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V25 - Stochastic Dynamics simulations of a  
photosynthetic vesicle  

 
where bioinformatics meets biophysics 

I Introduction: prelude photosynthesis 
 

II Process view and geometric model of a chromatophore vesicle 
 Tihamér Geyer & V. Helms (Biophys. J. 2006a, 2006b) 

 

III Stochastic dynamics simulations 
  T. Geyer, Florian Lauck & V. Helms (J. Biotechnol. 2007) 

 
IV Parameter fit through evolutionary algorithm 

 T. Geyer, X. Mol, S. Blaß & V. Helms (PLoS ONE 2010) 
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6 24-37 
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Relevant are also the assignments ! 
(theoretical parts, not the programming parts) 
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Bacterial Photosynthesis 101 
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Photosynthesis – cycle view 
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The conversion chain:   stoichiometries must match turnovers!

electrons
2 cycles:

protons



6 

LH1 / LH2 / RC — a la textbook 
Collecting photons

Hu et al, 1998

B800, B850, Car.

LH2: 8 αβ dimers

LH1: 16 αβ dimers

downhill transport of 
excitons

LH2 → LH1 →RC
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The Cytochrome bc1 complex 

the "proton pump"

X-ray structures known

Berry, etal, 2004

always forms a dimer

Q-cycle:

2H+ per 1e–
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The FoF1-ATP synthase I 

at the end of the chain: producing ATP from the H+ gradient

Capaldi, Aggeler, 2002

per turn:

10–14 H+  →  3 ATP

1 ATP ≙ 4 H+
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The F1F0-ATP synthase 
"…mushroom like structures 
observed in AFM images…"

➨ ATPase is "visible"
1 ATPase per vesicle

Feniouk et al, 2002

Gräber et al, 1991, 1999

limited throughput of the ATPase

"Arrhenius"

"binding"

per turn: 10–14 H+  per  3 ATP

➨ 1 ATP ≙ 4 H+

ATPase from ATP/s H+/s 

chloroblasts <400 1600 

E. coli <100 400 
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The electron carriers 

Cytochrome c: carries electrons from bc1 to RC
• heme in a hydrophilic protein shell

• 3.3 nm diameter, water-soluble

Ubiquinone UQ10: 
carries electron–proton pairs 
from RC to bc1

• long (2.4 nm)
hydrophobic 
isoprenoid tail,
membrane-
soluble

taken from Stryer
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Tubular membranes – photosynthetic vesicles 
where are the bc1 complexes and the ATPase? 

Jungas et al., 1999

200 nm

LH1

RC

bc1? *

50 nm

100 nm

100 nm

Bahatyrova et al., 2004

no bc1 
found!
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Chromatophore vesicle: typical form in Rh. sphaeroides 

Lipid vesicles 
30–60 nm diameter 
H+ and cyt c inside 

 Vesicles are really small! 

average 
chromatophore 
vesicle, 45 nm Ø: 

surface  
6300 nm² 
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Photon capture rate of LHC’s 

+ Bchl extinction coeff.
normalization (σBchl = 2.3 Å2)

relative absorption spectrum
of LH1/RC and LH2

sun's spectrum at ground
(total: 1 kW/m²)

multiply

capture rate:   0.1 
γ

s kW Bchl

typical growth condition:  
18 W/m² LH1:  16 * 3 Bchl  ➨ 14 γ/s

LH2:  10 * 3 Bchl  ➨ 10 γ/s

Cogdell etal, 2003

Feniouk et al, 2002

Franke, Amesz, 1995
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LH1 / LH2 / RC — native 

Siebert et al, 2004

electron micrograph
and density map

125 * 195 Å²,  γ = 106°

Area per: 
per 

vesicle 
(45 nm) 

LH1 
monomer 

(hexagonal) 
146 nm² 

LH1 dimer 234 nm² 

LH2 
monomer 37 nm² 

LH12 + 6 LH2 456 nm² 11 

Chromatophore 
vesicle, 45 nm Ø: 

surface  
6300 nm² 
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Photon processing rate at the RC  
Which process limits the RCs turnover?

Unbinding of the quinol 
 ➨ 25 ms Milano et al. 2003

+ binding, charge transfer
 ≈ 50 ms per quinol  (estimate)

with 2e- H+ pairs per quinol

 ➨ 40–50 γ/s    per RC
≈ 22 QH2/s1 RC can serve    1 LH1

+ 3 LH2
= 44 γ/s

LH12 + 6 LH2  ≙  456 nm²    →     11 LH1 dimers including 22 RCs 
on one vesicle

 ➨  480 Q/s can be loaded  @ 18 W/m²  per vesicle
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Modelling of internal processes at reaction center 

All individual reactions with their individual rates k together determine the overall 
conversion rate RRC of a single RC.  
Thick arrows : flow of the energy from the excitons through the cyclic charge state 
changes of the special pair Bchl (P) of the RC.  
Rounded rectangles : reservoirs 
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bc1 Placement — Diffusional limits? 
Roundtrip times
maximal capacity of the carriers:

T = T
RC

 + T
bc1

 + T
Dîff

 

Cytochrome c₂:
T

RC
 ≈ 1 ms T

bc1
 ≈ 12 ms T

Diff
 ≈ 3 μs

Tround-trip = 13 ms    ➨  ≤ 3 cyt c per vesicle
sufficient to carry e-‘s

available: 22 cyt c per vesicle 

Quinol:
T

RC
 ≈ 50 ms T

bc1
 ≈ 23 ms T

Diff
 ≈ 1 ms

Tround-trip = 75 ms   ➨  ≤ 7 Q per vesicle
      sufficient to carry e-’s.

available: 100 Q per vesicle 

Diffusion is not limiting

③ poses no constraints 
on the position of bc1
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Parameters 
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reconstituted LH1 dimers in planar lipid membranes 
explain intrinsic curvature of vesicles 

Drawn after AFM images of 
Scheuring et al of LH1 dimers 
reconstituted into planar lipid 
membranes.  

Values fit nicely to the proposed arrangement of 
LH1 dimers, when one assumes that they are stiff 
enough to retain the bending angle of 26˚ that they 
would have on a spherical vesicle of 45 nm 
diameter and taking into account the length of a 
single LH1 dimer of about 19.5 nm. 
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Proposed setup of a chromatophore vesicle 

blue: small LH2 rings (blue) 
 
blue/red: Z-shaped LH1/RC dimers form a 
linear array around the “equator” of the vesicle, 
determining the vesicle’s diameter by their 
intrinsic curvature.  

At the „poles“ 
green/red: the ATPase  
light blue: the bc1 complexes 
 
Increased proton density close to the ATPase 
suggests close proximity of ATPase and bc1 
complexes. 

yellow arrows: diffusion of the 
protons out of the vesicle via the 
ATPase and to the RCs and bc1s. 

Geyer & Helms, Biophys J. (2006) 
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Summary 

Integrated model of binding + photophysical + redox processes 
inside of chromatophore vesicles 
 
Various experimental data  
fit well together 
 
Equilibrium state. 
 
How to model  
non-equilibrium processes? 



22 

Photosynthesis: textbook view 
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Viewing the photosynthetic apparatus as a conversion chain 

Thick arrows : path through which the photon energy is converted into chemical 
energy stored in ATP via the intermediate stages (rounded rectangles).  
 
Each conversion step takes place in parallely working proteins.  
Their number N times the conversion rate of a single protein R  
determines the total throughput of this step.  
 

 γ : incoming photons collected in the LHCs 
 E : excitons in the LHCs and in the RC 
 e−H+  electron–proton pairs stored on the quinols 
 e− for the electrons on the cytochrome c2 
 pH : transmembrane proton gradient 
 H+ : protons outside of the vesicle (broken outine of the respective reservoir). 
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Stochastic dynamics simulations: Molecules & Pools model 

Round edges: pools for metabolite molecules 
 
Rectangles: protein machines are modeled explicitly as multiple copies 
 
fixed set of parameters 
 
integrate rate equations with stochastic algorithm 
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Stochastic simulations of cellular signalling  
Traditional computational approach to chemical/biochemical kinetics: 
 
(a) start with a set of coupled ODEs (reaction rate equations) that describe the 

time-dependent concentration of chemical species, 

(b) use some integrator  to calculate the concentrations as a function of time given 
the rate constants and a set of initial concentrations. 
 
Successful applications : studies of yeast cell cycle, metabolic engineering, 
whole-cell scale models of metabolic pathways (E-cell), ... 
 
Major problem: cellular processes occur in very small volumes and frequently 
involve very small number of molecules.  
E.g. in gene expression processes a few TF molecules may interact with a single 
gene regulatory region.  
E.coli cells contain on average only 10 molecules of Lac repressor. 
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Include stochastic effects  
(Consequence1) → modeling of reactions as continuous fluxes of matter is no 
longer correct. 
 
(Consequence2)  Significant stochastic fluctuations occur. 
 
To study the stochastic effects in biochemical reactions, stochastic formulations of 
chemical kinetics and Monte Carlo computer simulations have been used. 
 
Daniel Gillespie (J Comput Phys 22, 403 (1976); J Chem Phys 81, 2340 (1977)) 
introduced the exact Dynamic Monte Carlo (DMC) method  
that connects the traditional chemical kinetics and stochastic approaches. 
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Basic outline of the direct method of Gillespie 
(Step i) generate a list of the components/species and define the initial distribution 
at time t = 0. 
 
(Step ii) generate a list of possible events Ei (chemical reactions as well as 
physical processes). 
 
(Step iii) using the current component/species distribution, prepare a probability 
table P(Ei) of all the events that can take place. 
Compute the total probability  
 
P(Ei) : probability of event Ei .  
 
(Step iv) Pick two random numbers r1 and r2 ∈ [0...1] to decide which event Eµ will 
occur next and the amount of time τ after which Eµ will occur. 

Resat et al., J.Phys.Chem. B 105, 11026 (2001) 

∑= )( itot EPP
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Basic outline of the direct method of Gillespie 
Using the random number r1 and the probability table, 
the event Eµ is determined by finding the event that satisfies the relation 

Resat et al., J.Phys.Chem. B 105, 11026 (2001) 

( ) ( )∑∑ ≤<
=
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=
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1

1

1
1

i
i

i
toti EPPrEP

The second random number r2 is used to obtain the amount of time τ between the 
reactions 

( )
2ln1 r

Ptot
−=τ

As the total probability of the events changes in time, the time step between 
occurring steps varies. 
 
Steps (iii) and (iv) are repeated at each step of the simulation. 
 
The necessary number of runs depends on the inherent noise of the system and 
on the desired statistical accuracy. 
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reactions included in stochastic model of chromatophore 
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Stochastic simulations of a complete vesicle 

Model vesicle:  12 LH1/RC-monomers 
  1-6 bc1 complexes 
  1 ATPase 

 
  120 quinones 
  20 cytochrome c2 

 
integrate rate equations with: 
 
- Gillespie algorithm (associations) 
 
- Timer algorithm (reactions); 1 random number determines when reaction occurs 
 
simulating 1 minute real time requires 1.5 minute on one opteron 2.4 GHz proc 
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simulate increase of light intensity (sunrise) 

during 1 minute, 
light intensity is slowly 
increased from 0 to 10 W/m2 

(quasi steady state) 
 
 
 
→ there are two regimes 
- one limited by available light 
- one limited by bc1 throughput 

low light intensity: 
linear increase of  
ATP production  
with light intensity 

high light intensity: 
saturation is reached  
the later the higher the  
number of bc1 complexes 
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oxidation state of cytochrome c2 pool 

low light intensity: 
all 20 cytochrome c2 
are reduced by bc1 

high light intensity 
RCs are faster than bc1, 
c2s wait for electrons 
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oxidation state of cytochrome c2 pool 

more bc1 complexes 
can load more  
cytochrome c2s 
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total number of produced ATP 

low light intensity: any interruption stops ATP production 
 
high light intensity: interruptions are buffered up to 0.3 s duration 

blue line: 
illumination 
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c2 pool acts as buffer 

At high light intensity, c2 pool is mainly oxidized. 
 
If light is turned off, bc1 can continue to work (load c2s, pump protons, let ATPase 
produce ATP) until c2 pool is fully reduced. 
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What if parameters are/were unknown ? 

PLoS ONE (2010) 
 
choose 25 out of 45 system parameters  
for optimization. 
 
take 7 different non-equilibrium time-resolved 
experiments from Dieter Oesterhelt lab 
(MPI Martinsried). 
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Parameters not optimized 
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Parameter optimization through evolutionary algorithm 
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25 optimization parameters 

Analyze 1000 best 
parameter sets among 
32.800 simulations: 
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Absorption cross section 
light harvesting complex 

Sensitivity of master score 

Kinetic rate for hinge 
motion of FeS domain in 
bc1 complex 

Decay rate of excitons 
in LHC 

Some parameters are very sensitive, others not. 
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Three 
best-scored 
parameter sets 

Score of individual parameter set i 
for matching one experiment: 

x(ti): simulation result 
f(ti): smooth fit of exp. data 
 
Master score for one 
parameter set: defined as 
product of the individual 
scores si 
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Analysis could suggest new 
experiments that would be 
most informative! 

Different experiments yield different sensitivity 

‘‘importance score’’: 
Sum of the sensitivities  
Pmin /Pmax of all relevant 
parameters 
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Only 1/3 of the kinetic parameters previously known. 
 
Stochastic parameter optimization converges robustly into the same 
parameter basin as known from experiment. 
 
Two large-scale runs (15 + 17 parameters) yielded practically the same 
results. 
 
If implemented as grid search, less than 2 points per dimension. 
 
It appears enough to know 1/3 – 1/2 of kinetic rates about a system to be 
able to describe it quantitatively (IF connectivities are known). 

Summary 
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“There is no such thing as a free lunch”. 
 

 Alvin Hansen, economist (1953) 
 
There exist several “No Free Lunch Theorems” for optimization problems. 
 
E.g. Wolpert & Macready (1997) showed: 
For any search/optimization algorithm, any elevated performance over one 
class of problems is exactly paid for in performance over another class. 

Review – algorithms / methods etc in Bioinfo III 
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Review – simulation / analysis methods 
Used where Pro Con 

Enrichment methods Annotate gene 
function, histone 
peaks, motifs 

Proper statistical 
analysis 

Not causal, 
mechanistic 
reasons remain 
unclear 

Graph algorithms Modules in PPI 
networks, PP 
complexes, 
MCDS algo for 
key genes in 
GRNs,  
Cut-sets in 
metabolic 
networks 

- graph layout 
provides intuitive 
view of network 
topology,  
- ILPs give optimal 
solutions,  
- heuristic 
algorithms can be 
fast 

- ILPs very time-
consuming,  
- heuristic 
solutions may be 
not accurate,  
- graph algorithms 
suffer from noisy 
data 
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Review – simulation / analysis methods 
Used where Pro Con 

Pearson correlation Gene co- 
expression, 
DNA co-
methylation 

Quantitative measure Suffers from 
outliers (V21); 
correlations are 
not causal 

Rank-based 
correlation 

Gene co-
expression 

Avoids outlier 
problems 

Sensitive to small 
variations, large 
variations may be 
condensed into 
small rank 
differences 

Bayesian network Anywhere 
(here: PPIs) 

Integrates arbitrary 
data; automatic 
weighting of 
likelihoods 

Not causal (but 
this can be 
included) 

Boolean network GRNs Finite state space, 
understand system 
completely, causal 

Values restricted 
to boolean levels 
(but can be 
generalized) 
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Review – simulation / analysis methods 
Used where Pro Con 

FBA Metabolic 
networks 

Gives one optimal 
solution 

None (?) 

EFMs / EPs Metabolic 
networks 

Full insight into 
metabolic 
capabilites of 
system 

Already medium-
sized systems 
have 10.000s + 
EFMs 

ODE Metabolic 
systems, 
Signaling 
systems 

Quantiative, time-
dependent 
models, simple 
systems can be 
solved analytically, 
simple numerical 
implementation 

Needs many 
parameters, not 
suitable for small 
particle numbers  

Stochastic 
simulations 

Metabolic 
systems 

Capture stochastic 
effects of few 
particles,  

Not deterministic 
(different solution 
each time); costly 


