V6 – Biological PPI Networks

are they really scale-free? network growth

- functional annotation in the network

Mon, Nov 14, 2016

Effect of sampling on topology predictions of protein-protein interaction networks

Jing-Dong J Han^{1–3}, Denis Dupuy^{1,3}, Nicolas Bertin¹, Michael E Cusick¹ & Marc Vidal¹

Nature Biotech 23 (2005) 839

Generate networks of various types, sample sparsely from them \rightarrow determine degree distribution

- Random (ER / Erdös-Renyi) $\rightarrow P(k) = Poisson$
- Exponential (EX) $\rightarrow P(k) \sim \exp[-k]$
- scale-free / power-law (PL) $\rightarrow P(k) \sim k^{-\gamma}$
- P(k) = truncated normal distribution (TN)

Partial Sampling

Estimated for yeast: 6000 proteins, 30000 interactions

Table 1 Topological pr	operties of inte	eractome maps					
Data set	Ito <i>et al.</i> (yeast)	Uetz <i>et al.</i> (yeast)	Ito-Uetz combined	Li <i>et al.</i> (worm)	Giot <i>et al.</i> (fly)	Minimum value	Maximum value
Total number of nodes	797	1,005	1,417	1,415	4,651	797	4,651
Nodes in main component	417 (52%)	473 (47%)	970 (68%)	1,260 (89%)	3,039 (65%)	47%	89%
Total number of interactions	806	948	1,520	2,135	4,787	806	4,787
Interactions in main component	544	558	1,229	2,038	3,715	544	3,715
R-square	0.843	0.954	0.899	0.885	0.91	0.843	0.954
γ	-1.82	-2.42	-1.91	-1.59	-2.75	-2.75	-1.59
<k></k>	1.96	1.84	2.15	2.98	2.04	1.84	2.98
Average clustering coefficient	0.2	0.11	0.09	0.09	0.06	0.06	0.2
Number of network components	143	177	160	70	591	70	591
Average component size	5.6	5.7	8.9	20.2	7.9	5.6	20.2
Characteristic path length	6.14	7.48	6.55	4.91	9.43	4.91	9.43
Number of baits	455	512	827	502	2,820	455	2,820

The linear regression R-square measures the linearity between log(n(k)) and log(k) i.e. the fit to a power-law distribution. γ is the exponent of the power law distribution formula that best fits the observed distribution. <k> is the average number of interactions per protein observed in the network. For the Ito, Li and Giot data sets only the high confidence interactions were considered (core).

Y2H experiments **detected** only **3...9%** of the complete interactome!

R square

Given: a data set with *n* values marked y_1, \dots, y_n and a set of fitted / predicted / modeled) values f_1, \dots, f_n e.g. from linear regression.

We call their difference **residuals** $e_i = y_i - f_i$

and the mean value

$$ar{y} = rac{1}{n}\sum_{i=1}^n y_i$$

The total sum of squares (proportional to the variance of the data) is:

$$SS_{
m tot} = \sum_i (y_i - ar y)^2,$$

The sum of squares of residuals is:

$$SS_{
m res} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2$$

The **coefficient of determination**, R^2 or r^2 is often defined as:

$$R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}.$$

www.wikipedia.org

V6 – 5

Sparsely Sampled random (ER) Network

\rightarrow for **sparse** sampling (10-20%), even an ER network "**looks**" scale-free (when only P(k) is considered)

Bioinformatics 3 – WS 16/17

Han et al, Nature Biotech 23 (2005) 839

V6-6

Anything Goes – different topologies

Compare to Uetz et al. data

Uetz et al. data (solid line) is compared to sampled networks of similar size.

Sampling density affects observed degree distribution \rightarrow true underlying network cannot be identified from available data

Network Growth Mechanisms

Given: an observed PPI network \rightarrow how did it grow (evolve)?

Inferring network mechanisms: The Drosophila melanogaster protein interaction network

Manuel Middendorf[†], Etay Ziv[‡], and Chris H. Wiggins^{§1}

[†]Department of Physics, [‡]College of Physicians and Surgeons, [§]Department of Applied Physics and Applied Mathematics, and [¶]Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027

Communicated by Barry H. Honio. Columbia University. New York. NY. December 20. 2004 (received for review September 7, 2004).

PNAS 102 (2005) 3192

Look at **network motifs** (local connectivity):

compare motif distributions from various network prototypes to fly network

Idea: each growth **mechanism** leads to a typical motif **distribution**, even if global measures are comparable

The Fly Network

Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

They assigned a confidence score [0, 1] for every observed interaction

- \rightarrow use only data with p > 0.65 (0.5)
- → remove self-interactions and isolated nodes

High confidence network with 3359 (4625) nodes and 2795 (4683) edges

Use prototype networks of same size for training

Size of largest components. At p = 0.65, there is one large component with 1433 nodes and the other 703 components contain at most 15 nodes.

V6 - 10

Network subgraphs -> motives

All non-isomorphic subgraphs that can be generated with a walk of length 8

Bioinformatics 3 – WS 16/17

Middendorf et al, PNAS 102 (2005) 3192

Growth Mechanisms

Generate 1000 networks, each, of the following 7 types (same size as fly network, undefined parameters were scanned)

- DMC Duplication-mutation, preserving complementarity
- DMR Duplication with random mutations
- RDS Random static networks
- RDG Random growing network
- LPA Linear preferential attachment network (Albert-Barabasi)
- AGV Aging vertices network
- SMW Small world network

Growth Type 1: DMC

"Duplication – mutation with preserved complementarity"

Evolutionary idea: gene **duplication**, followed by a partial **loss** of function of one of the copies, making the other copy essential

Algorithm:

Start from two connected nodes

- duplicate existing node with all interactions
- for all neighbors: delete with probability q_{del} either link from original node **or** from copy

Repeat these steps many (e.g. N - 2) times

Growth Type 2: DMR

"Duplication with random mutations"

Gene duplication, but no correlation between original and copy (original unaffected by copy)

Algorithm:

Start from five-vertex cycle, repeat N - 5 times:

- duplicate existing node with all interactions
- for all neighbors: delete with probability q_{del} link from copy
- add new links to non-neighbors with probability q_{new}/n

Growth Types 3–5: RDS, RDG, and LPA

RDS = static random network

Start from N nodes, add L links randomly

RDG = growing random network

Start from small random network, add nodes, then edges between all existing nodes

LPA = linear preferential attachment

Add new nodes similar to Barabási-Albert algorithm, but with preference according to $(k_i + \alpha)$, $\alpha = 0...5$ (BA for $\alpha = 0$)

Growth Types 6-7: AGV and SMW

AGV = aging vertices network

Like growing random network,

but preference decreases with age of the node

 \rightarrow citation network: more recent publications are cited more likely

SMW = small world networks (Watts, Strogatz, *Nature* **363** (1998) 202)

Randomly rewire regular ring lattice

Alternating Decision Tree Classifier

Trained with the motif counts from 1000 networks of each of the 7 types \rightarrow prototypes are well separated and reliably classified

Prediction accuracy for networks similar to fly network with p = 0.5:

Prediction

TruthDMRDMCAGVLPASMWRDSRDGDMR99.30.00.00.00.00.10.6DMC0.099.70.00.00.30.00.0AGV0.00.184.713.51.20.50.0LPA0.00.010.389.60.00.00.1SMW0.00.00.60.099.00.40.0RDS0.00.00.20.00.899.00.0RDG0.90.00.00.10.099.099.0								
DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6 DMC 0.0 99.7 0.0 0.0 0.3 0.0 0.0 AGV 0.0 0.1 84.7 13.5 1.2 0.5 0.0 LPA 0.0 0.0 10.3 89.6 0.0 0.1 0.1 SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0 RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0 RDG 0.9 0.0 0.0 0.1 0.0 99.0 99.0	Truth	DMR	DMC	AGV	LPA	SMW	RDS	RDG
DMC 0.0 99.7 0.0 0.0 0.3 0.0 0.0 AGV 0.0 0.1 84.7 13.5 1.2 0.5 0.0 LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1 SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0 RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0 RDG 0.9 0.0 0.0 0.1 0.0 99.0 99.0	DMR	99.3	0.0	0.0	0.0	0.0	0.1	0.6
AGV 0.0 0.1 84.7 13.5 1.2 0.5 0.0 LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1 SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0 RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0 RDG 0.9 0.0 0.0 0.1 0.0 99.0 99.0	DMC	0.0	99.7	0.0	0.0	0.3	0.0	0.0
LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1 SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0 RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0 RDG 0.9 0.0 0.0 0.1 0.0 99.0	AGV	0.0	0.1	84.7	13.5	1.2	0.5	0.0
SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0 RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0 RDG 0.9 0.0 0.0 0.1 0.0 99.0 99.0	LPA	0.0	0.0	10.3	89.6	0.0	0.0	0.1
RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0 RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0	SMW	0.0	0.0	0.6	0.0	99.0	0.4	0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0	RDS	0.0	0.0	0.2	0.0	0.8	99.0	0.0
	RDG	0.9	0.0	0.0	0.1	0.0	0.0	99.0

Bioinformatics 3 – WS 16/17

Middendorf et al, PNAS 102 (2005) 3192

Are the generated networks different?

Example DMR vs. RDG: Similar global parameters <C> and <I> (left), but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier

Middendorf et al, PNAS 102 (2005) 3192

V6 - 18

How Did the Fly Evolve?

	Eight-step subgraphs ($p^* = 0.65$)		seven edges ($p^* = 0.65$)		Eight-step subgraphs $(p^* = 0.5)$	
Rank	Class	Score	Class	Score	Class	Score
1	DMC	8.2 ± 1.0	DMC	8.6 ± 1.1	DMC	0.8 ± 2.9
2	DMR	-6.8 ± 0.9	DMR	-6.1 ± 1.7	DMR	-2.1 ± 2.0
3	RDG	-9.5 ± 2.3	RDG	-9.3 ± 1.6	AGV	-3.1 ± 2.2
4	AGV	-10.6 ± 4.2	AGV	-11.5 ± 4.1	LPA	-10.1 ± 3.1
5	LPA	-16.5 ± 3.4	LPA	-14.3 ± 3.2	SMW	-20.6 ± 1.9
6	SMW	-18.9 ± 0.7	SMW	-18.3 ± 1.9	RDS	-22.3 ± 1.7
7	RDS	-19.1 ± 2.3	RDS	-19.9 ± 1.5	RDG	-22.5 ± 4.7

Drosophila is consistently (independently of the cut-off in subgraph size) classified as a DMC network, with an especially strong prediction for a confidence threshold of $p^* = 0.65$.

 \rightarrow Best overlap with DMC (Duplication-mutation, preserved complementarity)

 \rightarrow Scale-free or random networks are very unlikely

Motif Count Frequencies

-> DMC and DMR networks contain most subgraphs in similar amount as fly network (top).

rank score: fraction of test networks with a higher count than Drosophila (50% = same count as fly on avg.)

Experimental Errors?

Randomly replace edges in **fly** network and **classify** again:

 \rightarrow Classification **unchanged** for \leq **30%** incorrect edges, at higher values RDS takes over (as to be expected)

Summary (I)

Sampling matters!

 \rightarrow "Scale-free" P(k) obtained by sparse sampling from many network types

Test different **hypotheses** for

• global features

 \rightarrow depends on unknown parameters and sampling

 \rightarrow no clear statement possible

- local features (motifs)
 - \rightarrow are better preserved
 - \rightarrow DMC best among tested prototypes

What Does a Protein Do?

TU Braunschweig Dept. of Bioinformation System
EC Explorer [SEARCH][BROWSE]
 1 Oxidoreductases (4042 organisms) \$ ■ 2 Transferrases (3198 organisms) \$ ■ 2.1 Transferring one-carbon groups (615 organisms) \$ ■ 2.1.1 Methyltransferases (514 organisms) \$ ■ 2.1.2 Hydroxymethyl-, formyl- and related transferases (82 organisms) \$ ■ 2.1.3 Carboxy- and carbamoyltransferases (105 organisms) \$ ■ 2.1.4 Amidinotransferases (32 organisms) \$ ■ 2.1.4 Amidinotransferases (32 organisms) \$ ■ 2.1.4 Amidinotransferases (17 organisms) \$ ■ 2.1.4.1 glycine amidinotransferase (17 organisms) \$ ■ 2.1.4.2 scyllo-inosamine-4-phosphate amidinotransferase (15 organisms) \$ ■ 2.2.3 Acyltransferases (930 organisms) \$ ■ 2.3 Acyltransferases (925 organisms) \$ ■ 2.4 Glycosyltransferases (925 organisms) \$ ■ 2.5 Transferring aldehyde or ketonic groups (91 organisms) \$ ■ 2.6 Transferring aldyl or aryl groups, other than methyl groups (547 organisms) \$ ■ 2.6 Transferring nitrogenous groups (377 organisms) \$ ■ 2.8 Transferring phosphorus-containing groups (1343 organisms) \$ ■ 2.9 Transferring selenium-containing groups (6 organisms) \$ ■ 2.9 Transferring selenium-containing groups (6 organisms) \$ ■ 3 Hydrolases (4453 organisms) \$ ■ 4 Lyases (2145 organisms) \$ ■ 5 Isomerases (849 organisms) \$ ■ 6 Ligases (686 organisms) \$ ■

Enzyme Classification scheme

(from http://www.brenda-enzymes.org/)

What about Un-Classified Proteins?

BIOINFORMATICS

Vol. 21 Suppl. 1 2005, pages i302–i310 doi:10.1093/bioinformatics/bti1054

Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps

Elena Nabieva^{1,2}, Kam Jim², Amit Agarwal¹, Bernard Chazelle¹ and Mona Singh^{1,2,*}

¹Computer Science Department and ²Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA

Received on January 15, 2005; accepted on March 27, 2005

Many unclassified proteins:

 \rightarrow estimate: ~1/3 of the yeast proteome not annotated functionally

 \rightarrow BioGRID: 4495 proteins in the largest cluster of the yeast physical interaction map.

only 2946 have a MIPS functional annotation

Partition the Graph

Large **PPI networks** can be built from:

- HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, ...)
- predictions (gene profiling, gene neighborhood, phylogenetic profiles, ...)
- \rightarrow proteins that are functionally linked

Identify **unknown functions** from **clustering** of these networks by, e.g.:

- shared interactions (similar neighborhood)
- membership in a community
- similarity of shortest path vectors to all other proteins (= similar path into the rest of the network)

Protein Interactions

Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID) \rightarrow 4495 proteins and 12 531 physical interactions in the largest cluster

http://www.thebiogrid.org/about.php

Function Annotation

Task: **predict** function (= functional annotation) for an unlabeled protein from the **available** annotations of other proteins in the network

Similar task: How to **assign colors** to the white nodes?

Use information on:

- distance to colored nodes
- local connectivity
- reliability of the links

• ...

Algorithm I: Majority

Schwikowski, Uetz, and Fields, "A network of protein–protein interactions in yeast" Nat. Biotechnol. **18** (2000) 1257

Consider all neighbors and **sum up** how often a certain **annotation occurs** \rightarrow score for an annotation = count among the direct neighbors \rightarrow take the 3 most frequent functions

Majority makes only limited use
of the local connectivity
→ cannot assign function to next-neighbors

For weighted graphs: \rightarrow weighted sum

Extended Majority: Neighborhood

Hishigaki, Nakai, Ono, Tanigami, and Takagi, "Assessment of prediction accuracy of protein function from protein–protein interaction data", Yeast **18** (2001) 523

Look for **overrepresented** functions within a given **radius** of 1, 2, or 3 links \rightarrow use as function score the value of a χ^2 -test

Neighborhood algorithm does not consider local network topology

Both examples (left) are treated **identically** with r = 2

Minimize Changes: GenMultiCut

Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif, "Whole-genome annotation by using evidence integration in functional-linkage networks" PNAS **IOI** (2004) 2888

"Annotate proteins so as to **minimize** the number of times that **different** functions are associated to **neighboring** (i.e. interacting) proteins"

 \rightarrow generalization of the multiway k-cut problem for weighted edges, can be stated as an integer linear program (ILP)

Multiple possible solutions \rightarrow scores from **frequency** of annotations

Nabieva et al: FunctionalFlow

Extend the idea of "guilty by association"

 \rightarrow each annotated protein is considered as a source of "function"-flow

 \rightarrow propagate/simulate for a few time steps

 \rightarrow choose the annotation *a* with the highest accumulated flow

Each node u has a reservoir $R_t(u)$, each edge a capacity constraint (weight) $w_{u,v}$

Initially: $R_0^a(u) = \begin{cases} \infty, & \text{if } u \text{ is annotated with } a, \\ 0, & \text{otherwise.} \end{cases}$ and $g_0^a(u,v) = 0$

Then: **downhill flow** from node *u* to node *v* with capacity constraints

 $g_t^a(u,v) = \begin{cases} 0, & \text{if } R_{t-1}^a(u) < R_{t-1}^a(v) & \text{Idea: Node v has already ,,more} \\ \min\left(w_{u,v}, \frac{w_{u,v}}{\sum_{(u,y)\in E} w_{u,y}}\right), & \text{otherwise.} \end{cases} \text{ for } Idea: Node v has already ,,more function `` than node u \to no flow uphill of the second sec$

Score from accumulated in-flow:

$$f_a(u) = \sum_{t=1}^d \sum_{v:(u,v)\in E} g_t^a(v,u)$$

Nabieva et al, Bioinformatics 21 (2005) i302

V6 – 31

An Example

Comparison

For FunctionalFlow: six propagation steps were simulated; this is comparable to the diameter of the yeast network ≈ 12

Majority results are initially very good, but reduced coverage

Results with neighborhood get more unprecise for larger radii r

Change score threshold for accepting annotations \rightarrow ratio **TP/FP** \rightarrow **FunctionalFlow** performs **best** in the high-confidence region \rightarrow but many false predictions!!!

Going the Distance for Protein Function Prediction: A New Distance Metric for Protein Interaction Networks

Citation: Cao M, Zhang H, Park J, Daniels NM, Crovella ME, et al. (2013) Going the Distance for Protein Function Prediction: A New Distance Metric for Protein Interaction Networks. PLoS ONE 8(10): e76339. doi:10.1371/journal.pone.0076339

Relying on the ordinary shortest-path distance metric in PPI networks is problematic because PPI networks are "small world" networks. Most nodes are close to all other nodes.

 \rightarrow any method that infers similarity based on proximity will find that a large fraction of the network is proximate to any typical node.

Largest connected component of *S. cerevisiae* PPI network (BioGRID) has 4990 nodes and 74,310 edges (physical interactions).

Right Fig. shows the histogram of shortest-path lengths from this network. Over 95% of all pairs of nodes are either 2 hops or 3 hops apart

What nodes mediate short contacts?

The 2-hop neighborhood of a typical node probably includes around half of **all nodes** in the graph.

One of the **reasons** that paths are typically short in biological networks like the PPI network is due to the **presence of hubs**.

But hub proteins often represent proteins with *different* functional roles than their neighbors.

Hub proteins also likely have multiple, distinct functions.

 \rightarrow not all short paths provide equally strong evidence of similar function in PPI networks.

DSD Distance Metric

Given some fixed k > 0, we define $He^{\{k\}}(A,B)$ to be the expected number of times that a random walk starting at A and proceeding for k steps, will visit B. If there is no ambiguity about k, we can drop k.

$$He(v_i) = (He(v_i, v_1), He(v_i, v_2), \dots, He(v_i, v_n))$$

 $He(v_i)$ is a "random walk distance vector" of node v_i from all other nodes.

$$DSD(u,v) = ||He(u) - He(v)||_1$$
 where

 $||He(u) - He(v)||_1$ denotes the L_1 norm of the He vectors

Two nodes u and v have small DSD if they have similar distance from all other nodes.

Explanation:

The one-norm (also known as the L_1 -norm, ℓ_1 norm, or mean norm) of a vector \vec{v} is denoted $\|\vec{v}\|_1$ and is defined as the sum of the absolute values of its components:

$$\|\vec{v}\|_1 = \sum_{i=1}^n |v_i| \tag{1}$$

for example, given the vector $\vec{v} = (1, -4, 5)$, we calculate the one-norm:

Bioinformatics 3 –
$$\|(1, -4, 5)\|_1 = |1| + |-4| + |5| = 10$$

DSD clearly improves functional predictions

F1 Score on GO term Prediction for S. cerevisiae

Figure 6. Improvement on F1 Score for DSD using three evaluation methods: exact match, overlap depth and overlap counting, on informative GO terms for the four algorithms for *S. cerevisiae* in 10 runs of 2-fold cross validation.

What you can else do with Interaction graphs?

E.g. efficiently track interactions between many particles in dynamic simulations

Strongly attracting particles form large "blob"

(a) to (d) are 4 snapshots of a simulation with ca. N = 50 interacting particles in a box.

(a) (b)

How can one analyze the particle connectivity efficiently?

```
For i = 1 to N - 1

For j = i + 1 to N

For k = j + 1 to N

If (i \text{ .is bound to. } j) then

If (j \text{ .is bound to. } k) then ....

this is impractical!
```

M.Sc. thesis Florian Lauck (2006)

Bioinformatics 3 – WS 16/17

V6 - 39

Map simulation to interaction graph

Figure 2.7: Graph and spatial view of a simulation with 50 particles at four different points in time. The green bar denotes the energy of the system.

M.Sc. thesis Florian Lauck (2006)

Large number of simultaneous assocications: map simulations to interaction graphs

ANALYSIS(Graph)

distance

energy

Simple MC scheme for diffusion + association/ dissociation

 $\begin{array}{ll} \text{if } \mathbf{x} \leq \mathbf{p} \text{ then} & \triangleright \text{ accept new state} \\ & \text{APPEND}(\text{List of ALL interactions, List of Interactions}) \\ & E_{old} = E_{new} \\ & \text{else} & \triangleright \text{ discard new state} \\ & \text{RESET}(\mathbf{P}) \text{ CLEAR}(\text{List of Interactions}) \\ & \text{UPDATE}(\text{Graph, List of ALL Interactions}) \end{array}$

Interaction patches define complex geometry

$$G_{ij}(r_{ij}, \theta_{ij}) = \exp\left[\frac{(\theta_{ij} - \nu)}{2\sigma_{PW}^2}\right]$$

 $V_{total} = V(r_{ij}) \times G_{ij}(r_{ij}, \theta_{ij}) \times G_{ji}(r_{ij}, \theta_{ji})$

Interaction potential = distance dependent term ×orientation dep. terms

Lauck et al. , JCTC 5, 641 (2009)

V6 -

Dynamic view at particle agglomeration

T = 2.85 μs

Two snapshots

T = 2.85 µs most of the particles are part of a large cluster,

T = 15.44 µs largest cluster has 3 particles.

Geyer,

BMC Biophysics (2011)

V6 –

Summary: Static PPI-Networks

"Proteins are **modular machines**" <=> How are they related to each other?

I) Understand "Networks"

prototypes (ER, SF, ...) and their properties (P(k), C(k), clustering, ...)

2) Get the **data**

experimental and computational approaches (Y2H, TAP, co-regulation, ...), quality control and data integration (Bayes)

3) **Analyze** the data

compare P(k), C(k), clusters, ... \rightarrow highly modular, clustered obscured by sparse sampling \rightarrow PPI networks are not strictly scale-free

4) **Predict** missing information

network structure combined from multiple sources \rightarrow functional annotation

Next part of lecture: gene-regulatory networks