V6 — Biological PPl Networks

- are they really scale-free?
- network growth
- functional annotation in the network
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Lethality and centrality in protein networks

The most highly connected proteinsinthe cellare the mostimportant forits survival.

R ———
Jeong, Mason, Barabasi, Oltvai, Nature 411 (2001) 41
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Effect of sampling on topology predictions ¢
of protein-protein interaction networks

Jing-Dong ] Han!~3, Denis Dupuy!-?, Nicolas Bertin!, Michael E Cusick! & Marc Vidal!

R ——
Nature Biotech 23 (2005) 839

Generate networks of various types,
sample sparsely from them
— determine degree distribution

* Random (ER / Erdos-Renyi) — P(k) = Poisson
* Exponential (EX) — P(k) ~ exp[-k]

* scale-free / power-law (PL) — P(k) ~ k™7
* P(k) = truncated normal distribution (TN)
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Partial Sampling

Estimated for yeast: 6000 proteins, 30000 interactions

Table 1 Topological properties of interactome maps

Ito ef al. Uetz et al. Ito-Uetz Li et al. Giot et al. Minimum Maximum

Data set (yeast) (yeast) combined (worm) (fly) value value
Total number of nodes 797 1,005 1,417 1,415 4,651 797 4,651
Nodes in main 417 (52%) 473 (47%) 970 (68%) 1,260 (89%) 3,038 (65%) 47% 89%
component
Total number 806 948 1,520 2,135 4,787 806 4,787
of interactions
Interactions in main 544 558 1,229 2,038 3,715 544 3,715
component
R-square 0.843 0.954 0.899 0.885 0.91 0.843 0.954
¥ -1.82 -2.42 -1.91 -1.59 -2.75 -2.75 -1.59
<k> 1.96 1.84 2NNy 2.98 2.04 1.84 2.98
Average clustering 0.2 0.11 0.09 0.09 0.06 0.06 0.2
coefficient
Number of network 143 177 160 70 591 70 591
compeonents
Average component size 5.6 YN 8.9 20.2 7.9 5.6 20.2
Characteristic path length 6.14 7.48 6.55 491 9.43 491 9.43
Number of baits 455 512 827 502 2,820 455 2,820

The linear regression R-square measures the linearity between log(n(k)) and log(k) i.e. the fit to a power-law distribution. yis the exponent of the power law distribution
formula that best fits the observed distribution. <k> is the average number of interactions per protein observed in the network. For the Ito, Li and Giot data sets only the high

confidence interactions were considered (core).

Y2H experiments detected only 3...9% of the complete interactome!
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R square

Given: a data set with n values marked y,,...,y, and

a set of fitted / predicted / modeled) values f,,...f, e.g. from linear regression.

We call their difference residuals e, =y, — f.
1 n
and the mean value Y = ; ; Y;

The total sum of squares (proportional to the variance of the data) is:
SSiot = Y (v — )%,
2
The sum of squares of residuals is:
2 2
SSres =Y (i — fi)? =) ¢
1 i
The coefficient of determination, R? or r? is often defined as:

S Sres

R*=1- :
SS(,Q[.

www.wikipedia.org
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Sparsely Sampled random (ER) Network

(c) Shows linearity (R square) between detected P(k)
resulting P(k) for different coverages and ideal power law; good agreement (red; R =| for
low edge coverage)
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— for sparse sampling (10-20%), even an ER network

"looks" scale-free (when only P(k) is considered)
Han et al, Nature Biotech 23 (2005) 839 V6 —
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Anything Goes — different topologies
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Han et al, Nature Biotech 23 (2005) 839
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Compare to Uetz et al. data
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Uetz et al. data
(solid line) is
compared to
sampled
networks of
similar size.
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Sampling density affects observed degree distribution
— true underlying network cannot be identified from available data
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Network Growth Mechanisms

Given: an observed PPl network — how did it grow (evolve)?

Inferring network mechanisms: The Drosophila {
melanogaster protein interaction network

Manuel Middendorf?, Etay Ziv*¥, and Chris H. WigginsST

'Department of Physics, *College of Physicians and Surgeons, Department of Applied Physics and Applied Mathematics, and Center for Computational
Biology and Bioinformatics, Columbia University, New York, NY 10027

Communicated bv Rarrv H. Honia. Columhia Liniversitv. New Yark. NY. Decemher 20. 2004 (received far review Sentemhe

R ——

PNAS 102 (2005) 3192

Look at network motifs (local connectivity):
compare motif distributions from various network prototypes to fly network

Idea: each growth mechanism leads to a typical motif distribution,
even if global measures are comparable

Bioinformatics 3 —WS 16/17 Vé6 — 9



The Fly Network

Y2H PPI network for D. melanogaster from Giot et al. [Science 302 (2003) 1727]

They assigned a confidence 10°;
score [0, |] for every observed ) percolation events for p > 0.65 1
interaction '

— use only data with "
p > 0.65 (0.5)
— remove self-interactions

107

and isolated nodes

number of vertices

High confidence network : p <& Vo '." _—y
with 3359 (4625) nodes | !
and 2795 (4683) edges 10(;.1 0.2 03 04 05 05 07 05 0.9 1

Use prototype networks Size of largest components.At p = 0.65, there is one large component

of same size for training with 1433 nodes and the other 703 components contain at most |5
nodes.

Middendorf et al, PNAS 102 (2005) 3192
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Network subgraphs -> motives
All non-isomorphic subgraphs that can be generated with a walk of length 8
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Middendorf et al, PNAS 102 (2005) 3192
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Growth Mechanisms

Generate 1000 networks, each, of the following 7 types
(same size as fly network, undefined parameters were scanned)

DMC Duplication-mutation, preserving complementarity

DMR Duplication with random mutations

RDS Random static networks

RDG Random growing network

LPA Linear preferential attachment network (Albert-Barabasi)
AGV Aging vertices network

SMW Small world network

Bioinformatics 3 —WS 16/17 Vé6 - |2



Growth Type 1: DMC

"Duplication — mutation with preserved complementarity”

Evolutionary idea: gene duplication, followed by a partial loss of
function of one of the copies, making the other copy essential

Algorithm:

Start from two connected nodes

* duplicate existing node with all interactions

» for all neighbors: delete with probability qgdel
either link from original node or from copy x

Repeat these steps many (e.g. N — 2) times

Bioinformatics 3 —WS 16/17
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Growth Type 2: DMR

"Duplication with random mutations"

Gene duplication, but no correlation between original and copy
(original unaffected by copy)

Algorithm:

Start from five-vertex cycle,
repeat N - 5 times:

* duplicate existing node with all interactions

* for all neighbors: delete with probability qdel
link from copy

* add new links to non-neighbors with
probability gnew/n

Bioinformatics 3 —WS 16/17 Vé6 — |4



Growth Types 3-5: RDS, RDG, and LPA

RDS = static random network

Start from N nodes, add L links randomly

RDG = growing random network

Start from small random network, add nodes,
then edges between all existing nodes

LPA = linear preferential attachment

Add new nodes similar to Barabasi-Albert algorithm,

but with preference according to (ki + &), a =0...5
(BA for ¢ = 0)

Bioinformatics 3 —WS 16/17

Vé - |5



Growth Types 6-7: AGV and SMW

AGYV = aging vertices network

Like growing random network,
but preference decreases with age of the node
— citation network: more recent publications are cited more likely

SMW = small world networks (Watts, Strogatz, Nature 363 (1998) 202)

Randomly rewire regular ring lattice

Bioinformatics 3 —WS 16/17 Vé6 - |6



Alternating Decision Tree Classifier

Trained with the motif counts from 1000 networks of each of the 7 types
— prototypes are well separated and reliably classified

, Prediction accuracy for networks
s Y a

L Sl4 <165 2: $32 < 4479.5 3: S1<IL5 Similar to fly network With P - 0.5:

g |n g \,, ‘y n Prediction
Truth DMR DMC AGV LPA  SMW RDS RDG

DMC: 0.49 DMC: 0.62 DMC: -0.65 DMC: -1.78 DMC: 4.41

DMR: 0.58 DMR: -3.64 DMR: 0.19 DMR: 0.12 DMR: -3.50 DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6
RDG: 0.56 RDG: -3.82 RDG: 0.24 RDG: 0.10 RDG: -3.51
LPA: -3.94 LPA: -4.25 LPA: 0.99 LPA: -0.01 LPA: -1.70 DMC 0.0 938.7 0.0 0.0 0.3 0.0 0.0
AGV: -3.94 AGV: -0.03 AGV: 0.05 AGV: 0.01 AGV: -2.80 AGV 0.0 0.1 84.7 13.5 1.2 0.5 0.0
SMW: -3.94 SMW: 0.29 SMW: -3.92 SMW: 0.02 SMW: -2.94
RDS: -2.90 RDS: 0.30 RDS: -3.94 RDS: 0.03 RDS: -3.01 LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1
SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0
; V RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0
6: S49 < 203.0 4 S27 < 27615

/y

DMC: 0.04

¥

DMC: -0.21 DMC: 0.65

DMR: -0.75 DMR: -0.44 DMR: -0.57
RDG: -1.63 RDG: -0.94 RDG: -1.60
LPA: -2.46 LPA: -1.40 LPA: -0.00
AGV: -0.30 AGV: 3.13 AGV: 0.05

SMW: 0.05
RDS: 0.65

SMW: -3.13
RDS: -3.14

Decision nodes count
occurrence of subgraphs

Middendorf et al, PNAS 102 (2005) 3192
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Are the generated networks different?

1 10%
e © DMR
°® * RDG
-1 .
10 r .
f o
[ @
s 10} @
&£} 2
g t [~}
o 9 o
¢ o
: x
10"5 %
{ x QD
10°- = -
10 1k(; 10
DMR RDG
(C)]26 107%£1.3 107% 54 1079 £3.7 10°*
{€) 10.4 £0.1 9.6+ 0.04

b 16

141

# of predictions
@

-30 20 10 0 10
prediction score

20

Example DMR vs. RDG: Similar global parameters <C> and <I> (left),
but different counts of the network motifs (right)

-> networks can (only) be perfectly separated by motif-based classifier

Bioinformatics 3 —WS 16/17
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How Did the Fly Evolve?

Eight-step subgraphs

Subgraphs with up to

seven edges

Eight-step subgraphs

(p* = 0.65) (p* = 0.65) (p* = 0.5)

Rank Class Score Class Score Class Score

1 DMC 82+1.0 DMC 86 1.1 DMC 0829
2 DMR —-6.8+0.9 DMR -6.1 = 1.7 DMR -21=20
3 RDG —-95+23 RDG -93+16 AGV -3.1x22
4 AGV —-10.6 = 4.2 AGV —-11.5 + 4.1 LPA -10.1 = 3.1
5 LPA —-16.5 + 3.4 LPA —-143 + 3.2 SMW -206 1.9
6 SMW —18.9 = 0.7 SMW -183+ 1.9 RDS -223 1.7
7 RDS -19.1 + 23 RDS -199 + 15 RDG —225 =47

Drosophila is consistently (independently of the cut-off in subgraph size) classified as a DMC network, with an

especially strong prediction for a confidence threshold of p* = 0.65.

‘"—r

— Best overlap with DMC (Duplication-mutation, preserved complementarity)

—

Bioinformatics 3 —WS 16/17

— Scale-free or random networks are very unlikely

Middendorf et al, PNAS 102 (2005) 3192
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Motif Count Frequencies
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1, {104 & -> DMC and DMR

1102 E
2 networks contain
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most subgraphs in
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network (top).
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rank score: fraction of test networks with
a higher count than Drosophila
(50% = same count as fly on avg.) N

count

Middendorf et al, PNAS 102 (2005) 3192
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Randomly replace edges in fly network and classify again:

Experimental Errors?

prediction score

107

-10+

161

-20

-25

0

0.1

02

03 04 05 06 07
fraction of edges replaced

— Classification unchanged for < 30% incorrect edges,
at higher values RDS takes over (as to be expected)

Bioinformatics 3 —WS 16/17

Vé - 21



Summary (l)

Sampling matters!

— "Scale-free" P(k) obtained by sparse sampling
from many network types

Test different hypotheses for

* global features
— depends on unknown parameters and sampling
— no clear statement possible

* local features (motifs)
— are better preserved
— DMC best among tested prototypes

Bioinformatics 3 —WS 16/17
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What Does a Protein Do?
2% BRENDA ||

The Comprehensive Enzyme Information System

TU

/ Braunschweig
| \ Dept. of

Bioinformatics

Explorer [ SEARCH ][ BROWSE ]

B 1 Oxidoreductases (4042 organisms) 3 %
e 2 Transferases (3198 organisms) 3 %
B 2.1 Transferring one-carbon groups (615 organisms) 3 ®
£32.1.1 Methyltransferases (574 organisms) 2 Y
£32.1.2 Hydroxymethyl-, formyl- and related transferases (82 organisms) 2 ®
£32.1.3 Carboxy- and carbamoyltransferases (105 organisms) 2 %
B 2.1.4 Amidinotransferases (32 organisms) 3 Y
®2.1.4.1 glycine amidinotransferase (17 organisms) 2 ®
®2.1.4.2 scyllo-inosamine-4-phosphate amidinotransferase (15 organisms) 3 »
03 2.2 Transferring aldehyde or ketonic groups (91 organisms) 3 Y
B3 2.3 Acyltransferases (930 organisms) 3 %
£32.4 Glycosyltransferases (925 organisms) 3 %
£32.5 Transferring alkyl or aryl groups, other than methyl groups (547 organisms) 2 ®
0 2.6 Transferring nitrogenous groups (377 organisms) 3 ®
£3 2.7 Transferring phosphorus-containing groups (1343 organisms) 2 @
03 2.8 Transferring sulfur-containing groups (276 organisms) 3 Y
0 2.9 Transferring selenium-containing groups (6 organisms) 3
833 Hydrolases (4453 organisms) 3 Y
B34 Lyases (2145organisms) 3 %
B 5 |somerases (849 organisms) 3 Y
B 6 Ligases (686 organisms) 3 ®

e e c—

Enzyme Classification scheme
(from http://www.brenda-enzymes.org/)

Vé6 -
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What about Un-Classified Proteins?

doi: 10. 1093/bicinformatics/bti1054

Vol. 21 Supp!. 1 2005, pages i302-i310 {

Whole-proteome prediction of protein function

“ .
mg: via graph-theoretic analysis of interaction maps
e‘m Elena Nabieva'-2, Kam Jim?, Amit Agarwal', Bernard Chazelle’
‘ \ and Mona Singh’-2*

"Computer Science Department and 2Lewis-Sigler Institute for Integrative Genomics,
Princeton University, Princeton, NJ 08544, USA

Received on January 15, 2005; accepted on March 27, 2005

R r— —

Many unclassified proteins:
— estimate: ~1/3 of the yeast proteome not annotated functionally

— BioGRID: 4495 proteins in the largest cluster of the yeast physical

interaction map.
only 2946 have a MIPS functional annotation

Bioinformatics 3 —WS 16/17 V6 — 24



Partition the Graph

Large PPl networks can be built from:
« HT experiments (Y2H, TAP, synthetic lethality, coexpression, coregulation, ...)

» predictions (gene profiling, gene neighborhood, phylogenetic profiles, ...)
— proteins that are functionally linked

™\ [\
— @ = EE
| > genome _— _—
P A Bl cil 3 = L)
¥ — M
genome 3 —{UBN AN ® M Sl—— s <—D - HD—

|dentify unknown functions from clustering of these networks by, e.g.:
» shared interactions (similar neighborhood)

 membership in a community
* similarity of shortest path vectors to all other proteins (= similar path into

the rest of the network)

Bioinformatics 3 —WS 16/17 Vé6 — 25



Protein Interactions

Nabieva et al used the S. cerevisiae dataset from GRID of 2005 (now BioGRID)
— 4495 proteins and 12 531 physical interactions in the largest cluster

I F 2 Search HH
B l O G I D (o ,E1) BT B Escherichia coli K12 |2 m
General Repository for Interaction Datasets

help / : :

home support contribute downloads  mirrors about us
About BioGRID BioGRID Links
The Biological General Repository for Interaction Datasets (BioGRID) database « Arabidopsis Information
(http://www.thebiogrid.org) was developed to house and distribute collections of Resource
protein and genetic interactions from major model organism species. BioGRID  BioPIXIE
currently contains over 198 000 interactions from six different species, as » Biotechnology and Biological
derived from both high-throughput studies and conventional focused studies. Sciences Research Council
Through comprehensive curation efforts, BioGRID now includes a virtually (BBSRC)
complete set of interactions reported to date in the primary literature for both the o Canadian Institutes of Health
budding yeast Saccharomyces cerevisiae and the fission yeast Research (CIHR)
Schizosaccharomyces pombe. A number of new features have been added to » Cytoscape
the BioGRID including an improved user interface to display interactions based » Database of Interacting
on different attributes, a mirror site and a dedicated interaction management Proteins
system to coordinate curation across different locations. The BioGRID provides e Entrez-Gene
interaction data with monthly updates to Saccharomyces Genome Database,  Flybase
Flybase and Entrez Gene. Source code for the BioGRID and the linked Osprey » Gene DB
network visualization system is now freely available without restriction. » Gene Ontology

» Germ Online

http://www.thebiogrid.org/about.php

Bioinformatics 3 —WS 16/17 V6 — 26



Function Annotation

Task: predict function (= functional annotation) for an unlabeled protein
from the available annotations of other proteins in the network

Similar task:
How to assign colors to
the white nodes!?

Use information on:
* distance to colored nodes

* local connectivity
* reliability of the links

<=>

Bioinformatics 3 —WS 16/17 Vé6 - 27



Algorithm |: Majority

Schwikowski, Uetz, and Fields, " A network of protein—protein interactions in yeast"
Nat. Biotechnol. 18 (2000) 1257

Consider all neighbors and sum up how often a certain annotation occurs
— score for an annotation = count among the direct neighbors
— take the 3 most frequent functions

Majority makes only limited use

of the local connectivity

— cannot assign function to
next-neighbors

For weighted graphs:
— weighted sum

Bioinformatics 3 —WS 16/17 Vé6 - 28



Extended Majority: Neighborhood

Hishigaki, Nakai, Ono, Tanigami, and Takagi, "Assessment of prediction accuracy of
protein function from protein—protein interaction data",

Yeast 18 (2001) 523

Look for overrepresented functions within a given radius of |, 2, or 3 links
— use as function score the value of a y’—test

® Neighborhood algorithm does not
? consider local network topology

‘\CB/ O Both examples (left) are
treated identically with r = 2

Bioinformatics 3 —WS 16/17 Vé6 - 29



Minimize Changes: GenMultiCut

Karaoz, Murali, Letovsky, Zheng, Ding, Cantor, and Kasif, "Whole-genome annotation
by using evidence integration in functional-linkage networks"

PNAS 101 (2004) 2888

"Annotate proteins so as to minimize the number of times that different
functions are associated to neighboring (i.e. interacting) proteins”

— generalization of the multiway k-cut problem for weighted edges,
can be stated as an integer linear program (ILP)

P PR B

Multiple possible solutions — scores from frequency of annotations

Bioinformatics 3 —WS 16/17 Vé6 — 30



Nabieva et al: FunctionalFlow

Extend the idea of "guilty by association™
— each annotated protein is considered as a source of "function"-flow
— propagate/simulate for a few time steps
— choose the annotation a with the highest accumulated flow

Each node u has a reservoir Ri(u), each edge a capacity constraint (weight) wuy,

oo, 1f u 1s annotated with a,

Initially: Rj(u) = { 0. otherwise. and &y(,v) =0

Then: downhill flow from node u to node v with capacity constraints

O, lf R? l(u) <R? l(v) |ldea: Node v has already ,,more

function than node u — no flow
uphill

gl (u,v) =

. w,, ., .
min (wu s - ) , otherwise.
’ Z(u,y)eE Wy y

Score from accumulated in-flow:

d
@)=Y Y  gi,u)

t=1 v:(uy)eE

Nabieva et al, Bioinformatics 21 (2005) i302
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An Example

thickness = current flow

accumulated
flow
— —

oIS
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Comparison

Proteins predicted correctly

1000

800

600

400

200

T T T

Majority
Neighborhood, r 1
Neighborhood, r = 2
Neighborhood, r = 3
GenMultiCut
FunctionalFlow

0

unweighted yeast map

cwu«4ummm4+++ ++

v

1000

1500 2000 2500

Proteins predicted incorrectly

For FunctionalFlow:

SiX propagation steps were
simulated; this is comparable
to the diameter of the yeast
network = |2

Majority results are initially
very good, but reduced
coverage

Results with neighborhood
get more unprecise for larger
radii r

Change score threshold for accepting annotations — ratio TP/FP
— FunctionalFlow performs best in the high-confidence region
— but many false predictions!!!

Bioinformatics 3 —WS 16/17
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Going the Distance for Protein Function Prediction: A
New Distance Metric for Protein Interaction Networks

Citation: Cao M, Zhang H, Park J, Daniels NM, Crovella ME, et al. (2013) Going the Distance for Protein Function Prediction: A New Distance Metric for Protein
Interaction Networks. PLoS ONE 8(10): €76339. doi:10.1371/journal.pone.0076339

Relying on the ordinary shortest-path distance metric in PPl networks is
problematic because PPl networks are “small world” networks.
Most nodes are close to all other nodes.

— any method that infers similarity based on proximity will find that a large
fraction of the network is proximate to any typical node.

distribution of shortest path distances

Largest connected component of S. cerevisiae 7
PPI network (BioGRID) has 4990 nodes and °l
74,310 edges (physical interactions).

5t

4t

w

frequency * 10 6

Right Fig. shows the histogram of shortest-path 2|
lengths from this network. Over 95% of all pairs
of nodes are either 2 hops or 3 hops apart I A

shortest path distance

-

Bioinformatics 3 —WS 16/17 (a)



What nodes mediate short contacts?

The 2-hop neighborhood of a typical node
probably includes around half of all nodes in the graph.

One of the reasons that paths are typically short in biological networks
like the PPl network is due to the presence of hubs.

But hub proteins often represent proteins with
different functional roles than their neighbors.

Hub proteins also likely have multiple, distinct functions.

—not all short paths provide equally strong evidence
of similar function in PPl networks.

Bioinformatics 3 —WS 16/17 Vé6 —
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DSD Distance Metric

Given some fixed k>0, we define He'tk (A,B) to be the expected
number of times that a random walk starting at 4 and proceeding

for k steps, will visit B. If there is no ambiguity about k, we can drop k.
He(v;)=(He(vi,v1),He(vi,2),...,He(vi,vy))
He(v) is a ,,random walk distance vector® of node v, from all other nodes.
DSD(u,v)=||He(u)— He(v)||,  where

||He(u)— He(v)||; denotes the L; norm of the He vectors

Two nodes u and v have small DSD if they have similar distance from all other

nodes.
The one-norm (also known as the Lj-norm, 1 norm, or mean norm) of a vector ¢ is denoted
Explanation: |7]|; and is defined as the sum of the absolute values of its components:

10, = lil (1)
1=1

for example, given the vector v = (1, —4,5), we calculate the one-norm:
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DSD clearly improves functional predictions

MIPS Top Level, Accuracy

65.00%
60.00% —
55.00%
— F1 Score on GO term Prediction for S. cerevisiae
' 30.00%
45.00%
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
e DSD Weighted — ==e==DSD Unweighted = Original MV 25.00%
MV: majority voting
® Majority Vote
MIPS Second Level, Accuracy 20.00% m MV (weighted DSD)
55.00% W Functional Flow
50.00% —a—e— 15.00% ® FF with DSD
45.00% ® Neighborhood
® Neighborhood with DSD
40.00% 7 10.00% ® Multi-cut
35.00% — W Multi-cut with DSD
1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20
5.00%
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. 0.00% -
MIPS Third Level R Accu racy Exact Match  Overlap Depth Overlap Counting
47.00% —
45.00% ::__!_F=‘=i=‘=i-i—i—i'-i—i—i-=h% f 4 - iFFF—3  Figure 6. Improvement on F1 Score for DSD using three
ﬁ'gx = evaluation methods: exact match, overlap depth and overlap
A il s counting, on informative GO terms for the four algorithms for
37.00% S. cerevisiae in 10 runs of 2-fold cross validation.
35.00%

1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20

e DSD Weighted  ==e==DSD Unweighted =====CQriginal MV
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What you can else do with
Interaction graphs?

E.g. efficiently track interactions
between many particles
In dynamic simulations

Bioinformatics 3 —WS 16/17
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Strongly attracting particles form large “blob”

(a) to (d) are 4 snapshots of a simulation with ca. N = 50 interacting particles in a box.

(a) (b) (d)

How can one analyze
the particle connectivity
efficiently?

M.Sc. thesis

Fori=1toN-1 Florian Lauck (2006)
Forj=i+1toN
Fork=j+1to N
If (/ .is bound to. j) then
If (j .is bound to. k) then ....
this is impractical!

Bioinformatics 3 —WS 16/17

39
Vé6 -



Map simulation to interaction graph
(d)

Figure 2.7: Graph and spatial view of a simulation with 50 particles at four different points
in time. The green bar denotes the energy of the system.

M.Sc. thesis Florian Lauck (2006)

40
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Large number of simultaneous assocications:
map simulations to interaction aranhs

function INITIALIZE(N)
for P € List of Particles do
CREATE RANDOM COORDINATES(P)

. ’ . . CREATE GRAPH(N)

7 <0 ‘ ‘ for all Iterations do
_ 4> for P € List of Particles do
.‘g \. ‘ . ‘ MoVE AND ROTATE(P)
20 Al : @ ’ for all P, € (List of Particles - P) do
C . ‘ d = DisTANCE(P, P)
e; = POTENTIAL(d)

if d < r¢ then APPEND(List of Interactions, (P, P;))

Enew += €;
. a = TRANSITION PROBABILITY(E,..,, Eoa)
S|mp|e MC SCheme x = RANDOMNUMBER
for diffusion + association/ if x < p then > accept new state
ApPPEND(List of ALL interactions, List of Interactions)
dissociation Eota = Eneu _
else > discard new state

RESET(P) CLEAR(List of Interactions)
UPDATE(Graph, List of ALL Interactions)

ANALYSIS(Graph)
5\ 5‘\ 5“
g g 2
] ] o
ofo olD OE
. =\ > > [ 1
o KI‘// distance — M distance —» t: distance
-~ —
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Interaction patches define complex geometry

Gij(rij,0:;) = exp [

2
20pw

Viotal = V (1i5) X Gij(rij,0i5) ¥ Gji(rij,05:)

Interaction potential = distance dependent term Xorientation dep. terms

Lauck et al. , JCTC 5, 641 (2009)

42
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Assembly of |cosahedral complexes

»@
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Clustersizes

20

10

e

Dynamic view at particle agglomeration

. — - -—ssew - - - . -
- .- -
- - — —- . TWT - W = e T Pl B B el NP W - .l W~ -
———— -— - — . w— e
~ - ——— . - - — - w-— -

0 5 10 T [us] 15 20

Bioinformatics 3 —WS 16/17

Two snapshots

T=285us
most of the
particles are part
of a large cluster,

T=15.44 us
largest cluster
has 3 particles.

Geyer,

BMC Biophysics (2011)
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Summary: Static PPI-Networks

"Proteins are modular machines" <=> How are they related to each other?

) Understand "Networks"
prototypes (ER, SF, ...) and their properties (P(k), C(k), clustering, ...)

2) Get the data

experimental and computational approaches (Y2H, TAP, co-regulation, ...),
quality control and data integration (Bayes)

3) Analyze the data
compare P(k), C(k), clusters, ... — highly modular, clustered
obscured by sparse sampling — PPl networks are not strictly scale-free

4) Predict missing information
network structure combined from multiple sources — functional annotation

Next part of lecture: gene-regulatory networks
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