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Static vs. Dynamic Reconstruction 

Different network topologies   →   different time series
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Reconstruction of static networks?
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DREAM: Dialogue on Reverse Engineering 
Assessment and Methods

Aim: 
systematic evaluation of methods for 
reverse engineering of network topologies 
(also termed network-inference).

Problem: 
correct answer is typically not known 
for real biological networks

Approach: 
generate synthetic data

3

Mathematical reconstruction of Gene 
Regulatory Networks 

Marbach et al. PNAS 107, 6286 (2010)

Gustavo Stolovitzky/IBM
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Generation of Synthetic Data 

Marbach et al. PNAS 107, 6286 (2010)

Model transcriptional regulatory networks consisting of mRNA and proteins.  

Current state of network :
vector of mRNA concentrations x and protein concentrations y. 

Considered is only transcriptional regulation, where regulatory proteins (TFs) 
control the activation of genes; no epigenetics, microRNAs etc.

The gene network is modeled by a system of differential equations 
(equivalent to V8).

mi : maximum transcription rate, 
ri :  translation rate,
fi(.) : so-called input function of gene i.
 λi

RNA , λi
Prot : mRNA and protein degradation rates 
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The input function describes the relative activation of a gene given the transcription-
factor (TF) concentrations y. 
Its value is between 0 (gene shut off) and 1 (gene maximally activated). 

We assume that binding of TFs to cis-regulatory sites on the DNA is 
in quasi-equilibrium, since TF binding is orders of magnitudes faster 
than transcription and translation (which take minutes).

In the simplest case, a gene i is regulated by a single TF j.

In this case, its promoter has only two states: 
either the TF is bound (state S1) or not bound (state S0).

The probability P(S1) that the gene i  is in state S1 at a particular moment 
is given by the fractional saturation, which depends on the TF concentration yj

The input function fi() 

Marbach et al. PNAS 107, 6286 (2010)
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Excursion: the Hill equation 

Goutelle et al. Fundamental & Clinical Pharmacology 22 (2008) 633–648

Let us consider the binding reaction of two molecules L and M:

The dissociation equilibrium constant KD is defined as:

where [L], [M], and [LM] are the molecular concentrations 
of L and M and of the complex LM.

In equilibrium, we may take T as the total concentration of molecule L 

y  is the fraction of molecules L that have reacted (bound)

6 
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Excursion: the Hill equation 

Substituting [LM] by   [L] [M] / KD gives  ( rearranged from                         )  

Back to our case about TF binding to DNA.    
TF j then takes the role of M. Its concentration is yj. 

The probability P(S1) that the gene i is in state S1 at a particular moment is 
given by the fractional saturation, which depends on the TF concentration yj 

kij : dissociation constant for TF j at the promoter of gene i  
nij : Hill coefficient (describing cooperativity) for this binding equilibrium. 
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The input function fi() 

Marbach et al. PNAS 107, 6286 (2010)

P(S1) is large if the concentration yj of TF j is large 
and if the dissociation constant kij is small (strong binding).

The bound TF either activates or represses the expression of the gene. 

In state S0  the relative activation is α0. In state S1 it is α1. 

The input function fi(yj) is obtained from P(S1) and its complement P(S0).

The input function describes the mean activation of gene i as a function of 
the TF concentration yj 
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The input function fi() 

Marbach et al. PNAS 107, 6286 (2010)

This approach can be generalized 
to an arbitrary number of regulatory inputs. 

A gene that is controlled by N    TFs has 2N states: 
each of the TFs can be bound or not bound. 

Thus, the input function for N regulators is
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Synthetic gene expression data 

Marbach et al. PNAS 107, 6286 (2010)

Gene knockouts were simulated for the DREAM 
competition by setting the maximum transcription rate of the 
deleted gene to 0,

gene knockdowns by dividing it by 2. 

Time-series experiments were simulated by integrating 
the dynamic evolution of the network ODEs. 
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For networks of size 10, 50, and 100, 
4, 23, and 46 different time series of 21 time points were provided. 

For each time series, a different random initial condition 
was used for the mRNA and protein concentrations.
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Synthetic gene expression data 

Marbach et al. PNAS 107, 6286 (2010)

Trajectories were obtained by integrating the networks from the 
given initial conditions using a Runge-Kutta solver.

White noise (with zero auto-correlation) with a standard deviation of 0.05 
was added after the simulation to the generated gene expression data. 
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Synthetic networks 

Marbach et al. PNAS 107, 6286 (2010)

The challenge was structured as 3 separate subchallenges with networks of 10, 50, 
and 100 genes, respectively. 

For each size, 5 in silico networks were generated. These resembled realistic 
network structures by extracting modules from the known transcriptional 
regulatory network for Escherichia coli (2x) and for yeast (3x).

Example network  E.coli Example network yeast
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Evaluation of network predictions 

Marbach et al. PNAS 107, 6286 (2010)

(B) Example of a prediction by the best-performer team. 
The format is a ranked list of predicted edges, represented here by the vertical 
colored bar. 
White stripes : true edges of the target network. A perfect prediction would have all 
white stripes at the top of the list. 
Inset shows the first 10 predicted edges: the top 4 are correct, followed by an 
incorrect prediction, etc.  The color indicates the precision at that point in the list. 
E.g., after the first 10 predictions, the precision is 0.7 (7 correct predictions out of 
10 predictions). 

(A)  True 
connectivity 
of one of the 
benchmark 
networks of 
size 10. 

(C) The network 
prediction is evaluated by 
computing a P-value that 
indicates its statistical 
significance compared to 
random network 
predictions.
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Similar performance on different network sizes 

Marbach et al. PNAS 107, 6286 (2010)

The method by Yip et al. (method A) gave the best results for all 3 network sizes. 
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Error analysis 

Marbach et al. PNAS 107, 6286 (2010)

Left: 3 typical errors made in predicted networks.

We will now discuss the best-performing method by Yip et al.
Only this method gives stable results independent of the indegree of the target 
(right) 
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Synthetic networks 

Yip et al. PloS ONE 5:e8121 (2010)

Best performing team in DREAM3 contest

Applied a simple noise model and linear and sigmoidal ODE models.

Predictions from the 3 models were combined.

Mark Gerstein/Yale 
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Cumulative distribution function 

www.wikipedia.org

The cumulative distribution function (CDF) describes the probability that a real-
valued random variable X with a given probability distribution P will be found at a 
value less than or equal to x. 

CDF of the normal distribution

Different normal distributions

The complementary cumulative 
distribution function (ccdf) or simply the 
tail distribution addresses the opposite 
question and asks how often the random 
variable is above a particular level. It is 
defined as
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010)

If we were given:
xa

b : observed expression level of gene a in deletion strain of gene b, and 
xa

wt*:  real expression level of gene a in wild type xa
wt* (without noise)

we would like to know whether the deviation xa
b - xa

wt* is merely due to noise. 

!  Need to know the variance σ2 of the (Gaussian) expression levels, 
assuming the noise is non systematic so that the mean μ is zero.

Later, we will discuss the fact that xa
wt*:  is also subject to noise so that we are only 

provided with the observed level xa
wt .
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010)

The probability for observing a deviation at least as large as xa
b - xa

wt* due to 
random chance is

where Φ is the cumulative distribution function of the standard Gaussian 
distribution.

-> The deviation is taken relative to the width (standard dev.) of the Gaussian 
which describes the magnitude of the „normal“ spread in the data.

-> 1 - CDF measures the area in the tail of the distribution.

-> The factor 2 accounts for the fact that we have two tails (one on the left and 
right each).

19 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010)

The complement of the above equation

is the probability that the deviation is due to a real (i.e. non-random) regulation 
event.

One can then rank all the gene pairs (b,a) in descending order of pb→a.

For this we first need to estimate σ2  from the data.
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010)

Two difficulties exist:

(1)  the set of genes a that are not affected by the deleted gene b is unknown. 
This is exactly what we are trying to learn from the data.

(2)  the observed expression value of a gene in the wild-type strain, xa
wt,   is also 

subject to random noise.
Thus, it cannot be used as the gold-standard reference point xa

wt* in the 
calculations

Use an iterative procedure to progressively refine the estimation of pb→a. 

21 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010)

We start by assuming that the observed wild-type expression levels xa
wt  are 

reasonable rough estimates of the real wild type expression levels xa
wt*. 

For each gene a, our initial estimate for the variance of the Gaussian noise is set 
as the sample variance of all the expression values of a in the different deletion 
strains b1 - bn.

Repeat the following 3 steps for a number of iterations:

(1). Calculate the probability of regulation pb→a for each pair of genes (b,a) based 
on the current reference points xa

wt. 

22 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010)

(1). Calculate the probability of regulation pb→a for each pair of genes (b,a) based 
on the current reference points xa

wt. 

Then use a p-value of 0.05 to define the set of potential regulations: 
if the probability for the observed deviation from wild type of a gene a in a 
deletion strain b to be due to random chance only is less than 0.05, we treat b → 

a as a potential regulation. 

Otherwise, we add (b,a) to the set P of gene pairs for refining the error model.

23 
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Noise model 

Yip et al. PloS ONE 5:e8121 (2010)

(2) Use the expression values of the genes in set P to re-estimate the 
variance of the Gaussian noise.

(3) For each gene a, we re-estimate its wild-type expression level by 
the mean of its observed expression levels in strains in which the expression 
level of a is unaffected by the deletion

After the iterations, the probability of regulation pb→a is computed using 
the final estimate of the reference points xa

wt and the variance of the Gaussian 
noise σ2 .
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Yip et al. PloS ONE 5:e8121 (2010)

For time series data after an initial perturbation, we use differential equations to 
model the gene expression rates. 

The general form is:

with xi : expression level of gene i , 

fi (…): function that explains how the expression rate of gene i is affected by the 
expression level of all the genes in the network, including the level of gene i itself.

Learning ODE models from perturbation time 
series data 

25 
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Learning ODE models from perturbation time 
series data (slide omitted) 

Yip et al. PloS ONE 5:e8121 (2010)

Various types of function fi have been proposed. 

We consider two of them. The first one is a linear model

ai0 : basal expression rate of gene i in the absence of regulators, 

aii : decay rate of mRNA transcripts of i, 

S : set of potential regulators of i (we assume no self regulation, so i not element of S).

For each potential regulator j in S, aij explains how the expression of i is affected by the abundance 

of j. 

A positive aij indicates that j is an activator of i , and a negative aij indicates that j is a suppressor of 

i .

The linear model contains Ι S Ι + 2 parameters aij.

26 
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Yip et al. PloS ONE 5:e8121 (2010)

The linear model assumes a linear relationship between the expression level of the regulators and 

the resulting expression rate of the target.

But real biological regulatory systems often seem to exhibit nonlinear characteristics. The second 

model assumes a sigmoidal relationship between the regulators and the target

bi1 : maximum expression rate of i , bi2 : its decay rate

The sigmoidal model contains Ι S Ι + 3 parameters.

Try 100 random initial values and refine parameters by Newton minimizer so that the predicted 

expression time series give the least squared distance from the real time series.

Score: negative squared distance

Learning ODE models from perturbation time 
series data (slide omitted) 
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Yip et al. PloS ONE 5:e8121 (2010)

•  Batch 1 contains the most confident predictions (pb→a > 0.99) according to the noise model learned 
from homozygous deletion data

•  Batch 2: all predictions with a score two standard deviations below the average according to 
all types (linear AND sigmoidal) of differential equation models learned from perturbation data

•  Batch 3: all predictions with a score two standard deviations below the average according to all types of guided 
differential equation models learned from perturbation data, where the regulator sets contain regulators 
predicted in the previous batches, plus one extra potential regulator

•  Batch 4: as in batch 2, but requiring the predictions to be made by only one type (linear OR sigmoidal) of the 
differential equation models as opposed to all of them.

•  Batch 5: as in batch 3, but requiring the predictions to be made by only one type of the differential equation 
models as opposed to all of them

•  Batch 6: all predictions with pb → a > 0.95 according to both the noise models learned from homozygous and 
heterozygous deletion data, and have the same edge sign predicted by both models

•  Batch 7: all remaining gene pairs, with their ranks within the batch determined by their probability of regulation 
according to the noise model learned from homozygous deletion data

Group predicted interactions into classes 
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Yip et al. PloS ONE 5:e8121 (2010)

Learning ODE models from perturbation time 
series data 

29 
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Yip et al. PloS ONE 5:e8121 (2010)

Interpretation:
A network with 10 nodes has 10 x 9 possible edges

Batch 1 already contains many of the correct edges (7/11 – 8/22).
The majority of the high-confidence predictions are correct (7/11 – 8/12).

Batch 7 contains only 1 correct edge for the E.coli-like network, but 9 or 10 
correct edges for the Yeast-like network.

Prediction accuracy 
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Yip et al. PloS ONE 5:e8121 (2010)

Not all regulation arcs can be detected from deletion data (middle):

Left: G7 is suppressed by G3, G8 and G10
Right: G8 and G10 have high expression levels in wt.
Middle: removing the inhibition by G3 therefore only leads to small increase of G7 
which is difficult to detect.

However the right panel suggests that the increased expression of G7 over time is 
anti-correlated with the decreased level of G3
→ This link was detected by the ODE-models in batch 2

Can all regulations be predicted equally well? 
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Yip et al. PloS ONE 5:e8121 (2010)

Another case:
Left: G6 is activated by G1 and suppressed by G5. G1 also  suppresses G5.
G1 therefore has 2 functions on G6. 
When G1 is expressed, deleting G5 (middle) has no effect.

Right: G6 appears anti-correlated to G1. Does not fit with activating role of G1.

But G5 is also anti-correlated with G6 → evidence for inhibitory role of G5.

Problematic dependencies (II) 

32 
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How does one generate GRNs? 

33 

… (1) „by hand“ based on individual experimental observations 

(2) Infer GRNs by computational methods from gene expression data (see 
reference below) 

     Unsupervised methods are either based on correlation or on mutual   
     information. (We will not cover supervised methods here). 
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Correlation-based unsupervised methods 

34 

Correlation-based network inference methods assume that correlated 
expression levels between two genes are indicative of a regulatory interaction 
(note however end of lecture V7). 

Correlation coefficients range from -1 to 1. 
 A positive correlation coefficient indicates an activating interaction,  
whereas a negative coefficient indicates an inhibitory interaction.  

The common correlation measure by Pearson is defined as 

where Xi and Xj are the expression levels of genes i and j,  
cov(.,.) denotes the covariance, and σ is the standard deviation. 
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Rank-based unsupervised methods 

35 

Pearson’s correlation measure assumes normally distributed values. 
This assumption does not necessarily hold for gene expression data.  

Therefore rank-based measures are frequently used.  
The measures by Spearman and Kendall are the most common.  

Spearman’s method is simply Pearson’s correlation coefficient for the ranked 
expression values 

Kendall’s τ coefficient : 

where Xr
i and Xr

j  are the ranked expression profiles of genes i and j.  

Con(.) denotes the number of concordant value pairs (i.e. where the ranks for 
both elements agree). dis(.)  is the number of disconcordant value pairs in Xr

i 
and Xr

j .  Both profiles are of length n. 
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WGCNA 

36 

WGCNA is a modification of correlation-based inference methods that 
amplifies high correlation coefficients by raising the absolute value to the 
power of β (‘softpower’). 

with β ≥ 1.  

Because softpower is a nonlinear but monotonic transformation of the 
correlation coefficient, the prediction accuracy measured by AUC will be no 
different from that of the underlying correlation method itself. 



Bioinformatics 3 – WS 16/17 V 9  – 

Z-score 

37 

Z-SCORE is a network inference strategy by Prill et al.  
that assumes the availability of knockout experiments that 
lead to a change in other genes. 

The assumption is that the knocked-out gene i in experiment k 
affects more strongly the genes that it regulates than the others. 

The effect of gene i on gene j 
is captured with the Z-score zij: ���

assuming that the k-th experiment is a knockout of gene i, ���
μXj and σXj are respectively the mean and standard deviation 
of the empirical distribution of the expression values xjk of gene j.  
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Unsupervised methods based on mutual 
information 

38 

Relevance networks (RN) introduced by Butte and Kohane measure the 
mutual information (MI) between gene expression profiles to infer 
interactions.  

The MI between discrete variables (here: genes) Xi and Xj  is defined as 

where p(Xi , Xj) is the joint probability distribution of Xi  and Xj   
    (both variables fall into given ranges) and  

p(Xi ) and p(Xj ) are the marginal probabilities of the two variables  
    (ignoring the value of the other one). 
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RELNET 

39 

The RELNET is the simplest method based on mutual information. 

For each pair of genes, the mutual information Mij is estimated and 
the edge between genes i and j is created 
if the mutual information is above a threshold. 

Despite that mutual information is more general than the 
Pearson correlation coefficient, in practice thresholding 
the Mij or Pearson correlation produces similar results. 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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CLR 

40 

The Context Likelihood or Relatedness network (CLR) method 
is an extension of the RELNET method. ���

The method derives a score that is associated to the 
empirical distribution of the mutual information values. ���

In practice, the score between gene i and gene j is defined as follows: 

with the mean μMi and standard deviation σMi of the empirical distribution of the 
mutual information between these genes and other genes, 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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ARACNE 

41 

The motivation of the Algorithm for the Reconstruction of 
Accurate Cellular Networks (ARACNE) is that many similar 
measures between variables may be the result of indirect effects. 

In order to avoid such indirect effects, the algorithm relies on the 
“Data Processing Inequality” (DPI).

This approach removes the weakest edge, that is the one 
with the lowest mutual information, in every triplet of genes. 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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PCIT 

42 

The Partial Correlation coefficient with Information Theory (PCIT) algorithm 
combines the concept of partial correlation coefficients with information 
theory to identify significant gene-to-gene associations. ���

Similarly to ARACNE, PCIT extracts all possible interaction triangles and 
applies DPI to filter indirect connections, but instead of mutual information it uses 
first-order partial correlation as interaction weights. 

The partial correlation tries to eliminate the effect of a third gene l on the���
correlation of genes i and j. 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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C3NET 

43 

The Conservative Causal Core NETwork (C3NET) consists of two main steps. 

In the first step pairwise mutual information is computed. 
Then, non-significant connections are eliminated, according to a chosen significance 
level α, between gene pairs. 

In the second step, the most significant edge for each gene is selected. 
This edge corresponds to the highest mutual information value among the 
neighboring connections for each gene.

→ the highest possible number of connections that can be reconstructed by C3NET 
is equal to the number of genes under consideration. 

C3NET does not aim at reconstructing the entire network underlying gene 
regulation but mainly tries to recover the core structure. 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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Feature selection approaches 

44 

A GRN reconstruction problem can also be seen as a feature selection���
problem. 
For every gene, the goal is to discover its true regulators among all other genes or 
candidate regulators. This approach can integrate knowledge about���
genes that are not TFs and therefore reduce the search space. ���

Typically, this approach only focuses on designing a significance score s(i, j) that leads 
to a good ranking of the candidate regulations, such that true regulations tend to be 
at the top of the list since an edge is assigned between i and j if the evidence s(i, j) is 
larger than a threshold. ���

With the feature selection approach, the scores s(i, j) for all the genes are jointly 
estimated with a method that is able to capture the fact that a large score for a link 
(i, j) is not needed if the apparent relationship between i and j���
is already explained by another and more likely regulation. 

Bellot et al. BMC Bioinformatics (2015) 16:312 



Bioinformatics 3 – WS 16/17 V 9  – 

MRNET 

45 

The Minimum Redundancy NETworks (MRNET) method reconstructs a network 
using the feature selection technique known as Minimum Redundancy Maximum 
Relevance (MRMR), which is based on a���
mutual information measure. 

In order to generate a network, the algorithm performs a feature selection for each 
gene (i ∈[1, G]) on the set of remaining genes (j ∈[1, G] \ i ). ���

The MRMR procedure returns a ranked list of features that maximize the mutual 
information with the target gene (maximum relevance) and, at the same time, such 
that the selected genes are mutually dissimilar (minimum���
redundancy). 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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MRNET 

46 

For every gene, the MRMR feature selection provides a score of potential 
connections where the higher scores should correspond to direct interactions. 

The indirect interactions should have lower scores because they are redundant with 
the direct ones. 

Then, a threshold is computed as in the RELNET method. ���

The MRNET reconstructs a network using a forward selection strategy, 
which leads to subset selection that is strongly conditioned by the first selected 
variables. 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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Genie3 

47 

The GEne Network Inference with Ensemble of trees (Genie3) algorithm uses the 
random forests feature selection technique to solve a regression problem for 
each of the genes in the network. 

In each of the regression problems, the expression pattern of the target gene���
should be predicted from the expression patterns of all TFs. ���

The importance of each TF in the prediction of the target gene is taken as an 
indication of an apparent regulatory edge. 

Then these candidate regulatory connections are aggregated over all genes to 
generate a ranking for the whole network.

Bellot et al. BMC Bioinformatics (2015) 16:312 
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GRN benchmark 

48 

Although real data represents a theoretically more interesting challenge than artificial 
data, they suffer from several drawbacks. 

First, the different algorithms are tested based on only partial knowledge���
of the underlying network, where a false positive could be a still undiscovered true 
positive. 

Second, the intensity of noise is uncontrollable → assessing a method’s robustness to 
varying intensities of noise cannot be done easily with real data. 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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Workflow 

49 

Bellot et al. BMC Bioinformatics (2015) 16:312 
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Generation of synthetic data 

50 

Bellot et al. BMC Bioinformatics (2015) 16:312 

GNW The GNW simulator generates network structures by extracting parts of 
known real GRN structures capturing several of their important structural 
properties. To produce gene expression data, the simulator relies on a system of non-
linear ordinary differential equations (ODEs).

SynTReN The SynTReN simulator generates the underlying networks by selecting 
sub-networks from E. coli and Yeast organisms. Then the experiments are obtained by 
simulating equations based on Michaelis-Menten and Hill kinetics under different 
conditions.
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Computational runtimes 

51 

Bellot et al. BMC Bioinformatics (2015) 16:312 

Different methods have very different runtimes.

Genie3 is the slowest method.

Z-score is the fastest method, followed by CLR.
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Methods generate at most 18% correct links 

52 

Bellot et al. BMC Bioinformatics (2015) 16:312 

Listed are „Area Under Precision Recall” values obtained in an undirected evaluation 
on the top 20 % (AUPR20 %) of the total possible connections for each data source
The AUPR20 % values have different ranges for each data source. 
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Aggregated ranking of methods 

53 

Bellot et al. BMC Bioinformatics (2015) 16:312 

CLR is the best on the majority of the 
datasets, but it does not���
obtain the best results across all the 
different data sources���
and kinds of data. 

In the case of complete knockout���
data, the best-performing methods are 
the Zscore followed by PCIT and 
GeneNet. 

Genie3 and MRNET exhibit 
competitive performances. However, 
these methods are not as fast as CLR 
in terms of computation time.
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Summary 

54 

Network inference is a very important active research field. 

Inference methods allow to construct the topologies of gene-regulatory 
networks solely from expression data. 
Also functional interpretation of exp. data, guiding inhibitor design etc. 

Current GRN models are limited by  
(1)  incomplete knowledge about TF → target gene relations 
(2) about the regulatory effects (activation vs. repression) 

(3) Performance on real data is lower than on synthetic data  
because regulation in cells is not only due to interaction  
of TFs with genes,  
but also depends on epigenetic effects (DNA methylation,  
chromatin structure/histone modifications, and miRNAs). 


