
Brownmove-Setup-Documentation
Tihamér Geyer

Zentrum für Bioinformatik, Universität des Saarlandes, D–66041 Saarbrücken, Germany
tihamer.geyer@bioinformatik.uni-saarland.de

V1.7 — Sep. 2012 for Brownmove 1.4

The Structure of a Simulation
Each simulation is performed inside a so-called "cup" (remember the "cup of hot tea" used to drive the
"Heart of Gold"?), a container for the walls that encloses the actual simulation volume and a number of
"proteins", which are the moving objects.

A "protein" is a hierarchical structure defining a bead-spring model of a polymer or a biological protein. The
individual beads move and interact with other beads independently. A protein thus contains at least one rigid
gestalt object, resembling the "beads". Each gestalt again contains a number of shapes, which model the
vdW surface of this rigid unit, the effective charges, the hooks to which the springs are attached, or a shape
for the hydrodynamic interactions. This structure is shown in the following figure. The GeomShape object is
special as it is not involved in collecting forces from the interactions, but converts the total force and torque
into the respective displacements. Consequently, this shape must always be present, whereas the other shapes
only have to be present if the corresponding interactions are used in the model.

Protein

Bond

Gestalt

0…∞1…∞

EStatShape

vdWShape

BondSHape

HiShape
GeomShape

1 0,1 0,1 0,1

0,1

Charge

Sphere

Hook

Sphere

1…∞

1…∞

1…∞

1

Interactions
The "natural" units of brownmove are one nanometer for distances, one picosecond for time intervals, one
kDa for masses, and one kJ/Mol = 9.9278 x 10–4 kDa nm2 ps–1 for energies. Charges are given in elementary
charges. Thus, the vacuum dielectric constant ε0 = 5.728 x 10–4 e2 (kJ/mol)–1 nm–1. Forces are given in 1 kJ/
mol nm–1 = 1.67 pN. Densities are in particles per nm3, which means that 1M = 0.6022 nm–3.

Some more constants in the brownmove units: Boltzmann constant: kB = 8.3145 x 10–3 kJ/mol K–1; viscosity
of water at 20°C (293 K): η0 = 0.532 kDa nm–1 ps–1. Consequently, translational diffusion ceofficients are
given in nm2 ps–1.

Electrostatic Interactions
Electrostatic interactions are modelled as shielded point charges a la Debye-Hückel. The interaction energy
between two point charges qi and qk (on different gestalt objects) is

Eik =

1

4πεε0
qiqk

exp[−κ(rik −Bik)]

(1 + κBik/2)2rik

b1

b2

r12

Here, ε is relative dielectric constant of water and ε0 the vacuum dielectric constant. The shielding from the
ions is captured in the inverse Debye length κ = 1 / lD. Mostly, the charges are embedded inside the protein,
where no counter ions shield the interactions. Bik = bi + bk is the sum of the the effective burial depths of the
two charges, bi and bk, respectively.

If no value is specified, brownmove uses a typical physiological ion strength of 0.9 M as a default, i.e., lD =
1.01 nm.

van-der-Waals Interactions
In brownmove, the van-der-Waals interactions denote the effective short ranged repulsions and attractions
between the protein surfaces. For this a number of different force types are implemented: the usual Lennard-
Jones potential, a constant force, and a potential that models the interaction between metallic beads with a
polymer coating.

The first type is the Lennard-Jones potential. This can also be used to model hydrophobic interactions. For
this, an r–12, an r–6 , and an r–3 term are used for these phenomenological interactions between two of the
spheres with a distance r = r12 – (r1 + r2) between their closest points:

E = C12

(
r0

r + dr

)12

+ C6

(
r0

r + dr

)6

+ C3

(
r0

r + dr

)3

b1

b2

r12

r1

r2

r12

r

Usually, C12 would be positive and C6 negative. As usual, r0 determines the width of the potential (well). The
potential is defined such that when the two vdW spheres touch, i.e., at r = 0, the repulsive potential has a
positive value of V0 = 1 kBT. For the usual repulsive Lennard-Jones-6-12 interaction, i.e., with, C12 > 0 and
C3 = 0, this leads to

dr = r0

[
2C12√

C2
6 + 4C12V0 − C6

]1/6

The same formula (with a different V0) can be used to determine a minimal distance Rmin (which is actually
negative) from which on the interaction is linearized for numerical stability. If the potential should be
linearized for, e.g., V ≥ 5 kT, then Rmin = dr(V0 = 5kT) – dr(V0 = 1kT), The last parameter is a maximal cutoff
radius Rmax. For distances r > Rmax the evaluation of the interparticle force is skipped and a zero returned. To
avoid numerical artefacts, Rmax should be larger than the extent of the potential.

To allow for different interaction parameters between different pairs of particles, each vdW sphere has an
index, named the "vdW color". At setup, for any occuring pair of colors a set of interaction parameters {r0,
dr, C12, C6, C3, Rmin, Rmax} has to be specified. These parameters are globally visible in the simulation.

For vdW interactions between particles and walls, the same form of the interaction potential is used with the
same global vdW color indices.

The next type of interaction was implemented to describe the interaction of alcyl thiol coated gold nanobeads
[Geyer, Born, Kraus, PRL (2012)]. It consists of a dispersive Hamaker type attraction between the gold cores
plus a repulsion from the overlap of the ligand shells. The Hamaker potential between two spheres of equal
radii R at a center-to-center distance of r has the form

VHam(r) = −ASS

6

[
2R2

(r2 − 4R2)
+

2R2

r2
+ ln

(
r2 − 4R2

r2

)]

.
Typical values of the Hamaker constant ASS for gold are about 125 kJ/mol = 1.3 eV. Note that this attractive
potential diverges for r < 2R. In the nanobead project we therefore needed a repulsion that diverges faster
than the Hamaker potential for stable simulations. This was modeled from the mutual overlap volume
between the ligand shells times a distant dependent potential for jamming the alkyl thiol ligand chains of
length L into each other:

 Valk(r) =
ALL

(
R−∆
R+L

)2

1−
(

r−∆
r−(R+L)

)2

[
2(R+ L)3

3
− r(r + L)2

2
+

r3

24

]
 for r ≤ 2(R + L)

Here, ALL describes the overall strength of this term, while Δ describes a bending of the ligands so that the
two sphere surfaces may come closer than L.

A third variant for these effective short ranged interactions is a linear potential, i.e., a constant force that acts
when the surfaces of the two spheres (or of a sphere and a wall) come closer than a specified distance.

Sticky Interactions
In coarse-grained simulations the particle surfaces are often much smoother than for example those of real
proteins or of the above mentioned alkyl thiol coated gold nanobeads. To allow for some "stiction" (static
friction) between the otherwise smooth shapes, so-called sticky interactions were implemented. In these, a
layer is defined around a sphere, and when the layers from sticky spheres of two particles overlap, a
temporary harmonic bond of length zero is formed halfway between the centers of the two spheres, i.e., the
two shells are attached to each other in the overlap region. This bond may break again when the
displacement during a timestep exceeds a specified threshold, i.e., when the force on the bond becomes too
strong. However, the bond may be re-established when the two spheres are still overlapping.

Though these sticky interactions were introduced to describe the "sticky" overlap of ligand shells, they can
also be used to model for example unspecific, transient binding between proteins due to their surface
roughness and small hydrophobic patches.

Hydrogen Bonds
A hydrogen bond with its directionality is implemented in the following way: for both donor and acceptor,
the positions of the heavy atom and of the hydrogen are defined. Then the two "hydrogens" attract each other
with an inverted Gaussian potential, while the heaavy atoms repell each other with a harmonic force when
they are closer than the combined distances between the heavy atoms and the respective hydrogen.

Bonds
Bonds are harmonic and quartic interaction potentials between the "hook-up points" in the bondShape
objects with (here for only a harmonic interaction)

Eik =

k2
ik

2
(rik − Lik)2

For any pair of hooks, a spring constant kik and a rest length Lik have to specified within the scope of the
protein. A bond can not be broken.

To be able to discern between local and global interactions, also bonds of vdW- and Coulomb-type can be
defined. They use the same interactions as between the respective shapes. When such a bond is defined
between two gestalten, the interactions between the corresponding shapes are ignored.

Hydrodynamic Interactions
The hydrodynamic interactions are modelled with the truncated expansion algorithm as described in [T.
Geyer and U. Winter, "An O(N2) approximation for hydrodynamic interactions in Brownian dynamics
simulations", J. Chem. Phys., 130 (2009) 114905]. For the translational interactions, the modified Rotne-
Prager-Yamakawa tensor of Garcia de la Torre and Bloomfield [Biopolymers 16 (1977) 1747] is used which
allows for particles of different sizes. Note that this form of the RPY tensor diverges with increasing particle
overlap. If the radii of the HIShape spheres are set to zero, the implemented version of the RPY tensor
collapses to the Oseen form. To test how important HI is for the system behavior, the strength of the HI can
be changed by a global scaling factor (which is there for only this purpose and has no physical meaning).

By default, only translational HI are used. To enable (the yet not so thoroughly tested) rotational HI, set the
flag -DHI_WITH_ROTATION in the file config.mk during compilation.

External Forces
External position dependent forces can be attached via hook-up points in an ExternalShape object. Currently,
a constant force, a harmonic potential, and a shear force are implemented. The actual force is the product of
the (position dependent) external force F(r) and a "weight" α, such that the same external potential can excert
different forces on different hook-up points. For a gravitational force, α would be the mass, while an α
proportional to the particle radius leads to the same drift velocities of different sized particles.

The shear force is calculated with the formula given below. Note that the force f and the normal n do not
have to be normalized or even orthogonal to each other (though this would be the usual case).

!F (r) = α

(
!n · (!r − !R0)

)
!f

b1

b2

r12

r1

r2

r12

r

D

H

Ar

!

R0 f

n

r

Propagation algorithms
Brownmove used a Langevin Dynamics (LD) propagation algorithm formulated in terms of forces as
described in [U. Winter and T. Geyer, "Coarse Grained Simulations of a Small Peptide: Effects of Finite
Damping and Hydrodynamic Interactions", J. Chem. Phys. 131, (2009) 104102]. This formulation allows to
continuously blend from the LD to the standard Ermak-McCammon BD propagation by setting the particle

mass to zero. It even allows for mixed setups where small particles are "massless" and overdamped while for
the large particles accelleration is considered explicitly.

Setup Configuration File
The simulation package "brownmove" is essentially a many-particle BD and LD library, but can also be used
as a black-box simulation tool. For this, many interesting simulation scenarios can be defined through
configuration files as described below. At least two files are required: one global configuration and one or
more files that define the proteins. Often, there is a another file describing the simulation box (environment).

General Stuff
This central configuration setup file contains global information about the simulation like length, timestep,
output interval, general interaction parameters, or output scripts as well as definitions of the simulation box
and the proteins.

Configuration lines start with a case-insensitive keyword followed by the required data. Any text beyond the
last required data is ignored and can be used for comments (even without a leading '#'). Keywords and data
are separated by whitespace, i.e., any number of spaces or tabs. Leading whitespace is ignored, indentation
can be used freely to increase readability. Empty lines or lines starting with a '#' are considered comments
and are skipped.

To make the setup files more general and flexible, a simple text replacement feature allows to define
arbitrary constants. A definition is indicated by the keyword "constant" followed by the (case-sensitive)
label. The rest of the line (up to the actual line end or a comment character) is stored as replacement string.
Note that (currently) trailing whitespace is copied, too, whereas the whitespace between the label and the
first non-white character of the replacement can have any length. An occurance of a constant is then
indicated by a preceeding "$" sign. Constant names should be unique, i.e., one label should not be a substring
of another constant's label. Constants can occur anywhere in the setup files and are effective after they have
been declared. A subsequent re-definition of a constant with a different replacement string overwrites an
earlier definition. In the following example a constant MASS is defined, which is then used to to declare a
constant to be used as the name of an output file.

constant MASS 134.5
constant OUTFILE attraction_m$MASS.snapshot

In this example the outputfile name evaluates to "attraction_m134.5.snapshot" and can be used via
$OUTFILE.

Since version 1.2 brownmove also accepts constant declaration on the commandline allowing, e.g., to scan a
parameter range from a script without the need to change the input files for every parameter value. In the
following example, a parameter VDW_RADIUS is defined upon start of brownmove. Note that these
definitions follow the input file (here „mysetup.bsc“) and are effective before any input file is parsed and that
they can potentially be overridden by a later definition.

call brownmove with a constant
./brownmove mysetup.bsc -d VDW_RADIUS 5.24

Another addition is the "evaluate" keyword which defines a constant by evaluating the remainder of the line.
This allows to perform simple calculations during the setup process. The expression is evaluated by a
systems call to /bin/perl after any constants have been replaced by their actual values.

define the radius and the volume of a sphere
constant radius 2.5
evaluate volume 4.0 * 3.1415 / 3.0 * $radius * $radius * $radius

The "echo" keyword allows some kind of logging output. Anything following this keyword is simply echoed
to the console after variable substitution.

Parts of a setup file (both in the global setup and in a protein or box definition) can be repeated with the
"repeat - endrepeat" keywords. "Repeat takes a counter variable (constant), a start value and an end value.
When the parser finds repeat statement, it just reads and stores the following lines until it runs into an
"endrepeat". Then, the counter variable is set to the start value and when this value is not larger than the end
value, the stored text is executed. Then, for the next iteration, the couter variable is incremented by 1 and the
stored text is evaluated again until the counter value is larger than the end value. The following example
places five (previously defined) proteins along the x axis with 5 nm between the centers. Any indentation is
ignored and can be used to improve readability.

repeat PLACE_CTR 1 5 # runs PLACE_CTR through 1, 2, 3, 4, 5
 evaluate XPOS 5 * ($PLACE_CTR - 3)
 echo ++++ placing protein $PLACE_CTR at x position $XPOS
 startwith myProtein $XPOS 0.0 0.0 0.0 1.0 0.0 0.0
endrepeat

Repeat-endrepeat loops in the main setup file are independent of loops in protein or box definitions, but
currently, loops can not be nested within one file.

The first section of the global setup file usually defines the timestep and the simulation duration in timesteps.
The output interval is defined in units of timesteps. There is no specific order of these three lines, but they all
have to be present.

parameters for the simulation
timestep 100.0 # [ps]
runsteps 5000000 # length of sim in timesteps
outsteps 100 # output every .. timesteps

Some of the global parameters can also be changed from their defaults. Currently, these are the solvent
temperature (defaulting to 293 K = 20°C), the inverse Debye length κ = lD–1, which defaults to 0.99 nm–1,
i.e., a physiological ion concentration of 0.09 M, and the relative dielectric constant of water, εH2O = 78. For
simulations with explicit ions, where no implicit shielding of the Coulomb interactions occurs, set κ = 0.

solvent temperature in Kelvin
temperature 293
shielding parameter for Coulomb interactions: kappa = 1/lD
kappa 0.99
relative dielectric constant of water
eps_H2O 78.0

Then, there are some optional keywords to change the simulation's behavior.

The following keyword prevents the final dump of the proteins after the sim
noProteinDump

When you want to continue a simulation from the final dump, you can use the keyword "offsetsteps" to start
it from a given timepoint. When offsetsteps is set, the initial particle positions are not put out so that the
output files can be concatenated directly.

start simulation at a later time, e.g., to continue a too short run
offsetsteps 20000

if this parameter is present,
the random number generator is seeded with this fixed value
randomseed 1998

define a global cut-off for hydrodynamic interactions
hicutoff 20.0 # [nm]

a scaling factor for the strength of the HI
hiscale 1.0

The HI cutoff is currently an untested experimental setting and should not be used.

The output of the simulation is piped into an analyzer script, where a certain pre-processing or sorting of the
sometimes vast amounts of data can be performed. This script is defined with the "analysis" keyword. It can
be as simple as "cat", which dumps the output to the console, or a pipe of scripts and programs doing a
sophisticated on-the-fly analysis. Here are some examples. Note that anything after the keyword and the first
following whitespace is passed on to the shell within single quotes. Consequently, in this line there should
not be any comments at the end of the command.

analyzer-script
analysis cat
analysis cat > fish.txt
analysis grep Punkt | cut -f4-6 > fish.txt
analysis grep timeline > anzahl_x-20.txt

Global Interaction Definitions
The first set of interaction parameters concern the van-der-Waals interaction. Each vdWShape of a protein is
labelled with a vdW-color (starting with 0) according to its type. Here the respective parameters are defined
for all potential pairs of vdW interactions. Undefined color pairs are initialized with zero, i.e., no interaction.
In the following example, a single vdw color will be used. Various forms for this effective interaction can be
modelled with the most important being the Lennard-Jones type. Of course, different types will take different
numbers of parameters.

number of different vdW colors to be used
vdwarraysize 3
Lennard-Jones type: label LJ
vdwparms clr1 clr2 type C_12 C_6 C_3 R_0 DR Rmin Rmax
vdwparms 0 0 LJ 9.744594 0.0 0.0 1.0 1.122562 -0.14088552 10.0
Nano-Bead potential: label MB (here: potential min -2kT at 0.8nm separation)
vdwparms clr1 clr2 NB ASS ACC LC DELTA Rmin Rmax
vdwparms 1 1 NB 125 1.67 1.5 0.95 0.65 10.0
linear slope: label LIN (force when distance < DR, positive = repulsive)
vdwparms clr1 clr2 LIN force DR RMIN RMAX
vdwparms 2 2 lin 100 0.0 -0.1 0.1

(Note: for historic reason, also "MB" can be used for the nano bead potential)

For the sticky shapes a similar definition scheme is used, but here only a single index is used. If two sticky
spheres have different indices, then no interaction takes place. The stiction is defined independently for
radial and angular displacements. For each direction, a force constant for the harmonic potential and a
maximal displacement where the bond breaks have to be given. The binding energy is then determined by
the potential at the maximal bondlength. A "viscosity" parameter between 0 and 1 defines whether the
attachment point remains where it was initially set (at a value of 0) or moves to the new center between the
spheres (at a value of 1). At an intermediate value the attachment point is moved by just that fraction of the
displacement.

parameters for the sticky beads
stickyarraysize 1
Parameter line: color C_radial DR_radial C_angular DR_angular viscosity
stickyParms 0 $C_STICKY $DR_STICKY $C_STICKY $DR_STICKY 0.0

The hydrogen bonds interaction parameters may also be changed from their default values with the following
definitions:

hbond_depth 25.0 # depth of the potential well in kJ/mol
hbond_width 0.05 # width of the inverted-Gaussian H-H-potential
hbond_cutoff 1.5 # cut-off for hbond calculation (H-H-distance)
hbond_spring 10.0 # spring constant for the donor-acceptor repulsion

External (position dependent) forces are defined with the externalForce keyword, a label, the type, and a
number of contect specific numbers. Currently, the type may be "constant" for a position independent
vectorial force, "harmonic", which is defined by the position of its minimum and the spring constants in x, y,
and z direction, or "shear" with its position and the two vectors as explained above. The simulation does not
care whether the two vectors are orthogonal, i.e., skewed force fields may be used.

These definitions of the external forces must preceed the protein definitions, because currently the external
interactions on the particles are connected to the external fields during protein assembly.

definition of external forces
single vector for constant force
externalForce towardsX constant 10.0 0.0 0.0
position of min and spring constants for harmonic
externalForce Well harmonic 0.0 0.0 0.0 10.0 100.0 1000.0
origin and two directions for shear
externalForce Drift shear 0.0 0.0 0.0 1.0 0.0 0.0 0.0 100.0 0.0

Protein Definitions
The next part of the configuration file defines the proteins used in the simulation. Each protein type is
defined on a line of its own starting with the keyword "protein", followed by a label for further reference, the
filename containing the definition (see below for their format) and the respective position in this file (a
protein definition file may contain multiple protein definitions). These definitions must preceed any
defintions of the simulation box.

protein definitions: label file position (starting with 1)
protein singleBead chargedBead.browndef 1

The labels assigned to the proteins are used within the general setup process only. They are used to place
proteins directly into the box. Reservoirs, which are then attached to the walls, are defined as follows with
the keyword, a unique label, the (initial) density, and an inverse volume (see [T. Geyer, C. Gorba, V. Helms,

"Interfacing Brownian dynamics simulations", J. Chem. Phys. 120 (2004) 4573-80] for how these constant
density boundary conditions work).

Reservoirs of constant density
reservoir label initial density inv. Vol
reservoir PunktRein 4e-4 0.0
reservoir PunktRaus 0.0 1.0

The inverse volume corresponds to the change in the reservoir density when one particle is added or taken
out. In the above example PunktRein is an inifinite reservoir with a constant density, whereas PunktRaus can
be used to directly count the particles in it. A reservoir with a volume of 10 x 10 x 10 nm3 consequently has
an inverse volume of 0.001.

Simulation Box
If one or a few freely diffusing polymers in an unbounded volume are simulated, this part can be omitted.
Otherwise the simulation box will be bounded by walls, which can be simple reflecting walls, reservoirs, or
walls with a gestalt. A special class of reflecting walls are periodic walls, which displace the particles by one
box length upon contact. Such a quasi periodic setup can be defined directly with the following line:

(quasi-)periodic scenery
with the boxsizes in X, Y, and Z directions
periodicBox 0.0 20.0 20.0 # each in [nm]

If any of the dimensions is ≤ 0, no periodicity in that direction is set up. The above 2D box thus has walls at
y = ±10 nm and z = ±10 nm, but none bounding the x-direction.

With periodicBox an internal flag is set that tells the shapes to consider an extra copy of the interaction
partner one box length away on either side. A periodicBox should thus be larger than a reasonable cutoff for
the interactions. Any other scenery is defined in an extra file and given to the parser as

the scenery: walls, etc - only one scene file allowed
box box.browndef

The format of this file is explained further down. Note that periodicBox may be followed by a box definition
to, e.g., complete a 2D periodic setup.

Initial Protein Positions
The last part of the global setup file consists of optional lines that directly place proteins into the simulation
box. In the following example the simulation is seeded with four of the above defined proteins with the label
singleBead. The seven numbers define the initial position: three positions (x, y, z), a rotation angle (in
degrees) and a unit vector defining the rotation axis.

start sim with these proteins in place
(use labels from above)
startWith singleBead -4.0 -4.0 -4.0 0.0 1.0 0.0 0.0
startWith singleBead 4.0 -4.0 -4.0 0.0 1.0 0.0 0.0
startWith singleBead -4.0 4.0 -4.0 0.0 1.0 0.0 0.0
startWith singleBead 4.0 4.0 -4.0 0.0 1.0 0.0 0.0

Random initial position can be specified with the "startWithIn" keyword. It takes the protein label and the
maximum and minimum positions along the x, y, and z axis, repectively, plus an exclusion radius that should
enclose the complete protein. When no exclusion radius is given, startWithIn estimates the size of the

molecule from the vdW spheres. During the random placement, collisions of these exclusion spheres are
detected and a new protein position is tried when an overlap with any of the previously placed proteins
occurs. After 10000 unsuccessfull tries to place a protein the parser gives up and you have to start
brownmove another time. These two keywords can be combined when an optional exclusion radius is given
to startWith. Note that startWith itself does not care for collision, so startWith should preceed startWithIn.

startWith largeProt 15.0 0.0 0.0 0.0 1.0 0.0 0.0 12.5
startWith largeProt -15.0 0.0 0.0 0.0 1.0 0.0 0.0 12.5
repeat PROT_CTR 1 100 # add another 100 randomly placed proteins
 startWithIn myProt -$XMAX $XMAX -$YMAX $YMAX -$ZMAX $ZMAX $PROT_RADIUS
endrepeat

If a region of the simulation box should initially remain empty, exclusion spheres can be placed manually
with the excludedvolume keyword.

no randomly placed proteins within 10 nm of position (-3, 5, 2.3)
excludedVolume -3.5 5.0 2.3 10.0

Obviously, such a definition of a reserved region can only be considered in later startWithIn lines.

A molecule placed with "startWith" or "startWithIn" can be immobilized for a specified time so that it does
not move during, e.g., an intial equilibration phase. It is however included in the calculation of the
interparticle forces. The immobilization time is specified as an additional optional number after the exclusion
radius (thus, an exclusion radius has to be specified in this case).

place a protein and make it sit until t = 100000 ps
startWith largeProt 0.0 0.0 0.0 0.0 1.0 0.0 0.0 12.5 100000

Output of Reservoir Densities and Protein Numbers
Reservoir densities and protein numbers can be printed into an additional output file, which has to be defined
via the output keyword. Then, reservoir densities and particle numbers can be given:

output of reservoir densities
outputfile untenraus.txt
density UntenRaus
number Punkt

The reservoir names are the labels used above and the protein names are the ones that finally appear in the
output file, i.e., the ones in the protein definition file. Note that first all densities are given in the output and
then all particle numbers.

Protein Definition File
A protein definition file resembles the hierarchical structure of the proteins. Each section starts with a certain
keyword and ends with a corresponding "End" tag. Indentation is optional, but may increase readability.

The outermost level starts with the Protein keyword and a label for the protein. This label is then used in the
output file to denote the type of protein. This line is followed by the definition of the origin of the protein's
coordinate system and an effective CM diffusion coefficient needed for the injectors of the reservoirs.

Protein Polymer
 position 0.0 0.0 0.0 0.0 1.0 0.0 0.0
 # eff. translational CM diff. coeff., required for molecule injector
 D0 1e-4 # [nm^2/ps]

Bonds
If the protein contains harmonic bonds between the individual Gestalt objects, these are defined next. Each
bond is defined with a label for further reference within the scope of its protein, its type, and some context
dependent parameters. The most basic type is a harmonic spring defined by its length and the spring constant
in units of kJ Mol–1 nm–2. Also available are Coulomb type bonds and vdW bonds. For Coulomb bonds, the
first parameter is the product of the two charges divided by the local dielectric constant, the sum of the two
shielding radii, and an inverse Debye length κ. vdW bonds are specified with the same parameters as for the
global vdW definitions (except for the colors which are not required here). Thus, each bond gets its own set
of interaction parameters.

 Bonds Federn # the Bonds-label is a actually a dummy argument :-)
 # Label type parameters...
 # harmonic: length spring-const
 B12a HO 0.38 12000
 # Coulomb bond: q1*q2/eps_rel B12 kappa
 C12b Coul -0.756 0.1 0.0
 # vdW bond: LJ vdW-parameters starting from C12, ...
 V13 vdw $R12 9.745 0.0 0.0 1.0 1.122 -0.141 10.0
 :
 End Bonds # saying "Bonds" is optional

For some applications the protein conformation should be in one of two states like conformational changes
or dihedral angles in cis or trans configurations. These can be modelled with springs that have an additional
quartic term. These bonds of type "QU" are parametrized in the setup file with the distances of the two
minima, x1 and x2, and the height of the potential barrier ΔV inbetween (in units of kJ/Mol). The parser
converts these data into the respective prefactors for the quadratic and the quartic part of the potential.

 # Label type x_1 x_2 deltaV
 B03 QU 4.0 8.9443 20.0

For this example, the prefactors are k2 = –6.545 and k4 = 0.535 and the potential is centered at a bondlength
of R0 = 6.472.

Note that in the bond definitions the label of the bond is case sensitive, but not the type keywords. So, "QU"
is eqivalent to "Qu", "qu", or "qU".

Gestalt Objects
Now, the gestalten, which represent the physical objects, can be defined. Analogous to the protein definition,
they start with the opening tag plus a label, their position in the protein's ccordinate system, and the
parameters for diffusion. These consist of the translational and rotational diffusion coefficients (in units of
nm2/ps and ps–1, resp.), the mass m in kDa, and an effective radius a used to calculate the rotational moment
of inertia L = 2/5 m a2. When the mass is set to zero, a concentional overdamped Brownian propagator is

used, while a Langevin propagator is used for m > 0. The required damping parameters are determined from
the mass and the (globally set) viscosity.

 Gestalt SER1
 position 1.266 1.187 -0.675 0.0 1.0 0.0 0.0

 # D0 D0_trans D0_rot mass radius
 D0 9.42E-4 0.01361 0.10509 0.23

Inside the gestalt, the various shapes can be defined. All of them are optional. When the above Gestalt
section is closed with an End tag, a diffusing particle without any interactions is defined. Every shape gets a
label which is used for diagnostic information during the setup and later when the proteins are dumped.

The BondShape references the bonds defined above and defines where they are attached relative to the
gestalt's center.

 BondShape SER1-Hooks
 # position Bond label
 -0.0323 0.0023 0.0030 B12a
 0.0000 0.0000 0.0000 B12b
 :
 End

The VdwShape defines one or more vdW spheres, i.e., their position relative to the gestalt's origin, their
radius, and their vdW color. Again, any text after End is ignored.

 VdwShape SER1-vdw
 # pos r color
 0.00 0.10 0.00 0.371 0
 End SER1-vdw

The charges are defined analoguously. They are characterized by their charge (in unit charges) and the
shielding radius.

 EstatShape SER1-E
 # position charge radius
 -0.016 -0.132 0.069 0.51 0.2
 -0.109 -0.213 0.072 -0.51 0.2
 0.107 0.159 -0.124 -0.66 0.177
 End

Sticky spheres are defined via a StickyShape. For each of the spheres you have to give the center position,
two radii, and a color index. The first radius is used when there is no transient bond yet, i.e., when stiction
should set in, while an existing, but just broken bond can be re-established within the second radius.

 StickyShape Patch
 # position R_in R_out color
 0.0 0.0 0.0 4.0 4.5 0
 End

Hydrogen bonds can be defined between a donor hydrogen atom and an acceptor atom (note that this is
different from the usual definition of an H shared between two N or C atoms). Both the donor and the
acceptor are defined by their position and a vector pointing towards the virtual hydrogen atom sitting
halfway between donor and acceptor. For a weak donor (acceptor) the multiplier value should be smaller
than one, while a value larger than one indicates a strong donor (acceptor).

 HBondShape HB

 # keyword donor position hydrogen position scaling factor
 donor 1.8 0.0 0.0 2.0 0.0 0.0 1.0
 # keyword acceptor pos. hydrogen pos scaling factor
 acceptor -1.4 0.7 0.5 -1.5 0.65 0.5 1.1
 End

The HI shape may only define a single HI sphere, which is fixed around the gestalt's center. Therefore, the
only parameter is its radius. Note that a radius of zero does not mean that there is no HI but that then
effectively the Oseen tensor is used for this shape.

 HiShape SER1-HI
 0.17
 End

In order to apply external forces to a Gestalt, hook-up points have to be defined via an ExternalShape object.
Each hook-up point is defined via its position, the label of the external force as defined in the main setup,
and a weight α. The following definition with the fields defined as above keeps the particle centered around
the origin via the harmonic constraints of "Well" and its x-axis aligned parallel to the linear field "towardsX".

 ExternalShape Orienter
 # position fieldLabel weight
 2.0 0.0 0.0 towardsX 1.0
 -2.0 0.0 0.0 towardsX -1.0
 0.0 0.0 0.0 Well 1.0
 End

To simplify the analysis arbitrary points of the Gestalt can be marked with "MarkerShape" objects. These are
ignored during the simulation and only used in the extractor alternatively to the vdW shapes. They are
defined with a position and an index, which is used later together with the MarkerShape's label to identify
the points. The index can also be a text string without spaces, i.e., a "word"

 MarkerShape Marks
 0.0 0.0 0.0 1
 1.85 0.0 0.0 two
 End

After the closing End tag for the Gestalt, more Gestalten within the same protein may follow to build up for
example a bead-spring polymer or a flexible protein of multiple rigid parts. A closing End then finalizes the
protein.

Scene Definition File
The scene definition file specifies the walls around the simulation box. Its structure is similar to the protein
definition files (actually, the same parser is used for both). A wall definition starts with the Wall keyword
plus a label, followed by the wall's position. A wall is initially created in the y-z-plane at x = 0, its normal
thus points into the positive x-direction. The final position and orientation of the wall has to be given relative
to this initial setting. Note that walls are mathematical planes, i.e., they are infinitely large.

bottom of the box in the y-z-plane at x = -20
Wall bottom
 position -20.0 0.0 0.0 0.0 1.0 0.0 0.0

If this wall shall be a basic reflecting wall, only the closing End tag has to be added. Here we assume that the
wall interacts with the diffusing particles via a vdW potential. We then need a gestalt with its position

relative to the wall and a VdwShape. For a wall, the normal of the vdW surface is the same as for the wall
itself, thus only the relative displacement along this normal and the color have to be specified. However, a
wall may also contain vdW spheres, which are defined as in a protein.

 Gestalt bottom
 position 0.0 0.0 0.0 0.0 1.0 0.0 0.0

 VdwShape vdwUnten
 # type:wall offset color
 wall -0.3 0
 # also possible: a vdW sphere attached to the wall
 # position radius color
 0.0 0.0 0.0 4.0 0
 End
 End

This gestalt may also contain charges in the same way as a protein (not shown here).

A vdW shape specific for a wall is a so called "block" with a centered cylindrical hole along the x-axis. It is
defined via its position (including orientation), its extension along the three directions, the radius of the
cylindrical hole, and its vdW color. The following code defines a quadratic slab of area 60 x 60 nm2 with a
thickness of 4 nm and four holes at (y, z) = (±15, ±15) nm. This slab is centered at the origin and not rotated.
When the side walls of the simulation box are placed at y = ± 30 nm and z = ± 30 nm, this slab is a barrier
with four holes. If the side walls are further away, the proteins may circumvent the slab.

Wall Mitte
 position 0.0 0.0 0.0 0.0 1.0 0.0 0.0

 Gestalt Block
 position 0.0 0.0 0.0 0.0 1.0 0.0 0.0

 VdwShape vdwBlock
 # block x y z lx ly lz cyl_radius color
 block 0.0 -15.0 -15.0 2.0 15.0 15.0 10.0 0
 block 0.0 -15.0 15.0 2.0 15.0 15.0 10.0 0
 block 0.0 15.0 -15.0 2.0 15.0 15.0 10.0 0
 block 0.0 15.0 15.0 2.0 15.0 15.0 10.0 0
 End
 End
End

To allow for particle exchange and interfacing to reservoirs, injectors and acceptors are used. They are
defined with the respective keywords and a label. They both require a definition of a rectangular mask with
the mask's center and how far it extends from there. These coordinates are defined relative to the wall's
internal coordinate system. Then, one (or more) molecules are assigned to injector and acceptor via the labels
from the protein configuration file. A top wall in a cubic simulation box centered around the origin and
interfacing to a constant density region at x > 20 nm would be defined as follows:

top: y-z-plane at x = +20, normal pointing towards -x
Wall Oben
 # move to (20, 0, 0) and rotate by 180 degrees around y-axis
 position 20.0 0.0 0.0 180.0 0.0 1.0 0.0

 Injector Rein
 # Mask Center extension (+-ly +-lz)

 Mask 0.0 0.0 20.0 20.0 # mask area is 40x40 nm2 = 1600 nm2
 # Molekule Name Reservoir
 Molecule Punkt PunktRein
 End

 Acceptor Raus
 # Mask Center extension (+-ly +-lz)
 Mask 0.0 0.0 20.0 20.0
 # Molekule Name Reservoir
 Molecule Punkt PunktRaus
 End
End

Output File Format
The raw output of the simulation consists per output step of a time line with the actual simulation time and
the number of Gestalt objects in the simulation. This line is followed by one line per Gestalt, which lists the
label from the protein definition file, the numerical ID of the protein (assigned at insertion into the cup), and
the Gestalt label from the protein definition. These are followed by the Gestalt's position and orientation
(rotation angle plus vector for the rotation axis). A typical output at a given timestep with two proteins, a NA
and a CL ion, would like this:

timeline 4.000 2
CL 1 CL_Bead 0.899 0.175 -0.177 0.000 1.000 0.000 0.000
NA 2 NA_Bead -1.029 0.130 0.137 0.000 1.000 0.000 0.000

Changelog:
Aug. 30, 2012: V1.7

* added description for nano-bead potential and linear potential in vdW shapes

* new description of stickyShape

Dec. 14, 2011: V1.6

* molecules can be immobilized in startWith and startWithIn

June 15, 2011: V1.6

* new bond types: Coulomb and vdW

* new H-bonds

* parser keywords: echo, evaluate, repeat/endrepeat

* new keyword "startWithIn"

Apr. 11, 2011: V1.5

* definition of constants on the commandline

* keywords are case-insensitive

Oct 7, 2010: V1.4

* added explanation of ExternalShape objects of the proteins

