + layout based on MST \rightarrow fast
 - + layout in hyperbolic space \rightarrow enough room
 - how to get the MST for biological graphs????

Summary

What you learned **today**:

- \rightarrow Local connectivity: clustering
- \rightarrow random graphs vs. scale-free graphs
- \rightarrow shortest path: Dijkstra algorithm
- \rightarrow graph layout: force-directed and embedding schemes
- → spanning tree: Kruskal algorithm

Next lecture:

 \rightarrow biological data to build networks from