
Bioinformatics 3���
V 2 – Clusters, Dijkstra,

and Graph Layout
Mon, Oct 31, 2016

Bioinformatics 3 – WS 16/17 V 2 – 2

Graph Basics
A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges.

Degree distribution P(k)

k 0 1 2 3 4

P(k) 0 3/7 1/7 1/7 2/7

Random network:
also called the "Erdös-Renyi model“:
-  start with set of given nodes
-  then add links randomly
P(k) = "Poisson“ (will show this on the
next slides)

Scale-free network:
-  grow network stepwise
-  Add links according to preferential

attachment “rule” between new nodes
and existing nodes

P(k) = power law (dt. Potenzgesetz)

Bioinformatics 3 – WS 16/17 V 2 –

Connected Components

3

Connected graph <=> there is a path between all pairs of nodes

In large (random) networks: complete {V} is often not connected
→ identify connected subsets {Vi} with {V} = U {Vi}
 → connected components (CC)

#CC = 5
Nmax = 15
Nmin = 1

Bioinformatics 3 – WS 16/17 V 2 – 4

Connectivity of the Neighborhood
How many of the neighboring vertices are themselves neighbors?
=> this is measured by the clustering coefficient C(k)

Number of possible undirected edges between k nodes:

nk is the actual number of edges between the neighbor nodes.

Fraction of actual edges ≅ clustering coefficient

green:k = 2, nk = 1 → C = 1

red: k = 4, nk = 2 → C = 1/3

Note: clustering coeff. is sometimes also defined via fraction of possible triangles

blue: k = 1, nk = ? → C is not defined

Bioinformatics 3 – WS 16/17 V 2 – 5

Clustering Coefficient of a Graph
Data: Ci for each node i → N values

Statistics:

average at fixed k

→

k

C
i, C

(k
),

<
C

>

average over all nodes

→

Note: it is also possible to average the C(k)
⇒ This yields a different value for <C> !!!
because no weighting is done for different occupancy of k’s.

Bioinformatics 3 – WS 16/17 V 2 – 6

Basic Types: (1) Random Network
Generally: N vertices connected by L edges

More specific: distribute the edges randomly between the vertices

Maximal number of links between N vertices:

=> probability p for an edge between two randomly selected nodes:

=> average degree λ

path lengths in a random network grow with ln(N) => “small world”

Bioinformatics 3 – WS 16/17 V 2 – 7

Random Network: P(k)
Network with N vertices, L edges
=> probability for a random link:

Probability that random node has links to k other particular nodes:

Probability that random node has links to any k other nodes:

Limit of large graph: N → oo, p = λ / N

Bioinformatics 3 – WS 16/17 V 2 – 8

Random Network: P(k)
Many independently placed edges => Poisson statistics

k P(k | λ = 2)

0 0.14

1 0.27

2 0.27

3 0.18

4 0.090

5 0.036

6 0.012

7 0.0034

8 0.00086

9 0.00019

10 3.82e-05
=> Small probability for k >> λ

Bioinformatics 3 – WS 16/17 V 2 –

9

Basic Types: (2) Scale-Free
Growing network a la Barabasi and Albert (1999):
• start from a small "nucleus“ of m0 connected nodes
• add new node with n links
• connect new links to existing nodes with probability pi proportional to
degree ki of each existing node (preferential attachment;

in BA-model β = 1=> "the rich get richer"

Properties:
• this leads to a power-law degree distribution:

• self-similar structure with highly connected hubs (no intrinsic length scale)

 => average path length grows with ln (N) / ln(ln(N))
 => this grows much slower than for random graphs
 => “very small world”

with γ = 3 for the BA model

Bioinformatics 3 – WS 16/17 V 2 – 10

The Power-Law Signature

Power law

Take log on both sides:

Plot log(P) vs. log(k) => straight line

Note: for fitting γ against experimental data it is often better to use the integrated P(k)
=> integral smoothes the data

Bioinformatics 3 – WS 16/17 V 2 – 11

Scale-Free: Examples
The World-Wide-Web:

=> growth via links to portal sites

Flight connections between airports
=> large international hubs, small local airports

Protein interaction networks
=> some central,
 ubiquitous proteins

http://a.parsons.edu/~limam240/blogimages/16_full.jpg

Bioinformatics 3 – WS 16/17 V 2 –
12

Saturation: Ageing + Costs
Example: network of movie actors (with how many other actors did

an actor appear in a joint movie?)

Each actor makes new acquaintances for ~40 years before retirement
=> limits maximum number of links

Example: building up a physical computer network

It gets more and more expensive for a network hub to grow further
=> number of links saturates

cost

Bioinformatics 3 – WS 16/17 V 2 – 13

Hierarchical, Regular, Clustered…

Tree-like network with similar degrees
=> like an organigram
 => hierarchic network

All nodes have the same degree
and the same local neighborhood
=> regular network

Note: most real-world networks are somewhere in between the basic types

P(k) for these example networks? (finite size!)

Bioinformatics 3 – WS 16/17 V 2 – 14

C(k) for a Random Network

Probability to have exactly m edges between the k neighbors

Clustering coefficient when m edges exist between k neighbors

In this way, we pick the m start nodes for the m edges from the k nodes.

Average C(k) for degree k:

→ C(k) is independent of k
 <=> same local connectivity throughout the network

Bioinformatics 3 – WS 16/17 V 2 – 15

The Percolation Threshold
Connected component = all vertices that are connected by a path

Very few edges
⇒ only CCs
of size 2

Many edges
→ graph is one CC

Percolation
transition at
λ = 2

Identify:
Ncc = number of connected
 components (clusters)

(green)
Nmax = size of the largest
 cluster (red)

For λ > 2:
“giant component”
exists

average degree λ

Bioinformatics 3 – WS 16/17 V 2 – 16

"percolation"

Percolation Transition
Example: regular square lattice, N = 25 nodes, Lmax = 40 links between

next neighbors

L = 3
λ = 0.24

Ncc = 22
Nmax = 2

L = 11
λ = 0.88

Ncc = 14
Nmax = 4

L = 22
λ = 1.76

Ncc = 3
Nmax = 15

L = 24
λ = 1.92

Ncc = 1
Nmax = 25

percolation = "spanning structure" emerges (long range connectivity)
 for an infinite square lattice: percolation transition at λ = 2
here: finite size effect <=> fewer possible links at the boundaries

Bioinformatics 3 – WS 16/17 V 2 – 17

Clusters in scale free graphs

Scale-free network <=> no intrinsic scale
 → same properties at any k-level
 → same local connectivity
 → C(k) = const.

k

C
i, C

(k
),

<
C

>

"Real" biological data
→ missing links
 → multiple clusters

Is the metabolic
network of a cell
fully connected?

Bioinformatics 3 – WS 16/17 V 2 – 18

Algorithms on Graphs
How to represent a graph in the computer?

1. Adjacency list
=> list of neighbors for each node

1:
2:
3:
4:
5:
6:
7:

(3)
(3)
(1, 2, 4, 5)
(3, 5, 6)
(3, 4, 6, 7)
(4, 5)
(5)

Note: for weighted graphs store pairs of (neighbor label, edge weight)

+ minimal memory requirement
+ vertices can easily be added or removed

– requires O(λ) time to determine
 whether a certain edge exists

Bioinformatics 3 – WS 16/17 V 2 – 19

Graph Representation II
2. Adjacency matrix
→ N x N matrix with entries Muv

 Muv = weight when edge between u and v exists,
 0 otherwise

1 2 3 4 5 6 7
1 – 0 1 0 0 0 0
2 0 – 1 0 0 0 0
3 1 1 – 1 1 0 0
4 0 0 1 – 1 1 0
5 0 0 1 1 – 1 1
6 0 0 0 1 1 – 0
7 0 0 0 0 1 0 –

→ symmetric for undirected graphs

+ fast O(1) lookup of edges
– large memory requirements
– adding or removing nodes is expensive

Note: very convenient in programming
languages that support sparse multi-
dimensional arrays
=> Perl

Bioinformatics 3 – WS 16/17 V 2 – 20

Graph Representation III
3. Incidence matrix
→ N x M matrix with entries Mnm

 Mnm = weight when edge m ends at node n
 0 otherwise

e1 e2 e3 e4 e5 e6 e7
1 1
2 1
3 1 1 1 1
4 1 1
5 1 1 1
6 1 1
7 1

e1

e2

e3

e4

e5

e6

e7

 → for a plain graph there are
 two entries per column

→ directed graph:
 indicate direction via sign (in/out)

The incidence matrix is a special
form of the stoichiometric matrix
of reaction networks.

Bioinformatics 3 – WS 16/17 V 2 – 21

The Shortest Path Problem

Edsger Dijkstra
(1930-2002):

Problem:
Find the shortest path from a given vertex
to the other vertices of the graph (Dijkstra 1959).

We need (input): • weighted graph G(V, E)
• start (source) vertex s in G

We get (output): • shortest distances d[v] between s and v
• shortest paths from s to v

Idea: Always proceed with the
closest node
 → greedy algorithm

Real world application:
 → GPS navigation devices

Bioinformatics 3 – WS 16/17 V 2 – 22

Dijkstra Algorithm 0

Initialization: for all nodes v in G:
 d[v] = oo
 pred[v] = nil

d[s] = 0 distance from source to source = 0

distance and path to all other
nodes is still unknown

node 1 2 3 4 5 6 7

d 0 oo oo oo oo oo oo

pred – – – – – – –

In the example: s = 1

 d[v] = length of path from s to v
pred[v] = predecessor node on the shortest path

Bioinformatics 3 – WS 16/17 V 2 – 23

Dijkstra I

Iteration: Q = V
while Q is not empty:
 u = node with minimal d

 if d[u] = oo:
 break

 delete u from Q

 for each neighbor v of u:
 d_temp = d[u] + d(u,v)

 if d_temp < d[v]:
 d[v] = d_temp
 pred[v] = u

return pred[]C

Save {V} into working copy Q

choose node closest to s

exit if all remaining nodes
are inaccessible

calculate distance to u's
neighbors

if new path is shorter
=> update

Bioinformatics 3 – WS 16/17 V 2 – 24

Dijkstra-Example
1) Q = (1, 2, 3, 4, 5, 6, 7)

2) Q = (2, 3, 4, 5, 6, 7)

3)
Q = (2, 3, 5, 6, 7)

4) Q = (2, 5, 6, 7)
node 1 2 3 4 5 6 7

d 0 26 21 12 30 37 42
pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 oo

pred – 3 4 1 4 4 –

node 1 2 3 4 5 6 7
d 0 oo 21 12 30 37 oo

pred – – 4 1 4 4 –

node 1 2 3 4 5 6 7
d 0 oo 23 12 oo oo oo

pred – – 1 1 – – –
Q = V
while Q is not empty:
 u = node with minimal d

 if d[u] = oo:
 break

 delete u from Q

 for each neighbor v of u:
 d_temp = d[u] + d(u,v)

 if d_temp < d[v]:
 d[v] = d_temp
 pred[v] = u

return pred[]C

Bioinformatics 3 – WS 16/17 V 2 – 25

Example contd.
Q = (2, 5, 6, 7)4)

Q = (6, 7)

Q = (7)Final result:

d(1, 7) = 42 path = (1, 4, 3, 2, 7)

Q = (5, 6, 7)5)

d(1, 6) = 37 path = (1, 4, 6) or (1,4,5,6)

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

node 1 2 3 4 5 6 7
d 0 26 21 12 30 37 42

pred – 3 4 1 4 4 2

Bioinformatics 3 – WS 16/17 V 2 – 26

Beyond Dijkstra

Graphs with positive and negative weights
→ Bellman-Ford-algorithm

If there is a heuristic to estimate weights:
→ improve efficiency of Dijkstra
 → A*-algorithm

Dijkstra works for directed and undirected graphs with
 non-negative weights.

Straight-forward implementation: O(N2)

Bioinformatics 3 – WS 16/17 V 2 – 27

Graph Layout
Task: visualize various interaction data:
e.g. protein interaction data (undirected):

 nodes – proteins
 edges – interactions

metabolic pathways (directed)
 nodes – substances
 edges – reactions

regulatory networks (directed):
 nodes – transcription factors + regulated proteins
 edges – regulatory interaction

co-localization (undirected)
 nodes – proteins
 edges – co-localization information

homology (undirected/directed)
 nodes – proteins
 edges – sequence similarity (BLAST score)

Bioinformatics 3 – WS 16/17 V 2 – 28

Graph Layout Algorithms
Graphs encapsulate relationship between objects
→ drawing gives visual impression of these relations

Good Graph Layout: aesthetic
• minimal edge crossing
• highlight symmetry (when present in the data)
• even spacing between the nodes

Many approaches in literature (and in software tools),
most useful ones usually NP-complete (exponential runtime)

Most popular for straight-edge-drawing:
→ force-directed: spring model or spring-electrical model
→ embedding algorithms like H3 or LGL

Bioinformatics 3 – WS 16/17 V 2 – 29

Force-Directed Layout

Peter Eades (1984): graph layout heuristic

→  "Spring Embedder'' algorithm.

• edges → springs
 vertices → rings that connect the springs

• Layout by dynamic relaxation

 → lowest-energy conformation

→ "Force Directed'' algorithm

http://www.hpc.unm.edu/~sunls/research/treelayout/node1.html

Bioinformatics 3 – WS 16/17 V 2 – 30

Energy and Force

Energy increases when
you go up the hill

Energy: describes the
altitude of the landscape

You need more force
for a steeper ascent

Force: describes the
change of the altitude,
points downwards.

Bioinformatics 3 – WS 16/17 V 2 – 31

Spring Embedder Layout
Springs regulate the mutual distance between the nodes
• too close → repulsive force
• too far → attractive force

Spring embedder algorithm:
• add springs for all edges
• add loose springs to all non-adjacent vertex pairs

Total energy of the system:

xi, xj = position vectors for nodes i and j
lij = rest length of the spring between i and j
R = spring constant (stiffness)

Problem: lij have to be determined a priori, e.g., from network distance

Bioinformatics 3 – WS 16/17 V 2 – 32

Spring Model Layout
Task: find configuration of minimal energy

In 2D/3D: force = negative gradient of the energy

→ Iteratively move nodes "downhill" along the gradient of the energy
 → displace nodes proportional to the force acting on them

Problems:
• local minima
• a priori knowledge of all spring lengths
 → works best for regular grids

Bioinformatics 3 – WS 16/17 V 2 – 33

The Spring-Electrical-Model
More general model than spring embedder model: use two types of forces

1) attractive harmonic force between connected nodes (springs)

2) repulsive Coulomb-like force between all nodes
 "all nodes have like charges" → repulsion

one uses usually the same
spring constant k for all edges

either Qij = Q or, e.g., Qij = ki kj

Repulsion pushes all nodes apart, springs pull connected nodes together
→ workhorse method for small to medium sized graphs

→ Do-it-yourself in Assignment 2 <=

Bioinformatics 3 – WS 16/17 V 2 – 34

Spring-Electrical Example

http://www.it.usyd.edu.au/~aquigley/3dfade/

Bioinformatics 3 – WS 16/17 V 2 – 35

Force-Directed Layout: Summary
Analogy to a physical system
=> force directed layout methods tend to meet various aesthetic standards:

Side-effect: vertices at the periphery tend to be closer to each other
than those in the center…

• efficient space filling,
• uniform edge length (with equal weights and repulsions)
• symmetry
• smooth animation of the layout process (visual continuity)

Force directed graph layout → the "work horse" of layout algorithms.

Not so nice: the initial random placement of nodes and even very small
changes of layout parameters will lead to different representations.
(no unique solution)

Bioinformatics 3 – WS 16/17 V 2 – 36

Runtime Scaling
Force directed layout:

loop until convergence:

 calculate forces:
 L springs
 N(N-1)/2 charge pairs

 move vertices

 output positions

O(N2)!!!

Several possible
arrangements!!!
(local minima)

→ force directed layout suitable for small to medium graphs (≤ O(1000) nodes?)

Speed up layout by:

• multi-level techniques to overcome local minima

• clustering (octree) methods for distant
groups of nodes → O(N log N)

Bioinformatics 3 – WS 16/17 V 2 – 37

H3 Algorithm

Tamara Munzner (1996-1998): H3 algorithm
 → interactively visualize large data sets of ∼100.000 nodes.

Two problems of force directed layout:
• runtime scaling
• 2D space for drawing the graph

Spanning tree: connected acyclic subgraph that contains all the vertices of the
original graph, but does not have to include all the links

→ find a minimum-weight spanning tree through a graph with weighted edges,
 where domain-specific information is used to compute the weights

• focusses on quasi-hierarchical graphs
 → use a spanning tree as the backbone of a layout algorithm

• graph layout in exponential space (projected on 2D for interactive viewing)

Bioinformatics 3 – WS 16/17 V 2 – 38

Spanning Tree

Idea: remove links until graph has tree structure, keep all nodes connected
→ spanning tree

Some algorithms work only/better on trees

Minimal spanning tree = spanning tree with the least total weight of the edges

Greedy Kruskal-Algorithm:

→ iteratively choose unused edge
 with smallest weight,
 if it does not lead to a circle!

greedy <=> base choice on current state,
 (locally optimal choice)

Bioinformatics 3 – WS 16/17 V 2 – 39

Kruskal - Example

Minimum spanning tree
weight = 66

Proof that there is no spanning tree
with a lower weight?

Bioinformatics 3 – WS 16/17 V 2 – 40

Cone Layout

Place the nodes according to their hierarchy
starting from the root node
→ direction indicates lineage

For arbitrary graphs
→ how to get weights?
→ which node is the root?

Bioinformatics 3 – WS 16/17 V 2 – 41

Exponential Room

PhD thesis Tamara Munzner, chapter 3

In Euklidian space: circumference of a circle grows linear:

U = 2πr

In hyperbolic space:

U = 2π sinh r

→ exponentially growing space
 on the circle

For (cone) graph layout
→ there is enough room
 for yet another level

Also: mappings of the
complete hyperbolic space
→ finite volume of Euklidian space

Bioinformatics 3 – WS 16/17 V 2 – 42

Models of hyperbolic space

PhD thesis Tamara Munzner, chapter 3

Bioinformatics 3 – WS 16/17 V 2 – 43

GIFs don't work here…

http://www.caida.org/tools/visualization/walrus/gallery1/

H3: + layout based on MST → fast
 + layout in hyperbolic space → enough room
 – how to get the MST for biological graphs????

Bioinformatics 3 – WS 16/17 V 2 – 44

Summary
What you learned today:

Next lecture:

→ Local connectivity: clustering

→ shortest path: Dijkstra algorithm

→ graph layout: force-directed and embedding schemes

→ biological data to build networks from

→ spanning tree: Kruskal algorithm

→ random graphs vs. scale-free graphs

