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Network Robustness
Network = set of connections

Failure events: - loss of edges
* loss of nodes (together with their edges)

— loss of connectivity
* paths become longer (detours required)
* connected components break apart
— network characteristics change

P

— Robustness = how much does the network (not)
change when edges/nodes are removed
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Error and attack tolerance
of complex networks

Réka Albert, Hawoong Jeong & Albert-Laszlé Barabasl

Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, Indiana 46556, USA

s Many complex systems display a surprising degree of tolerance
against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to

i the robustness of the underlying metabolic network'. Complex

communication networks” display a surprising degree of robust-

ness: although key components regularly malfunction, local fail-

] ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex

- systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,

millan Magazines Ltd NATURE | VOL 406 |27 JULY 2000 | www.nature.com
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Random vs. Scale-Free
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Exponential Scale-free

130 nodes, 215 edges

The top 5 nodes with the highest k connect to...

... 27% of the network ... 60% of the network

Albert, Jeong, Barabasi, Nature 406 (2000) 378
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Failure vs. Attack

Failure: remove randomly
selected nodes
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Attack: remove nodes with
highest degrees

SF: scale-free network -> attack

E: exponential (random) network
-> failure / attack

SF: failure

N = 10000, L = 20000, but effect is size-independent;

Interpretation:

SF network diameter increases strongly when network is attacked

but not when nodes fail randomly
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Two real-world networks

Scale-free: - very stable against random failure ("packet re-rooting")

* very vulnerable against dedicated attacks ("9/11")
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http://moat.nlanr.net/Routing/rawdata/ :

6209 nodes and 12200 links (2000)
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WWW-sample containing 325729 nodes
and 1498353 links
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Network Fragmentation

<s>:average size of the ' '
isolated clusters (except | A °fa | .“.- o b . 1
the largest one) _\é _ E ¢ -_\ 2t SE o %, 0

«
S: relative size of the g 1 Su <S> Failure | 1 o0 04 08
largest cluster S; this is = o e Attack i S—
defined as the fraction § ) . : _ 5 R,
of nodes contained in E %, NI - Nl By 4
the largest cluster (that © 00 0.2 0.4 0.0 0.2 0.4
is,S=1 forf=0) fraction of nodes removed

Random network: < no difference between attack and failure (homogeneity)
* fragmentation threshold at fc = 0.28 (S = 0)

Scale-free network: * delayed fragmentation and isolated nodes for failure
e critical breakdown under attack at fc = 0.18
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Modularity: an example of graph partitioning

The simplest graph partitioning problem is the division of a
network into just 2 parts. This is called graph bisection.

If we can divide a network into 2 parts, we can also divide
it further by dividing one or both of these parts ...

graph bisection problem: divide the vertices of a
network into 2 non-overlapping groups of given sizes
such that the number of edges running between
vertices in different groups is minimized.

The number of edges between groups is called the cut size.

In principle, one could simply look through all possible divisions
of the network into 2 parts and choose the one with smallest cut size.
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Algorithms for graph partitioning

But this exhaustive search is prohibitively expensive!

Given a network of n vertices. There are different ways of dividing it

n1!n2!
into 2 groups of n, and n, vertices.

The amount of time to look through all these divisions will go up roughly
exponentially with the size of the system.

Only values of up to n = 30 are feasible with current computers.
In computer science, either an algorithm can be clever and run quickly, but will

fail to find the optimal answer in some (and perhaps most) cases, or it will
always find the optimal answer, but takes an impractical length of time to do it.
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The Kernighan-Lin algorithm

This algorithm proposed by Brian Kernighan and Shen Lin in 1970 is one of the

simplest and best known heuristic algorithms for the graph bisection problem.
(Kernighan is also one of the developers of the C language).

(a) The algorithm starts with any division of the vertices of a network into two
groups (shaded) and then searches for pairs of vertices, such as the pair
highlighted here, whose interchange would reduce the cut size between the
groups.

(b) The same network after interchange of the 2 vertices.

10
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The Kernighan-Lin algorithm

(1) Divide the vertices of a given network into 2 groups (e.g. randomly)

(2) For each pair (i,j) of vertices, where i belongs to the first group and j to the
second group, calculate how much the cut size between the groups would
change if i and j were interchanged between the groups.

(3) Find the pair that reduces the cut size by the largest amount.

If no pair reduces it, find the pair that increases it by the smallest amount.

Repeat this process, but with the important restriction that each vertex in the
network can only be moved once.

Stop when there is no pair of vertices left that can be swapped.

11
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The Kernighan-Lin algorithm (ll)

(3) Go back through every state that the network passed through during the
swapping procedure and choose among them the state in which the cut size
takes its smallest value.

(4) Perform this entire process repeatedly, starting each time with the best
division of the network found in the last round.

(5) Stop when no improvement on the cut size occurs.
Note that if the initial assignment of vertices to group is done randomly,

the Kernighan-Lin algorithm may give (slightly) different answers
when it is run twice on the same network.

12
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The Kernighan-Lin algorithm (ll)
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(a) A mesh network of 547 vertices of the kind commonly used in finite element
analysis.

(b) The best division found by the Kernighan-Lin algorithm when the task is to
split the network into 2 groups of almost equal size.

This division involves cutting 40 edges in this mesh network and gives parts of
273 and 274 vertices.

(c) The best division found by spectral partitioning (alternative method).

13
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Runtime of the Kernighan-Lin algorithm

The number of swaps performed during one round of the algorithm is equal to the
smaller of the sizes of the two groups € [0, n/ 2)].

— in the worst case, there are O(n) swaps.

For each swap, we have to examine all pairs of vertices in different groups to
determine how the cut size would be affected if the pair was swapped.

In the worst case, there are n/2 xn /2 = n?/ 4 such pairs, which is O(n?).
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Runtime of the Kernighan-Lin algorithm (ii

When a vertex i moves from one group to the other group, any edges connecting
it to vertices in its current group become edges between groups after the swap.

Let us suppose that are k@™ such edges.

Similarly, any edges that i has to vertices in the other group, (say k°"¢" ones)
become within-group edges after the swap.

There is one exception. If i is being swapped with vertex j and they are connected
by an edge, then the edge is still between the groups after the swap

— the change in the cut size due to the movement of i is ket - ksame — A,

A similar expression applies for vertex J.

— the total change in cut size due to the swap is k"er - ksame +kother - fgsame — A,

Bioinformatics 3 —WS 16/17 V5 - |5



Runtime of the Kernighan-Lin algorithm (iii)

For a network stored in adjacency list form, the evaluation of this expression
involves running through all the neighbors of i and j in turn, and hence
takes time on the order of the average degree in the network,

or O (m/n) with m edges in the network.

— the total running time is O (n xn? xm/n ) = O(mn?)

On a sparse network with m « n, this is O(n3)

nn-1)

On a dense network (with m — ), this is O(n?)

This time still needs to be multiplied by the number of rounds the algorithm is run
before the cut size stops decreasing.
For networks up to a few 1000 of vertices, this number may be between 5 and 10.

Bioinformatics 3 —WS 16/17 V5 - |6



Mesoscale properties of networks
- identify cliques and highly connected clusters

Most relevant processes in biological networks correspond to the mesoscale
(5-25 genes or proteins) not to the entire network.

However, it is computationally enormously expensive to study mesoscale
properties of biological networks.

e.g. a network of 1000 nodes contains | x 10% possible 10-node sets.

Spirin & Mirny analyzed combined network of protein interactions in S. cereviseae
with data from CELLZOME, MIPS, BIND: 6500 interactions.
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Identify connected subgraphs

The network of protein interactions is typically presented as an undirected graph

with proteins as nodes and protein interactions as undirected edges.

First aim: identify fully connected subgraphs (cliques)

A clique is a set of nodes that are all neighbors of each other.

The ,,maximum clique problem* — finding the largest clique in a given graph is
known be NP-hard.

In this example, the whole graph is a clique and consequently any subset of it is also a
clique, for example {a,c,d,e} or {b,e}.

A maximal clique is a clique that is not contained in any larger clique. Here only
{a,b,c,d,e} is a maximal clique.

In general, protein complexes need not to be fully connected.

Spirin, Mirny,
PNAS 100, 12123 (2003)

Bioinformatics 3 —WS 16/17 V5 - 18



Identify all fully connected subgraphs (cliques)

Although the general problem - finding all cliques of a graph - is very hard,
this can be done relatively quickly for the given network because the protein
interaction graph is quite sparse (the number of interactions (edges)

is similar to the number of proteins (nodes).
To find cliques of size n one needs to enumerate only the cliques of size n-/.

The search for cliques starts with n = 4, pick all (known) pairs of edges

(6500 x 6500 protein interactions) successively.

For every pair A-B and C-D check whether there are edges between A and C, A and D,
B and C, and B and D. If these edges are present, ABCD is a clique.

For every clique identified, ABCD, pick all known proteins successively.
For every picked protein E, if all of the interactions E-A, E-B, E-C, and E-D exist,
then ABCDE is a clique with size 5.

Continue forn =6, 7, ...

The largest clique found in the protein-interaction network has size 4.
Spirin, Mirny, PNAS 100, 12123 (2003)
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Identify all fully connected subgraphs (cliques)

These results include, however, many redundant cliques.

For example, the clique with size 14 contains 14 cliques with size |3.

To find all nonredundant subgraphs, mark all proteins comprising
the clique of size 14, and out of all subgraphs of size |3 pick those

that have at least one protein other than marked.

After all redundant cliques of size |3 are removed,

proceed to remove redundant twelves etc.

In total, only 41 nonredundant cliques with sizes 4 - 14

were found by Spirin & Mirny.

Spirin, Mirny, PNAS 100, 12123 (2003)
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Statistical significance of cliques

A 5000—— =
Number of complete cliques as a function s500.
of clique size enumerated in the network of 4000k foF |
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Inset shows the same plot on a log-normal scale. Note the dramatic

enrichment in the number of cliques in the protein-interaction graph 5 .10 15 20
Size of complex (n)

compared with the random graphs. Most of these cliques are parts

of bigger complexes and modules.

Spirin, Mirny, PNAS 100, 12123 (2003)
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Reducing Network Complexity?
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* Modular Decomposition (Gagneur, ..., Casari, 2004)
* Network Compression (Royer, ..., Schroder, 2008)
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Method {

Modular decomposition of protein-protein interaction networks
Julien Gagneur™', Roland Krause®*, Tewis Bouwmeester* and Georg Casari”

Addresses: “Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. "Laboratoire de Mathématiques Appliquées aux Systémes, Ecole
Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry cedex, France.

w——;

Abstract [

We introduce an algorithmic method, termed modular decomposition, that defines the
organization of protein-interaction networks as a hierarchy of nested modules. Modular
decomposition derives the logical rules of how to combine proteins into the actual functional
complexes by identifying groups of proteins acting as a single unit (sub-complexes) and those that
can be alternatively exchanged in a set of similar complexes. The method is applied to experimental
data on the pro-inflhmmatory tumor necrosis factor-o (TNF-a)/NFkB transcription factor
pathway.

w—-————————-

Genome Biology 5 (2004) R57
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Shared Components

Shared components = proteins or groups of proteins occurring in different complexes
are fairly common. A shared component may be a small part of many complexes,
acting as a unit that is constantly reused for its function.

Also, it may be the main part of the complex e.g. in a family of variant complexes that
differ from each other by distinct proteins that provide functional specificity.

Aim: identify and properly represent the modularity of protein-protein interaction
networks by identifying the shared components and the way they are arranged to

generate complexes.

Gagneur et al. Genome Biology 5, R57 (2004)

. y
P

Georg Casari, Cellzome (Heidelberg)
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Modular Decomposition of a Graph

Module := set of nodes that have the
same neighbors outside of the module

trivial modules:

{a},{b}, ..., {g}
{a,b,..., g}

non-trivial modules:
{a, b}, {a, c}, {b, ¢}
{a, b, c}
{e, f}

Quotient: representative node for a module

Iterated quotients — labeled tree representing the original network
— "modular decomposition"

Gagneur et al, Genome Biology 5 (2004) R57
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Quotients

Series: all included nodes are direct neighbors (= clique)

> {a, b, ¢} d e

®°

{a,b, c} d e
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A Simple Recursive Example

series
* 0 g
a.bej d "o~ *—e—(D—@

e d g
] l
| ® c )
~ {abg] d  fef) LT l
! O o o
/ a b c e f
prime .
®
{a,b,c,d.efg}

Gagneur et al, Genome Biology 5 (2004) R57
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Using data from protein complex purifications
e.g. by TAP

Different types of data:
* Y2H: detects direct physical interactions between proteins

» PCP by tandem affinity purification with mass-spectrometric identification of the
protein components identifies multi-protein complexes

— Molecular decomposition will have a different meaning due to different
semantics of such graphs.

Here, we focus analysis on PCP content from TAP-MS data.

PCP experiment: select bait protein where TAP-label is attached — Co-purify protein
with those proteins that co-occur in at least one complex with the bait protein.

Gagneur et al. Genome Biology 5, R57 (2004)
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Data from Protein Complex Purification

Graphs and module labels from
systematic PCP experiments:

(a) Two neighbors in the network are
proteins occurring in a same complex.

(b) Several potential sets of complexes
can be the origin of the same observed
network. Restricting interpretation to the
simplest model (top right), the series
module reads as a logical AND between
its members.

(c) A module labeled “parallel”
corresponds to proteins or modules

working as strict alternatives with respect

to their common neighbors.

(d) The ‘prime’ case is a structure
where none of the two previous cases

OoCcCurs.
Bioinformatics 3 —WS 16/17

(a) (b)

Protein complex purification Series = combined

@ ® @

®

e

(c) (d)

11) Parallel = alternatives (P) Prime g a a
8 5 g
§ ;

{ d:)d“

Gagneur et al. Genome Biology 5, R57 (2004)
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Real World Examples

Two examples of modular decompositions of protein-protein
interaction networks. @

b

In each case from top to bottom: schemata of the complexes,
the corresponding protein-protein interaction network as
determined from PCP experiments, and its modular

decomposition (MOD).

(a) Protein phosphatase 2A. pa%Z
Parallel modules group proteins that do not interact but 5‘4/ IJ{:{\“D_%
are functionally equivalent. N
P, ) ot compex

. . - Pph21
Here these are the catalytic proteins Pph21 05y Modulr decompositn
and Pph22 (module 2) and the regulatory ® Protein
proteins Cdc55 and Rts1 (module 3), Series module
connected by the Tpd3 ,backbone®. B Parslial module
Notes:+ Graph does not show functional alternatives!!!

 other decompositions also possible 3

Rts1 Cdr%‘i Pph21 Pph22

Bioinformatics 3 —WS 16/17 Gagneur et al. Genome Biology 5, R57 (2004) V5 - 30



RNA polymerases |, Il and lll
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Rpatd Rpc31 Rpcs2 Gagneur et al. Genome Biology 5, R57 (2004)
Bioinformatics 3 —WS 16/17 V5 - 3]

i 64 S ~ K
~e | ST A 2 o e ?":':._. . ‘-“
s ‘%‘\V/'://,Wm% = Y
A ) : S ‘s, 4 -
\



Summary

Modular decomposition of graphs is a well-defined concept.

» One can proof thoroughly for which graphs a modular decomposition
exists.

« Efficient O(m + n) algorithms exist to compute the decomposition.

However, experiments have shown that biological complexes are not
strictly disjoint. They often share components

— separate complexes do not always fulfill the strict requirements of
modular graph decomposition.

Also, there exists a ,danger” of false-positive or false-negative interactions.

— other methods, e.g., for detecting communities (Girven & Newman) or
densely connected clusters are more suitable for identification of
complexes because they are more sensitive.
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Transcriptional activation

looping
factQrs

.'
"
.

.......
llll
..........

Mediator

TATA TSS
DNA-looping enables interactions for the distal promotor

regions,
Mediator cofactor-complex serves as a huge linker

Bioinformatics 3 —WS 16/17 V5 - 33



cis-regulatory modules

coactivators o Q

corepressor
TFs are not dedicated activators or respressors!
It's the assembly that is crucial.
Bi°i"fcfm" casnc::;eosowmg fjr6/|ZCSB Protein Data Bank, 2010 V5 - 34



Protein complexes involving
multiple transcription factors

@@

Borrow idea from ClusterOne method:

|dentify candidates of TF complexes
in protein-protein interaction graph

by optimizing the cohesiveness

w™ (V)
win (V) + whewnd (1)

FV) =

35
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underlying domain-domain representation of
PPls

Assumption: every domain supports only one interaction.

Green proteins A, C, E form actual complex.

Their red domains are connected by the two green edges.

B and D are incident proteins. They could form new interactions

(red edges) with unused domains (blue) of A, C, E

36
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data source used: Yeast Promoter Atlas,

weighted protein-protein
interaction data, such as

PrePPI

Bioinformatics 3 —WS 16/17

PPl and DDI

seed proteins,
threshold for pairs,
max. depth of search

Prot * EmBL-EBI "

domain-aware cohesiveness
optimization algorithm

transcription factor
complex candidates

Will, T. and Helms,V. (2014)
Bioinformatics, 30, i415-i421

domain-domain
interaction network

i R N

data retrieval and buildup automatically

Pfam 52 irepo

»®9M= IDDI

e o8 Prebein b L —

37
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Daco identifies far more TF complexes than
other methods

DACO Cllps Clls (Il MCD MCL

TF complexes 1375 175/176  61/63  106/106  16/38  75/79
TF variants 412 134/138  59/61  80/80 16/38  75/79

38
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Examples of TF complexes — comparison
with ClusterONE

- 10&4 HLR1)
<-/‘ ~
4/ —-\\ s
(BB L
& «,,-)Tlmxeﬂl
YG3A —~ D
\_ ./ HCW1D
- _( ¥,
(b) HIR{SGD) / ClusterONE ez a,-qi‘
\ "‘l h.

AR
C bt hrm 20311
_'Jié:s “\ N
‘([‘5'4' i

() OR;(;“J(VI;'IIPS) / 7 () ORO(Mlpé);cluserNE
0

Green nodes: proteins in the

reference that were matched by the
{(c) RPD3L{CYCR2008) / (d) RPD3L{CYC2008) / ClusterONE
DACO

prediction

red nodes: proteins that are in the
predicted complex, but not part of
the reference.

39
Bioinformatics 3 —WS 16/17 V5 -



Performance evaluation

4.5 . .
Methods Ref. comparison Bio. relevance

4.0} B DACO WM Prec B NColoc S ]
I Cllps Bl Rec B GOE

351 @@ Clls W GeoA WM GOE(MF)

3.0l 1 Cl1 MMR GOE(BP)
2 MCD GOE(CC)

2.5 8 B MCL

Composite score

0.65 0.46

L
<
o]
o

<

m

o

12 —

S ©
(@]

~

©

o

©
-
(=)

0.0 ,
ref.: CYC2008 ref.: MIPS ref.: SGD bio. relevance

40
Bioinformatics 3 —WS 16/17 V5 -



Co-expressed target genes of MET4/MET32
TF complex during yeast cell cycle

\’f.’/&{tﬁ\}&{/ |

)
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normalized expression

timepoints
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Functional role of TF complexes

TFs P4ecs  Binding mode Targets Regulatory influence GO process enrichment (P <0.05, Bonferroni corrected) in targets
MET4/MET32 0.0010 coloc. 19 + Methionine metabolic process

TBP/HAPS 0.0335 med. 47 +

GLN3/DALS0 0.0009 med. 28 Allantoin catabolic process

DIGI/STEI2/SWI6 0.0369 all 15 Fungal-type cell wall organization

FHLI1/RAPI 0.0001 coloc. 116 + rRNA transport

RPHI1/GISI 0.0001 med. 100 Hexose catabolic process

CBFI/MET32 0.0002 coloc. 33 0 Sulfate assimilation

DIGI/STEI2 0.0003 med. 34 Response to pheromone

GCN4/RAPI 0.033  med. 62 +

MSN4/MSN2 0.0021 med. 105 + Oligosaccharide biosynthetic process

DALS0/GZF3 0.0044 med. 20 Purine nucleobase metabolic process

SWI6/SWi4 0.0039 med. 53 + Regulation of cyclin-dependent protein serine/threonine kinase activity
STB1/SWI6 0.0275 all 47 +

TBP/SWI6 0.0159 med. 14 +

GLN3/GZF3 0.0120 ad;. 31 Allantoin catabolic process

MBP1/SWI6/SWI4 0.0307 med. 18 + Regulation of cyclin-dependent protein serine/threonine kinase activity
MBP1/SWI6 0.0124 ad;. 25 Cell cycle process

Note: Owing to the number of permutations of the test, the lowest possible value is Pgecs = 107*. The calculations were conducted for different conceivable modes of targeting
(all shared target proteins, direct adjacency, mediated adjacency and colocalization) to have a detailed picture of the possible target—gene sets. Only the most enriched GO
process term is shown for each target set. The inferred regulatory influence on the rate of transcription is abbreviated as follows: + (increase), — (decrease), o (no statement
possible), / (conflicting annotations).
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Summary

What you learned today:

* Network robustness
scale-free networks are failure-tolerant, but fragile to attacks
<=> the few hubs are important
=> immunize hubs!

« Modules in networks
=> modular decomposition
=> optimization of cohesiveness (DACQO)

NeXxt lecture:

* Are biological networks scale-free? (other models?)
* Network growth mechanisms
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