V21: Analysis of DNA methylation data

Epigenetics refers to alternate phenotypic states that are
not based on differences in genotype,
and are potentially reversible,

but are generally stably maintained during cell division.

Examples: imprinting, twins, cancer vs. normal cells, differentiation, ...

Narrow interpretation of this concept : stable differential states of gene expression.

Laird, Hum Mol Gen 14, R65 (2005)
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What is epigenetics?

A much more expanded view of epigenetics has recently emerged

in which multiple mechanisms interact to collectively establish

- alternate states of chromatin structure (open — packed/condensed),
- histone modifications,

- composition of associated proteins (e.g. histones),

- transcriptional activity,

- activity of microRNAs, and

- in mammals, cytosine-5 DNA methylation at CpG dinucleotides.

Laird, Hum Mol Gen 14, R65 (2005)
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Waddington epigenetic landscape for embryology
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Waddlngton worked in embryology

a) is a painting by John Piper that was
used as the frontispiece for Waddington's
book Organisers and Genes.

It represents an epigenetic landscape.

Developmental pathways that could be
taken by each cell of the embryo are
metaphorically represented by the path Conrad Hal Waddington

: (1905 — 1975)
taken by water as it flows down the valleys. iy es royalsociety.org

b) Later depiction of the epigenetic

A i landscape. The ball represents a cell, and
Slack, Nature Rev Genet 3, the bifurcating system of valleys represents
889-895 (2002) bundles of trajectories in state space.
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Basic principles of epigenetics:
DNA methylation and histone modfications

The human genome contains
~20 000 genes that must be
expressed in specific cells at
precise times.

In cells, DNA is wrapped around
clusters (octamers) of globular
histone proteins to form
nucleosomes.

These nucleosomes of DNA
and histones are organized into
chromatin, the building block of
a chromosome.

Rodenhiser, Mann,
CMAJ 174, 341 (2006)
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Fig. 1. Carriers of epigenetic information: DNA and nucleosome.
The left panel shows a DNA double helix that i1s methylated
symmetrically on both strands (orange spheres) at its center CpG
(PDB structure: 329d). DNA methylation i1s the only epigenetic
mechanism that directly targets the DNA. The right panel shows a
nucleosome spindle consisting of eight histone proteins (center), around
which two loops of DNA are wound (PDB structure: 1KXS5).
The nucleosome 1s subject to covalent modifications of its histones
and to the binding of non-histone proteins.

Bock, Lengauer, Bioinformatics 24, 1 (2008)
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Epigenetic modifications
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Rodenhiser, Mann,
CMAJ 174, 341 (20006)
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Reversible and site-specific histone modifications occur at multiple sites at the
unstructured histone tails through acetylation, methylation and phosphorylation.

DNA methylation occurs at 5-position of cytosine residues within CpG pairs
in a reaction catalyzed by DNA methyltransferases (DNMTs).
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Cytosine methylation

Observation: 3-6 % of all cytosines are methylated in human DNA.
This methylation occurs (almost) exclusively when cytosine is followed by a
guanine base -> CpG dinucleotide.

SAM 5-methyl-cytosine
NH, (SAH-CHy) SAH NH,

SAM: S-adenosyl-methionine
Cytosme H\f\ k/ H3C\ﬁ\ SAH: S-adenosyl-homocysteine

NH,
N-_ =N
w20 L1
Mammalian genomes contain much fewer (onIy 20-25 %) S 0
of the CpG dinucleotide than is expected by the G+C content
(we expect 1/16 = 6% for any random dinucleotide). OH on

This is typically explained in the following way:

As most CpGs serve as targets of DNA methyltransferases,

they are usually methylated .... (see following page)
Esteller, Nat. Rev. Gen. 8, 286 (2007)

www.wikipedia.org
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Cytosine methylation

9-Methylcytosine can easily deaminate to thymine.

NH, o)
_ H;C H,;C _
5-methyl-cytosine \(i +H,0 | /f\i thymine
~ NH5
ll:ll O H O

If this mutation is not repaired, the affected CpG is permanently converted to TpG
(or CpA if the transition occurs on the reverse DNA strand).

Hence, methylCpGs represent mutational hot spots in the genome.
If such mutations occur in the germ line, they become heritable.

A constant loss of CpGs over thousands of generations
can explain the low frequency of this
special dinucleotide in the genomes of human and mouse.

Esteller, Nat. Rev. Gen. 8, 286 (2007)
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chromatin organization affects gene expression

B Transcription possible
Gene “switched on®
« Active [open) chromatin
« Unmethylated cytosines
{white circles)
« Acetylated histones =

Gene “switched off™
« Silent (condensed) chromatin
= Methylated cytosines
{red circles)
» Deacetylated histones

1

Schematic of the reversible changes in chromatin organization that influence
gene expression:

genes are expressed (switched on) when the chromatin is open (active), and they
are inactivated (switched off) when the chromatin is condensed (silent).

Transcription impeded T

White circles = unmethylated cytosines;

red circles = methylated cytosines. Rodenhiser, Mann, CMAJ 174, 341 (2006)
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Enzymes that control
DNA methylation and histone modfications

These dynamic chromatin states are controlled by reversible
epigenetic patterns of DNA methylation and histone modifications.

Enzymes involved in this process include
- DNA methyltransferases (DNMTs),

- histone deacetylases (HDACSs),

- histone acetylases,

- histone methyltransferases and the

- methyl-binding domain protein MECP2.

For example, repetitive genomic sequences
(e.g. human endogenous retroviral sequences
= HERVSs) are heavily methylated,

which means transcriptionally silenced. Rodenhiser, Mann, CMAJ 174, 341 (2006)

Feinberg AP & Tycko P (2004) Nature Reviews: 143-153
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DNA methylation

Typically, unmethylated clusters of CpG pairs are located in
tissue-specific genes and in essential housekeeping genes.

(House-keeping genes are involved in routine maintenance roles and are expressed in most tissues.)

These clusters, or CpG islands, are targets for proteins
that bind to unmethylated CpGs and initiate gene transcription.

In contrast, methylated CpGs are generally associated with silent DNA,
can block methylation-sensitive proteins and can be easily mutated.

The loss of normal DNA methylation patterns is the
best understood epigenetic cause of disease.

In animal experiments, the removal of genes that encode DNMTs is lethal;
in humans, overexpression of these enzymes has been linked

to a variety of cancers. _
Rodenhiser, Mann, CMAJ 174, 341 (2006)
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CpG islands

CpG islands are characterized by a high density of CpG dinucleotides that can be
targeted by DNA methylation.

CpG islands are regulatory elements and are often located in the promoter region
of genes.

Criteria to define CpG islands:

Gardiner-Garden and Frommer: = 200 bp length,
G+ C 250%
CpGyps/CPGeyp, 2 0.6

Takai and Jones: = 500 bp length
G+Cz=55%
CPGps/CPGey, 2 0.65.

Hutter, Helms, Paulsen, Genomics 88, 323 (2006)
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intragenic  downstream

Average total length of CpG islands per gene
in repeat-masked sequences at five different
locations in (A) Mouse, (B) human.

Imprinted genes are monoallelically expressed,
the other allele is silenced by DNA methylation.
About 100 imprinted genes are experimentally
confirmed.

Ctrl1, ctrl2: groups of randomly selected (most
likely biallelic) control genes

Takai and Jones parameters

-> CpG islands frequent in promoters and in
the gene body of imprinted genes.

Hutter, Helms, Paulsen, Genomics 88, 323 (2006)
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Differentiation linked to alterations of chromatin structure

A . . Stem cells B Differentiated cells ~ Muscle cells (B) U po n
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(A) In pluripotent cells,
chromatin is hyperdynamic
and globally accessible.

ML Suva et al. Science 2013;
339:1567-1570
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Altered DNA methylation upon cancerogenesis

Nermal cell

RTINS  )A TRN, 1

—
» Turnour-suppressor gene with promoter CpG island » Locus with methylated 5-regulatory region, » Repetitive sequences,
s ‘Open’ chromatin conformation e.g. germline-specific gene eg. transposable element
Cancer cell l
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| | [es |
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* CpGrisland hypermethylation » DNA hypemethylaticon
s ‘Closed’ chromatin conformation = ‘Open’ or ‘relaxed’ chromatin confermation

| }

= Entry into cell cycle
= Avoidance of apoptosis
= Defects in DIMA repair

* Angiogenesis

= Loss of cell adhesion

» Loss of imprinting and overgrowth
= Inappropiate cell-type expression
= Genome fragility

= Activation of endoparasitic sequences

\ Tumorigenesis /

Figure 1 | Altered DNA-methylation patterns in tumorigenesis. The hypermethylation of CpG islands of tumour-
suppressor genes is a common alteration in cancer cells, and leads to the transcriptional inactivation of these genes
and the loss of their normal cellular functions. This contributes to many of the hallmarks of cancer cells. At the same
time, the genome of the cancer cell undergoes global hypomethylation at repetitive sequences, and tissue-specific
and imprinted genes can also show loss of DNA methylation. In some cases, this hypomethylation is known to
contribute to cancer cell phenotypes, causing changes such as loss of imprinting, and might also contribute to the

genomic instability that characterizes tumours. E, exon. Esteller. Nat. Rev. Gen. 8. 286 (2007)
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DNA methylation is typically only weakly correlated
with gene expression!
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Left: different states of hematopoiesis (blood cell differentiation).
HSC: hematopoietic stem cell
MPP1/2: multipotent progenitor cell

Right: skin cell differentiation
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Bock et al. , Mol. Cell.
47,633 (2012)
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Promoter methylation vs. gene-body methylation

The relationship between methylation and gene expression is complex.

High levels of gene expression are often associated with
low promoter methylation but elevated gene body methylation.

The causality relationships between expression levels and DNA methylation have
not yet been determined.

Gene centric regions

11000 A N

| | | | I | I | |
TSS 1500 5°UTR Gene body 3'UTR
I TSS200 |  1%Exon

Promoter region T : CpG site

Wagner et al.
Genome Biology (2014) 15:R37

CpG Island regions
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http://methhc.mbc.nctu.edu.tw
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Detect DNA methylation by bisulfite conversion

Allele 1 (methylated) Allele 2 (unmethylated)

m
---ACTCCACGG---TCCATCGCT--~- ---ACTCCACGG---TCCATCGCT-~-~-
-=-TGAGGTGCC-—--AGGTAGCGA-~~ ---TGAGGTGCC---AGGTAGCGA---

Bisulfite treament
Alkylation

Spontaneous denaturation Y
---AUTUUAUGG---TUUATCGUT--~- ---AUTUUAUGG---TUUATUGUT-~-~-
-—-TGAGGTGUU---AGGTAGCGA-—~- -—-—-TGAGGTGU-—-AGGTAGUGA---

\/

Non-methylation-specific PCR
Methylation-specific PCR

:

Differentiation of bisulfite-generated polymorphisms

Or NGS sequencing

www.wikipedia.org
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Processing of DNA methylation data with RnBeads
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Left stages: processing of raw data (sequencing reads e.g. from bisulfite conversion)
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Assenov et al. Nature Methods 11,

1138-1140 (2014)
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Assenov et al. Nature Methods 11,

1138-1140 (2014)
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Bottom: ,Volcano® plot

x-axis — difference
of methylation site

between 2 probes,

y-axis — statistical

significance of the
difference;

Require enough
variation and enough
significance
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DNA fiber forms
A-DNA B-DNA Z-DNA

Requires more methylation,
higher concentration of
— physiological salts

Twist = 33° Twist = 36° 7 Twist =-30°
Rise =2.56 A Rise =3.38A "% Rise=37A
Roll= 6° Roll= 0° = Roll=0°
Dry Environment Most prominent in cellular Equilibrium shift with
conditions specific conditions
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Protein-DNAMe interaction (R.Dpnl from E.coli)

A

winged helix
domain

Left: structural transitions of DNA affect accessibility of the base pairs

Right: recognition of 6-methylated adenine (common form of DNA methylation in bacteria)

Siwek et al. Nucl. Acids Res. (2012) 40 (15): 7563-7572.
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Protein-DNAMe interaction (R.Dpnl from E.coli)
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Binding of bacterial restriction Binding of MeCP2 to cytosine-
enzyme R.Dpnl to adenine- methylated or unmethylated
methylated or unmethylated target sequence
target sequence -> methylation has smaller effects
-> methylation has clear effects on width of major groove

on width of major groove

PhD thesis Siba Shanak (2015)
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Beta-values measure fractional DNA methylation levels

After analysis of raw sequencing data + filtering of problematic regions etc

the degree of methylation is typically expressed as

fractional beta value: %mCG(i) / ( %omCG(i) + %CG(i) )

A beta value for CpG position i takes on values between

0 (position i not methylated) and 1 (position i fully methylated)

WS 2016/17 - lecture 21 Bioinformatics Il
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Methylation levels of neighboring sites are correlated
- Observation: methylation levels of neighboring CpG positions within 1000 bp are
often correlated,;
- distance between neighboring CpGs is ca. 100 bp (1% frequency)

- Idea: exploit this effect to ,smoothen” experimental data,
e.g. when this is obtained at low coverage

Master thesis of Junfang Chen (February 2014):

Journal of Bioinformatics and Computational Biology @ Imperial College Press
Vol. 12, No. 6 (2014) 1442005 (16 pages) www.icpress.co.uk
¢ Imperial College Press

DOIL: 10.1142/50219720014420050

AKSmooth: Enhancing low-coverage bisulfite sequencing
data via kernel-based smoothing

4 .
Junfang Chen* ¥, Pavlo Lutsik’, Ruslan Akulenko*,
.. ’ +.8 . 8
Jorn Walter™ and Volkhard Helms*$
*Center for Bioinformatics, Saarland University
Saarbriicken 66123, Germany
+D(’[)(L7’/7n.(‘7l/ of Genetics, Saarland University
Saarbriicken 66123, Germany
+ . .
*s9juchen @stud.uni-saarland.de
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Correlated methylation of neighboring CpGs

N t . target CpG site

_ > i Kt )Cyi)y;
3 N K, (1,4)Cy (i) h : band-width*: size of window

(# of neighboring CpGs around t)

fh(f)

i — ¢ y; : methylation level of i-th CpG site within
' 2 ' ) window of given size

K (t, 1) = K<

. g, it 1=1t; C(i): weighting factor to consider read
Cili) = 1 if i #t. coverage of neighboring CpG sites relative to

that of target site

K. (t, i): Kernel function that considers the
distance between positions t and /.

-> more distant positions get smaller weight.
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Choice of kernel function

The kernel K |z _ t|
K, (t,1) :D< )f
h
is either a standard Gaussian function
1
D(p) = e

3
(1 — pu?) if |ul < 1:
b < L@ —m®) il <1
0 otherwise
or the tricubic kernel
70
— (1 — |3 if |ul < 1:
0 otherwise.
WS 2016/17 - lecture 21 Bioinformatics Il

www.wikipedia.org

26




Correlation Scores

Correlation of low-coverage and high-coverage data

Three Cancer Samples on Autosome
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Smoothing Methods

Every method was tested for including neighboring
5, 10,15, ... 70 CpGs.

Red symbols ,hl“ : low-coverage data (unsmoothened)

C1, C2, C3 are three different
samples.

Best results for window
considering nearby 10-20 CpGs.

Gaussian kernel (,hg“) more
robust with distance (exponential
weighting).

Tricubic and Epanechikov
kernels show stronge decrease
for large windows.

Brown symbols ,hb": low-coverage data processed with (another) Bsmooth-program
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DNA methylation in breast cancer
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DNA methylation in cancer
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The Cancer Genome Atlas

ARTICLE

doi:10.1038/nature11412

Comprehensive molecular portraits of
human breast tumours

The Cancer Genome Atlas Network*

Mutations
Predicted somatic non-silent mutations M Truncation mutation Missense mutation Clinical data Copy number status per Mb
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¢ F S FE 3T IZFET G52 38 3RS 538208330888, 5010
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9% 80% 0% 0% 2% 5% 0% 1% 0% 0% 0% 0% 1% 2% 1% 0% 1% 0% 4% 4% 2% 0% 1%

Percentages of cases with mutation by expression subtype
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The Cancer Genome Atlas

DNA methylation

Ilumina Infinium DNA methylation arrays were used to assay 802
breast tumours. Data from HumanMethylation27 (HM27) and
HumanMethylation450 (HM450) arrays were combined and filtered
toyield acommon set of 574 probes used in an unsupervised clustering
analysis, which identified five distinct DNA methylation groups
(Supplementary Fig. 8). Group 3 showed a hypermethylated pheno-
type and was significantly enriched for luminal B mRNA subtype and
under-represented for PIK3CA, MAP3K1 and MAP2K4 mutations.
Group 5 showed the lowest levels of DNA methylation, overlapped
with the basal-like mRNA subtype, and showed a high frequency of
TP53 mutations. HER2-positive (HER2™) clinical status, or the
HER2E mRNA subtype, had only a modest association with the
methylation subtypes.

A supervised analysis of the DNA methylation and mRNA expres-
sion data was performed to compare DNA methylation group 3
(N = 49) versus all tumours in groups 1, 2 and 4 (excluding group 5,
which consisted predominantly of basal-like tumours). This analysis
identified 4,283 genes differentially methylated (3,735 higher in group
3 tumours) and 1,899 genes differentially expressed (1,232 downregu-
lated); 490 genes were both methylated and showed lower expression
in group 3 tumours (Supplementary Table 4). A DAVID (database for
annotation, visualization and integrated discovery) functional annota-
tion analysis identified ‘extracellular region part’ and ‘Wnt signalling
pathway’ to be associated with this 490-gene set; the group 3 hyper-
methylated samples showed fewer PIK3CA and MAP3KI mutations,
and lower expression of Wnt-pathway genes.
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Supplemental Figure 8. DNA methylation subtypes and comparison to normal breast tissues. DNA methylation cluster member-
ship was determined by a Recursively Partitioned Mixture Model (RPMM) for 466 breast tumors using 574 selected probes and com-
pared to 122 breast normal samples in the same probe order. DNA methylation levels (beta value) are shown with a color spectrum;
blue, no methylation to yellow, full methylation. Cluster memberships are indicated by the horizontal color bar: black Cluster 1 (n=80);
red Cluster 2 (n=123); green Cluster 3 (n=44) blue Cluster 4 (n=128); cyan Cluster 5 (n=91). Molecular and clinical features as
indicated in the color key. P-values for association with molecular and clinical features were calculated using a Chi-square test or
Fisher’s exact test, wherever applicable.
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Idea: identify co-methylation of genes in TCGA samples
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Co-methylation of genes 1 and 3 across samples
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Tumor data

The Cancer Genome Atlas @_ Understanding genormics

Data Portal to improve cancer care

Data Type Level 1 Level 2 Level 3 Level 4
(Base- (Raw Data) (Normalized/ | (Segmented/ (Summary
Specific Processed Interpreted Finding/ROI

DNA Raw signals Normalized  Methylated Statistically
Methylation per probe signals per  sites/genes significant
probe or per sample methylated
probe set and sites/genes
allele calls across
samples

* 183 tumor samples deposited in Sept 2011 (tumor group 1);
* 134 tumor samples deposited in Oct 2011 (tumor group 2) and
« 27 matched normal samples from Oct 2011.
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Difficulties: batch effect
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Filter 1: delete genes affected by batch effect
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Difficulties: outliers
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Filter 2: require zero outliers
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Difficulties: low variance
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Filter 3: delete genes with low variance

quartile3(beta;) — quartilel(beta;) = 0,1
i€T i€T
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Comparison against randomized data

We found a significantly
larger number of
co-methylated gene
pairs (r > 0.75) than
expected by chance.
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correlation of CpG methylation for pairs of genes

WS 2016/17 - lecture 21 Bioinformatics Il 37



Known breast cancer genes in OMIM: mostly unmethylated
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These 19 genes are associated with breast cancer in the Online version of the
Mendelian Inheritance in Man (OMIM) database.

They are not involved in co-methylation because most of them show little
changes of their (low) methylation levels
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top 10 co-methylated gene pairs

First gene | Second gene | Pearson correlation Related genes?

SPRR1B SPRR1A 0,872
FCN2 FCNI1 0,870 Yes
CD244 CD48 0,866 Yes
SPRRI1B SPRR4 0,862 Yes
TAS2R13 PRB4 0,859 No
F7 TFF1 0,856 No
SH3TC2 SPARCLI1 0,853 No
ABCEIl SC4MOL 0,849 No
REGIB REGI1P 0,846 Yes
SPRR3 SPRR4 0,843 Yes

Some genes have related names -> co-methylation may be expected
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Are all co-methylated genes neighbors?

Less than half of all co-methylated gene pairs lie on the same chromosome
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Functional similarity of co-methylated genes
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rfunSimaAll of the co—methylaled genes

Co-methylated gene pairs on the same chromosome have higher functional
similarity (determined by FunSimMat) than that between random pairs of genes

Not the case for co-methylated gene pairs on different chromosomes
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Enriched pathways in co-methylated gene clusters

Cluster

ID KEGG pathways p-value | Genes involved in pathways | FDR
hsa04950:Maturity onset diabetes of

8 the young 0.003 | HNF1B.FOXA2.NEURODI1 | 2.622

9 hsa04640:Hematopoietic cell lineage 0.009 CDIA.CDIE.CDI1D 6.229

15 hsa04730:Long-term depression 0.004 | GRMS, C7ORF16, PRKG2 2.952
hsa04060:Cytokine-cytokine receptor

22 interaction 0.047 | EGF. TNFSF18. IL20 31.263

27 hsa04512:ECM-receptor interaction 0.005 COL5A2, COL11Al. SPP1 3.500

27 hsa04510:Focal adhesion 0.029 COL5A2. COL11A1l. SPP1 17.498

Table S2. The results of pathway enrichment analysis of 29 gene clusters obtained using DAVID.
These clusters were formed by applying Affinity Propagation clustering to 779 genes, which were left

after three-stage filtered of all 13.313 genes from methylation data samples.
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Further modifications of cytosine bases
NH, NH,

(‘\/g DNMTs f\ ,& —— | Gene regulatlonl
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o
« 1 (g N TETs H TeETs HO | ==y
DNA DNA DNA
5-caC 5-fC 5-hmC

Further modifications were discovered in the last few years. They are present in
cells in much smaller fractions than 5-mC.

Tet enzymes catalyze the conversions. Biological roles mostly unclear.

http://he-group.uchicago.edu
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