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-  Measuring transcription + translation rates 
-  Motifs in GRNs 

-  Master Regulatory Genes in GRNs 



Rates of mRNA transcription and protein translation 

Schwanhäuser et al. Nature 473, 337 (2011)

Parallel quantification of mRNA and protein turnover 
and levels. Mouse fibroblasts were pulse-labelled with 
heavy amino acids (SILAC, left) and the nucleoside 4-
thiouridine (4sU, right). 
Protein and mRNA turnover is quantified by mass 
spectrometry and next-generation sequencing, 
respectively.

SILAC: „stable isotope labelling by amino 

acids in cell culture“ means that

cells are cultivated in a medium containing 

heavy stable-isotope versions of 

essential amino acids. 

When non-labelled (i.e. light) cells are

transferred to heavy SILAC growth 

medium, newly synthesized proteins

incorporate the heavy label while pre-

existing proteins remain in the light form.
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Schwanhäuser et al. Nature 473, 337 (2011)

Mass spectra of peptides for 
two proteins (x-axis: mass over 
charge ratio).

Over time, the heavy to light 
(H/L) ratios increase.

You should understand these 
spectra!

84,676 peptide sequences were identified by MS and assigned to 6,445 unique proteins. 

5,279 of these proteins were quantified by at least three heavy to light (H/L) peptide ratios 

belonging to these proteins.

Rates of mRNA transcription and protein translation 

3 

Top: high-turnover protein

Bottom: low-turnover protein, 
slow synthesis, long half-life



Schwanhäuser et al. Nature 473, 337 (2011)

The same is done to compute 

mRNA half-lives (not shown).

Consider ratio r of protein with heavy amino 

acids (PH) and light amino acids (PL):

Assume that proteins labelled with light amino 

acids decay exponentially with degradation rate 

constant kdp :

Express (PH) as difference between total number 

of a specific protein Ptotal and PL:

Assume that Ptotal doubles during duration of one 

cell cycle (which lasts t∞ ):

Consider m intermediate time points:

Protein half-lifes 
and decay rates

because this gives
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From kdp we get the desired half-life:

take ln on both sides



Schwanhäuser et al. Nature 473, 337 (2011)

(right) mRNA and protein levels showed 

reasonable correlation (R2 = 0.41)

(left) However, there was practically no 

correlation of protein and mRNA half-lives.

a, b, Histograms of mRNA (blue) and 

protein (red) half-lives (a) and levels (b).

Proteins were on average 5 times more 

stable (9h vs. 46h) and 900 times more 

abundant than mRNAs and showed more 

variation. 

mRNA and protein levels and half-lives 
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A widely used minimal description of 

the dynamics of transcription and 

translation includes the synthesis and 

degradation of mRNA and protein, 

respectively

Schwanhäuser et al. Nature 473, 337 (2011)

Mathematical model of transcription and 
translation

The mRNA (R) is synthesized with a constant rate vsr and 

degraded proportional to their numbers with rate constant kdr. 

The protein level (P) depends on the number of mRNAs, 

which are translated with rate constant ksp.

Protein degradation is characterized by the rate constant kdp. 

The synthesis rates of mRNA and protein are calculated 

from their measured half lives and levels.
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Average cellular transcription rates 

predicted by the model span two orders of 

magnitude.

The median is about 2 mRNA molecules 

per hour (very slow!). 

An extreme example is the protein Mdm2 

of which more than 500 

mRNAs per hour are transcribed.

The median translation rate constant 

is about 40 proteins per mRNA

per hour

Schwanhäuser et al. Nature 473, 337 (2011)

Calculated 

translation rate 

constants are not 

uniform

Computed transcription and translation rates
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Schwanhäuser et al. Nature 473, 337 (2011)

Abundant proteins are translated about 100 times 

more efficiently than those of low abundance

Translation rate constants of abundant proteins 

saturate between approximately 120 and 240 

proteins per mRNA per hour.

The maximal translation rate constant in mammals 

is not known.

The estimated maximal translation rate constant in 

sea urchin embryos is 140 copies per mRNA per 

hour, which is surprisingly close to the prediction of 

this model.

Maximal translation constant 
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Network Motifs 

Nature Genetics 31 (2002) 64

RegulonDB  +  their own hand-curated findings
→ break down network into motifs
    →  statistical significance of the motifs?
         → behavior of the motifs  <=>  location in the network?
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Detection of motifs 
Represent transcriptional network as a connectivity matrix M
such that Mij = 1 if operon j encodes a TF that transcriptionally 
regulates operon i and Mij = 0 otherwise.

Scan all n × n submatrices of M generated 
by choosing n nodes that lie in a connected 
graph, for n = 3 and n = 4.

Submatrices were enumerated efficiently by 
recursively searching for nonzero elements. 

For n = 3, the only significant motif is the feedforward loop.
For n = 4, only the overlapping regulation motif is significant.
SIMs and multi-input modules were identified by searching 
for identical rows of M.

Shen-Orr et al. Nature Gen. 31, 64 (2002)

Connectivity matrix for causal regulation of 
transcription factor j (row) by transcription factor i 
(column). Dark fields indicate regulation. 
(Left) Feed-forward loop motif. TF 2 regulates TFs 3 
and 6, and TF 3 again regulates TF 6. 
(Middle) Single-input multiple-output motif. 
(Right) Densely-overlapping region. 
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Motif Statistics 

Listed motifs are highly overrepresented compared to randomized networks

No cycles (X → Y → Z → X) were identified,  
but this was not statistically significant in
comparison to to random networks

Shen-Orr et al., Nature Genetics 31 (2002) 64

Compute a p-value for submatrices representing each type of connected 
subgraph by comparing # of times they appear in real network vs. in random 
network.



For a stringent comparison to randomized networks, one generates 
networks with precisely the same number of operons, interactions, 
transcription factors and number of incoming and outgoing edges for each 
node as in the real network (here the one from E. coli ).  

One starts with the real network and repeatedly swaps randomly chosen 
pairs of connections (X1 → Y1, X2 → Y2 is replaced by X1 → Y2, X2 → Y1) 
until the network is well randomized.  
This yields networks with precisely the same number of nodes with  
p incoming and q outgoing nodes, as the real network. 

The corresponding randomized connectivity matrices, Mrand, have the same 
number of nonzero elements in each row and column as the corresponding 
row and column of the real connectivity matrix M:  

     and  
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Generate Random Networks 

Shen-Orr et al., Nature Genetics 31 (2002) 64
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Motif 1:  Feed-Forward-Loop 

X  =  general transcription factor
Y  =  specific transcription factor
Z  =  effector operon(s)

Example for this in E. coli:
araBAD operon, encodes enzymes needed 
for the catabolism of arabinose 

X and Y together regulate Z:

"coherent",  if X and Y have the same effect on Z  
(activation vs. repression), otherwise "incoherent"

85% of the FFLs in E. coli are coherent

Shen-Orr et al., Nature Genetics 31 (2002) 64
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FFL dynamics 

In a coherent FFL:
X and Y activate Z

Delay between X and Y →  signal must persist longer than delay
→ reject transient signal,  react only to persistent signals
→ enables fast shutdown

Dynamics:
• input activates X
• X activates Y (delay)
• (X && Y) activates Z

Helps with decisions based on fluctuating signals

Shen-Orr et al., Nature Genetics 31 (2002) 64
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Motif 2:  Single-Input-Module 

Set of operons controlled by a single 
transcription factor
• same sign
• no additional regulation
• control is usually autoregulatory 
  (70% vs. 50% overall)

Example for this in E. coli:
arginine biosynthetic operon argCBH 
plus other enzymes of arginine 
biosynthesis pathway

Mainly found in genes that code for parts of a protein complex or 
metabolic pathway
→ produces components in comparable amounts (stoichiometries)

Shen-Orr et al., Nature Genetics 31 (2002) 64
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SIM-Dynamics 

If different thresholds exist for each regulated operon:
→ first gene that is activated is the last that is deactivated
   → well defined temporal ordering (e.g. flagella synthesis) + stoichiometries

Shen-Orr et al., Nature Genetics 31 (2002) 64
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Motif 3:  Densely Overlapping Regulon 

Dense layer between groups of 
transcription factors and operons
→ much denser than network 
     average (≈ community)

Main "computational" units of the regulation system

Usually each operon is regulated 
by a different combination of TFs.

Sometimes:  same set of TFs for group of operons → "multiple input module"

Shen-Orr et al., Nature Genetics 31 (2002) 64
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Network with Motifs 

• 10 global transcription factors regulate
  multiple DORs
• FFLs and SIMs at output
• longest cascades: 5 
  (flagella and nitrogen systems)

Shen-Orr et al., Nature Genetics 31 (2002) 64
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Identification of Master regulatory genes 

19 

Idea: find a set of dominator nodes of minimum size that controls all other vertices.
In the case of a GRN, a directed arc symbolizes that a transcription factor regulates 
a target gene. 

In the figure, the MDS nodes {A,B} are the dominators of the network. Together, 
they regulate all other nodes of the network (C, E, D).  

Nazarieh et al. BMC Syst Biol 10:88 (2016) 

A vertex u dominates 
another vertex v if there 
exists a directed arc 
(u,v). 
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Identification of Master regulatory genes 
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The nodes of a MDS can be spread as isolates nodes over the entire graph. 
However, the set of core pluripotency factors is tightly connected (right).

Idea: find a connected dominating set of minimum size (MCDS).

(Left) the respective set of MCDS nodes (black and gray). 
Here, node C is added in order to preserve the connection 
between the two dominators A and B to form an MCDS 

Core pluripotency network,
Kim et al. Cell (2008)
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ILP for minimum dominating set 
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Nazarieh et al. BMC Syst Biol 10:88 (2016) 

Aim: we want to determine a set D of minimum cardinality such that for each 
v ∈V, we have that v ∈ D or that there is a node u ∈ D and an arc (u,v) ∈ E.

Let  δ-(v) be the set of incoming nodes of v such that (u,v) ∈ E,
xu and xv are binary variables associated with u and v. 

We select a node v as dominator if its binary variable xv has value 1, 
otherwise we do not select it.  

With the GLPK solver, the runtime was less than 1 min for all considered networks. 



Bioinformatics 3 – WS 16/17 V 8  – 

ILP for minimum connected dominating set 
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A minimum connected dominating set (MCDS) for a directed graph G = (V,E) is a 
set of nodes D ⊆ V of minimum cardinality that is a dominating set 
and additionally has the property that the graph G[D] induced by D is weakly 
connected, i.e. such that in the underlying undirected graph there exists a 
path between any two nodes of D that only uses vertices in D. 

This time we will use two binary valued variables yv and xe . 
yv indicates whether node v is selected to belong to the MCDS. 
xe for the edges then yields a tree that contains all selected vertices and no 
vertex that was not selected. 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 

This guarantees that the number of edges 
is one less than the number of vertices. 
This is necessary (but not sufficient) to 
form a (spanning) tree. 
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ILP for minimum connected dominating set 
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Nazarieh et al. BMC Syst Biol 10:88 (2016) 

The second constraint implies that the 
selected edges imply a tree.
(Note that this defines an exponential number of constraints 
for all subgraphs of V!) 

The third constraint guarantees that 
the set of selected nodes in the 
solution forms a dominating set of the 
graph. 

For dense graphs, this yields a quick solution. However, for sparse graphs, the 
running time may be considerable. Here we used an iterative approach (not 
presented). 
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Example MDS 
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(Left) this toy network includes 14 nodes and 14 edges.

(Right) The dark colored nodes {J, B, C, H, L} are the dominators of the network 
obtained by computing a MDS.  

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Example MCDS 
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(Left) The nodes colored blue make up the largest connected component 
(LCC) of the underlying undirected graph. 

(Right) MCDS nodes for this component are {J, D, B, C, G, H}.  

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Example MCDS 
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(Left) The green colored nodes are elements of the largest connected 
component underlying the directed graph. 

(Right) The two nodes {B, C} form the MCDS for this component.  

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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MCDS of the strongly connected component 
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(Left) The nodes colored orange show the LSCC in the network. 

(Right) The node A is the only element of the MCDS 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 



Bioinformatics 3 – WS 16/17 V 8  – 

Studied networks: RegulonDB (E.coli) 
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This GRN contains 1807 genes, including 202 TFs and 4061 regulatory interactions. 
It forms a general network which controls all sorts of responses which are needed 
in different conditions. 

Due to the sparsity of the network, 
its MDS contains 199 TFs. 

Figure: Connectivity among the genes in the MCDS of the 
LCC of the E.coli GRN. 
The red circle borders mark the MCDS genes identified 
as global regulators by Ma et al. (see lecture V7).  
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Periodic genes in cell cycle network of yeast 
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Take regulatory data from Yeast Promoter Atlas (YPA). 
It contains 5026 genes including 122 TFs. 

From this set of regulatory interactions, we extracted a cell-cycle specific 
subnetwork of 302 genes that were differentially expressed along the cell cycle of 
yeast (MA study by Spellman et al. Mol Biol Cell (1998)). 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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MCDS of cell cycle network of yeast 
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Tightly interwoven network of 17 TFs 
and target genes that organize the cell 
cycle of S. cerevisiae. 

Shown on the circumference of the 
outer circle are 164 target genes that 
are differentially expressed during the 
cell cycle and are regulated by a TF in 
the MCDS (shown in the inner circle). 

The inner circle consists of the 14 TFs 
from the heuristic MCDS 
and of 123 other target genes that are 
regulated by at least two of these TFs 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Studied networks: PluriNetwork 

31 

PluriNetWork was manually 
assembled as an interaction/
regulation network describing 
the molecular mechanisms 
underlying pluripotency.

It contains 574 molecular 
interactions, stimulations and 
inhibitions, based on a 
collection of research data 
from 177 publications until 
June 2010, involving 274 
mouse genes/proteins. 

Som A, et al. (2010) PLoS ONE 5: e15165. 
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MCDS of mouse pluripotency network 
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Connectivity among TFs in the 
heuristic MCDS of the largest strongly 
connected component of a GRN for 
mouse ESCs. 

The red circle borders mark the 7 TFs 
belonging to the set of master 
regulatory genes identified 
experimentally.

The MCDS genes were functionally 
significantly more homogeneous than 
randomly selected gene pairs of the 
whole network (p = 6.41e-05, 
Kolmogorov-Smirnow test). 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Overlap with most central nodes 
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Percentage overlap of the genes of the 
MDS and MCDS with the list of top 
genes (same size as MCDS) according 
to 3 centrality measures. Shown is the 
percentage of genes in the MDS or 
MCDS that also belong to the list of 
top genes with respect to degree, 
betweenness and closeness centrality 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 

MDS nodes tend to be central in the network (high closeness) and belong to the 
most connected notes (highest degree).

When considering only outdegree nodes in the directed network, most of the 
top nodes of the MCDS have the highest overlap with the top nodes of the 
degree centrality and the betweenness centrality 
(→ connector nodes). 
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Breast cancer network 

34 

Hamed et al. BMC Genomics 16 (Suppl5):S2 (2015) 

Analyze breast cancer data 
from TCGA →  
ca. 1300 differentially 
expressed genes.

Hierarchical clustering of co-
expression network yielded 
10 segregated network 
modules that contain 
between 26 and 295 gene 
members.

Add regulatory info from 
databases Jaspar, Tred, 
MSigDB. 

(b) – (d) are 3 modules.
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Breast cancer network 
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The MDS and MCDS sets of the nine modules 
contain 68 and 70 genes, respectively. 

Intersect the proteins encoded by these genes with the targets 
of anti-cancer drugs. 

20 of the 70 proteins in the MCDS are known drug targets 
(p = 0.03, hypergeometric test against the network 
with 1169 genes including 228 drug target genes). 

Also, 16 out of the 68 proteins belonging to the MDS genes 
are binding targets of at least one anti-breast cancer drug.

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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|MDS| ≤ |MCDS| 
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Number of MCDS genes determined by the heuristic approach or by the ILP 
formulation and in the MDS. 
Shown are the results for 9 modules of the breast cancer network 

Nazarieh et al. BMC Syst Biol 10:88 (2016) 
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Summary 
Today:

• Network motifs:  FFLs,  SIMs,  DORs are overrepresented
 → different functions, different temporal behavior

• mRNA and protein half-lifes and synthesis rates can be 
measured experimentally with SILAC MS

Next lecture:

• benchmarking of GRN methods based on synthetic data 

• MDS and MCDS identify candidate master regulatory genes
 → who reliable are they when applied to noisy and incomplete data?

• overview of methods to construct GRNs from experimental data


