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V6 – Biological PPI Networks  

- are they really scale-free? 
- network growth 

- functional annotation in the network 
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Jeong, Mason, Barabási, Oltvai,  Nature 411 (2001) 41

→ "PPI networks
     apparently are 
     scale-free…"

"Are" they scale-free
or

"Do they look like" 
scale-free???

largest cluster of the yeast proteome (at 2001)
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Nature Biotech 23 (2005) 839

Generate networks of various types,
sample sparsely from them
→ determine degree distribution

• Random (ER / Erdös-Renyi) →  P(k) = Poisson
• Exponential (EX)    →  P(k) ~ exp[-k]
• scale-free / power-law (PL)   →  P(k) ~ k–γ 
• P(k) = truncated normal distribution (TN)
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Partial Sampling 
Estimated for yeast:    6000 proteins,   30000 interactions

Y2H experiments detected only 3…9% of the complete interactome!

Han et al,  Nature Biotech 23 (2005) 839
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Given: a data set with n values marked y1,...,yn and 
a set of fitted / predicted / modeled) values f1,...,fn e.g. from linear regression.

We call their difference residuals ei = yi − fi 

and the mean value

The total sum of squares (proportional to the variance of the data) is:

 The sum of squares of residuals is:

The coefficient of determination, R2 or r2 is often defined as:

5

R square 

www.wikipedia.org
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Sparsely Sampled random (ER) Network 
resulting P(k) for different coverages

(c) Shows linearity (R square) between detected P(k) 
and ideal power law; good agreement (red; R ≈1 for 
low edge coverage)

→ for sparse sampling (10-20%), even an ER network 
"looks" scale-free (when only P(k) is considered)

Han et al,  Nature Biotech 23 (2005) 839

R square

(b) Shows log-scale
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Anything Goes – different topologies 

Han et al,  Nature Biotech 23 (2005) 839
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Compare to Uetz et al. data 

Sampling density affects observed degree distribution
→ true underlying network cannot be identified from available data

Han et al,  Nature Biotech 23 (2005) 839

Uetz et al. data
(solid line) is
compared to 
sampled 
networks of
similar size.
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Network Growth Mechanisms 
Given:   an observed PPI network → how did it grow (evolve)?

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

Idea:  each growth mechanism leads to a typical motif distribution,
          even if global measures are comparable

PNAS 102 (2005) 3192
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The Fly Network 
Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

They assigned a confidence 
score [0, 1] for every observed 
interaction
→ use only data with 
     p > 0.65 (0.5)
→ remove self-interactions
     and isolated nodes

High confidence network
with 3359 (4625) nodes
and 2795 (4683) edges

Use prototype networks
of same size for training

percolation events for p > 0.65

Middendorf et al, PNAS 102 (2005) 3192

Size of largest components. At p = 0.65, there is one large component 
with 1433 nodes and the other 703 components contain at most 15 
nodes.
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Network subgraphs -> motives 
All non-isomorphic subgraphs that can be generated with a walk of length 8

Middendorf et al, PNAS 102 (2005) 3192
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Growth Mechanisms 

Generate 1000 networks, each, of the following 7 types
(same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity
DMR Duplication with random mutations
RDS Random static networks
RDG Random growing network
LPA Linear preferential attachment network (Albert-Barabasi)
AGV Aging vertices network
SMW Small world network
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Growth Type 1:  DMC 
"Duplication – mutation with preserved complementarity"

Evolutionary idea:  gene duplication, followed by a partial loss of
     function of one of the copies, making the other copy essential

Algorithm:

• duplicate existing node with all interactions

• for all neighbors: delete with probability qdel

  either link from original node or from copy

Repeat these steps many (e.g. N – 2) times

Start from two connected nodes
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Growth Type 2:  DMR 
"Duplication with random mutations"

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

• duplicate existing node with all interactions

• for all neighbors: delete with probability qdel

  link from copy

Start from five-vertex cycle,
repeat N - 5 times:

• add new links to non-neighbors with 
  probability qnew/n
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Growth Types 3–5: RDS, RDG, and LPA 
RDS = static random network

Start from N nodes, add L links randomly

LPA = linear preferential attachment

Add new nodes similar to Barabási-Albert algorithm, 
but with preference according to (ki + α),  α = 0…5
(BA for α = 0)

RDG = growing random network

Start from small random network, add nodes, 
then edges between all existing nodes
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Growth Types 6-7:  AGV and SMW 
AGV = aging vertices network

Like growing random network, 
but preference decreases with age of the node
→ citation network:  more recent publications are cited more likely

SMW = small world networks (Watts, Strogatz,  Nature 363 (1998) 202)

Randomly rewire regular ring lattice
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Alternating Decision Tree Classifier 
Trained with the motif counts from 1000 networks of each of the 7 types
→ prototypes are well separated and reliably classified

Prediction accuracy for networks 
similar to fly network with p = 0.5:

Part of a trained ADT

Decision nodes count 
occurrence of subgraphs 

Middendorf et al, PNAS 102 (2005) 3192
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Are the generated networks different? 

Example DMR vs. RDG:  Similar global parameters <C> and <l> (left), 
                                         but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier
Middendorf et al, PNAS 102 (2005) 3192



Bioinformatics 3 – WS 16/17 V 6  – 19

How Did the Fly Evolve? 

→ Best overlap with DMC (Duplication-mutation, preserved complementarity)
→ Scale-free or random networks are very unlikely

Middendorf et al, PNAS 102 (2005) 3192
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Motif Count Frequencies 

rank score:  fraction of test networks with 
a higher count than Drosophila
(50%  =  same count as fly on avg.)

Middendorf et al, PNAS 102 (2005) 3192

-> DMC and DMR 
networks contain 
most subgraphs in 
similar amount as fly 
network (top).
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Experimental Errors? 
Randomly replace edges in fly network and classify again:

→ Classification unchanged for ≤ 30% incorrect edges,
at higher values RDS takes over (as to be expected)
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Summary (I) 
Sampling matters!

→ "Scale-free" P(k) obtained by sparse sampling 
from many network types

Test different hypotheses for

• global features 
     → depends on unknown parameters and sampling
          → no clear statement possible

• local features (motifs)
     → are better preserved
          → DMC best among tested prototypes
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What Does a Protein Do? 

Enzyme Classification scheme 
(from http://www.brenda-enzymes.org/)
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What about Un-Classified Proteins? 

Many unclassified proteins:    
→ estimate: ~1/3 of the yeast proteome not annotated functionally 
→ BioGRID:  4495 proteins in the largest cluster of the yeast physical 
interaction map. 
                     only 2946 have a MIPS functional annotation 
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Partition the Graph 
Large PPI networks can be built from: 
• HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, …) 
• predictions (gene profiling, gene neighborhood, phylogenetic profiles, …) 
→ proteins that are functionally linked 

genome 1

genome 2

genome 3

sp 1

sp 2

sp 3

sp 4

sp 5

Identify unknown functions from clustering of these networks by, e.g.: 
• shared interactions (similar neighborhood) 
• membership in a community 
• similarity of shortest path vectors to all other proteins (= similar path into  
  the rest of the network) 
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Protein Interactions 
Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID)
→ 4495 proteins and 12 531 physical interactions in the largest cluster

http://www.thebiogrid.org/about.php
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Function Annotation 
Task:  predict function (= functional annotation) for an unlabeled protein 
           from the available annotations of other proteins in the network

Similar task:
How to assign colors to 
the white nodes?

Use information on:
• distance to colored nodes
• local connectivity
• reliability of the links
• …

<=>
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Algorithm I:  Majority 
Schwikowski, Uetz, and Fields, " A network of protein–protein interactions in yeast" 
Nat. Biotechnol. 18 (2000) 1257

Consider all neighbors and sum up how often a certain annotation occurs
→ score for an annotation  =  count among the direct neighbors
 → take the 3 most frequent functions

Majority makes only limited use 
of the local connectivity
→ cannot assign function to 
     next-neighbors

For weighted graphs:
→ weighted sum



Bioinformatics 3 – WS 16/17 V 6  – 29

Extended Majority:  Neighborhood 
Hishigaki, Nakai, Ono, Tanigami, and Takagi,  "Assessment of prediction accuracy of 
protein function from protein–protein interaction data", 
Yeast 18 (2001) 523

Look for overrepresented functions within a given radius of 1, 2, or 3 links
→ use as function score the value of a χ2–test

Neighborhood algorithm does not 
consider local network topology

?
?

Both examples (left) are 
treated identically with r = 2



Bioinformatics 3 – WS 16/17 V 6  – 30

Minimize Changes:  GenMultiCut 

"Annotate proteins so as to minimize the number of times that different 
functions are associated to neighboring (i.e. interacting) proteins"

Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif,  "Whole-genome annotation 
by using evidence integration in functional-linkage networks" 
PNAS 101 (2004) 2888

→ generalization of the multiway k-cut problem for weighted edges,
     can be stated as an integer linear program (ILP)

Multiple possible solutions →  scores from frequency of annotations
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Nabieva et al:  FunctionalFlow 
Extend the idea of "guilty by association"
→ each annotated protein is considered as a source of "function"-flow
      → propagate/simulate for a few time steps
             → choose the annotation a with the highest accumulated flow

Each node u has a reservoir Rt(u), each edge a capacity constraint (weight) wu,v

Initially:

Then: downhill flow from node u to node v with capacity constraints

Score from accumulated in-flow:

and

Nabieva et al, Bioinformatics 21 (2005) i302

Idea: Node v has already „more 
function“ than node u → no flow 
uphill
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An Example 
accumulated 
flow

thickness = current flow

…..

…..

…..
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Comparison 

Change score threshold for accepting annotations → ratio  TP/FP
→ FunctionalFlow performs best in the high-confidence region
→ but many false predictions!!!

unweighted yeast map

Nabieva et al, Bioinformatics 21 (2005) i302

For FunctionalFlow:
six propagation steps were 
simulated; this is comparable 
to the diameter of the yeast 
network ≈ 12

Majority results are initially 
very good, but reduced 
coverage

Results with neighborhood 
get more unprecise for larger 
radii r
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Largest connected component of S. cerevisiae 
PPI network (BioGRID) has 4990 nodes and 
74,310 edges (physical interactions). 

Right Fig. shows the histogram of shortest-path 
lengths from this network. Over 95% of all pairs 
of nodes are either 2 hops or 3 hops apart 

Relying on the ordinary shortest-path distance metric in PPI networks is 
problematic because PPI networks are “small world” networks. 
Most nodes are close to all other nodes.

→ any method that infers similarity based on proximity will find that a large 
fraction of the network is proximate to any typical node. 
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The 2-hop neighborhood of a typical node 
probably includes around half of all nodes in the graph.

One of the reasons that paths are typically short in biological networks 
like the PPI network is due to the presence of hubs.

But hub proteins often represent proteins with 
different functional roles than their neighbors.

Hub proteins also likely have multiple, distinct functions.

→ not all short paths provide equally strong evidence 
of similar function in PPI networks. 

What nodes mediate short contacts? 
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DSD Distance Metric 

Explanation:

If there is no ambiguity about k, we can drop k.

where

He(vi) is a „random walk distance vector“ of node vi from all other nodes.

Two nodes u and v have small DSD if they have similar distance from all other 
nodes.
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DSD clearly improves functional predictions 

MV: majority voting
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What you can else do with  
Interaction graphs? 

E.g. efficiently track interactions 
between many particles 
in dynamic simulations 
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Strongly attracting particles form large “blob” 

How can one analyze 
the particle connectivity 
efficiently? 

For i = 1 to N - 1 
 For j = i + 1 to N 
  For k = j + 1 to N 
   If (i .is bound to. j) then 
    If (j .is bound to. k) then …. 

 this is impractical! 

(a) to (d) are 4 snapshots of a simulation with ca. N = 50 interacting particles in a box. 

M.Sc. thesis  

Florian Lauck (2006) 
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Map simulation to interaction graph 

M.Sc. thesis Florian Lauck (2006) 
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Large number of simultaneous assocications: 
map simulations to interaction graphs 

Simple MC scheme 
for diffusion + association/ 
dissociation 
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Interaction patches define complex geometry 

Lauck et al. , JCTC 5, 641 (2009) 

Interaction potential = distance dependent term ×orientation dep. terms
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Assembly of icosahedral complexes 

Degree  
distribution 

Average 
Cluster 
coefficient 

shortest 
pathways 
between 
nodes 

Lauck et al. , JCTC 5, 641 (2009) 
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Dynamic view at particle agglomeration 
Two snapshots 

T = 2.85 µs 
most of the 
particles are part 
of a large cluster,  

T = 15.44 µs 
largest cluster 
has 3 particles.  

Geyer,  

BMC Biophysics (2011) 
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Summary:  Static PPI-Networks 
"Proteins are modular machines"  <=>  How are they related to each other?

1) Understand "Networks"
    prototypes (ER, SF, …) and their properties (P(k), C(k), clustering, …)

2) Get the data
    experimental and computational approaches (Y2H, TAP, co-regulation, …),
    quality control and data integration (Bayes)

3) Analyze the data
    compare P(k), C(k), clusters, …  →  highly modular, clustered
    obscured by sparse sampling → PPI networks are not strictly scale-free

4) Predict missing information
   network structure combined from multiple sources →  functional annotation

Next part of lecture:  gene-regulatory networks


