V11 Differentiation of embryonic stem cells

Human embryonic stem cells (hESCs) can be differentiated into a variety of precursor
cell types.
With this in vitro model system, one can study early human developmental decisions.

There exist protocols for differentiation of hESCs to various cell states, including
- trophoblast-like cells (TBL),

- mesendoderm (ME), and

- neural progenitor cells (NPCs).

TBL, ME, NPC represent developmental events that mirror critical developmental
decisions in the embryo:

- the decision to become embryonic or extraembryonic (TBL),

- the decision to become mesendoderm or ectoderm (ME), and

- the decision to become surface ectoderm or neuroectoderm (NPC), respectively.

Xie et al., Cell 153,
1134-1148 (2013) 1
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Differentiation of embryonic stem cells

To dissect the early transcriptional and epigenetic events during hESC
specification, Gifford et al. used directed differentiation of hESCs to produce
early representative populations from the 3 germ layers, namely ectoderm,
mesoderm, and endoderm.

Then they used fluorescence-activated cell sorting (FACS) to enrich for the
desired differentiated populations: 3 populations (dEC, dME, dEN).

These 3 cell types, in addition to undifferentiated hESCs (HUES64), were then
subjected to

- ChlP-seq for 6 histone marks (H3K4me1, H3K4me3, H3K27me3, H3K27ac,
H3K36me3, and H3K9me3),

- whole-genome bisulfite sequencing (to determine DNA methylation status), and
- RNA sequencing (RNAseq).

ChlIP-seq was also performed for the TFs OCT4, SOX2, and NANOG in the
undifferentiated hESCs (-> binding sites of these TFs).

Gifford et al., Cell 153,
1149-1163 (2013) 2
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Differential gene expression in 3 cell lineages
e by Z-score log, expression values during 5 days of in vitro
"POUSF1 differentiation. 268 out of 541 profiled genes changed by

more than 0.5.
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Genes such as EOMES, T, FOXA2, and GSC are upregulated at 24 hr of

PAXG mesoderm and endoderm induction, but not ectoderm differentiation.
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GSC ression decreases within 48 hr of differentiation in the mesoderm-like
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opulation. MES and FOXA2 expression is also maintained in the

derm population accompanied by upregulation of GATAG6, SOX17, and
HHEX.
After transient upregulation.of mesendodermal markers, activation of
mesodermal markers such as"GATA2, HAND2, SOX9, and TAL1 is detected
\ specifically in the mesoderm conditions.
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None of these markers are detected during early ectoderm differentiation,
N which instead upregulates neural markers such as PAX6, SOX10, and EN1
Z-score log, coun
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TFs in Core Pluripotency Network

Oct4, encoded by Poubf1, is a POU domain-containing TF
that is essential to ES cells and early embryonic development.

Oct4 binds to Sox2, another TF.

Genome-wide mapping of OCT4 and SOX2 sites
in human ES cells shows that they co-target multiple genes.

Oct4 and Sox2, along with c-Myc and KIf4, appear to be sufficient for
reprogramming fibroblasts to induced pluripotent stem cells (iPS),
which are functionally similar to ES cells (— Yamanaka factors).

Shinya Yamanaka
noble price for medicine 2012
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Other TFs in Core Pluripotency Network

These 4 TFs can exert a dominant role in reconstructing
the transcriptional regulatory network of ES cells.

A further well-studied TF in ES cells is Nanog.
Nanog can sustain pluripotency in ES cells.

In addition to this, some further transcriptional regulators such as Esrrb and Zfx
are required to maintain ES cells in the state of pluripotency.

Chen et al., Cell 133,
1106-1117 (2008) 5
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log2 normalized

Gene expression of known pluripotency markers
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Yamanaka factors (for cell reprogramming): Oct4 (Pou5f1), Sox2, cMyc, and Kif4

In the endoderm population, POUSF1 (OCT4), NANOG, and, to some extent,
SOX2 expression is maintained.

In ectoderm, SOX2 expression is maintained at high levels.
In mesoderm, SOX2 expression is downregulated.
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Gene expression in 3 cell lineages
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profiling of FACS-isolated ectoderm (dEC), mesoderm (dME), and endoderm (dEN).

Expression levels for MYOD1 (right) are included as a control.

Gifford et al., Cell 153,
1149-1163 (2013) 7
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Transcriptional relationship between lineages
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Gifford et al., Cell 153,
1149-1163 (2013) 8
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Epigenetic marks control cellular memory

However, the expression levels of transcription factors are NOT everything!

The maintenance of cellular memory also depends on epigenetic marks such
as DNA methylation and chromatin modifications

DNA methylation at promoters has been shown to silence gene expression (weak
correlation, ca. 0.15) and thus has been proposed to be necessary for

- lineage-specific expression of developmental regulatory genes,

- genomic imprinting, and

- X chromosome inactivation.

Indeed, the DNA methyltransferase DNMT1 or DNMT3a/3b double-knockout
mice exhibit severe defects in embryogenesis and die before midgestation,
supporting an essential role for DNA methylation in embryonic development

Xie et al., Cell 153,
1134-1148 (2013) 9
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Chromatin states
Analyze the following informative chromatin states

H3K4me3+H3K27me3 (bivalent/poised promoter);
,Poised” genes: RNA-Polymerase Il is located at their promoters in the
absence of ongoing transcription, the genes are loaded to be transcribed soon

- H3K4me3+H3K27ac (active promoter); gene is actively transcribed

-  H3K4me3 (initiating promoter);

- H3K27me3+H3K4me1 (poised developmental enhancer);

- H3K4me1 (poised enhancer);

- H3K27ac+H3K4me1 (active enhancer); and

- H3K27me3 (Polycomb repressed); and

- H3K9me3 (heterochromatin).

The WGBS data was segmented into three levels of DNA methylation:
- highly methylated regions (HMRs: > 60%),

- intermediately methylated regions (IMRs: 11%— 60%), and

- unmethylated regions (UMRs: 0%—10%).

Gifford et al., Cell 153,
1149-1163 (2013) 10
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One allele fully methylated,
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Shown: data for the undifferentiated hESC line HUES64 at 3 loci: NANOG, GSC, and H19 (imp).
WholeGenomeBisulfiteSequencing (% methylation), ChiP-seq (read count normalized to 10
million reads), and RNA-seq (FPKM = fragments per kilobase of exon per million fragments
mapped). CpG islands are indicated in green.

Same data was also collected for dEC, dME, and dEN cells (ca. 12 million cells each)

Bivalent promoter: carries activating (e.g. H3K4me3) and repressive (e.g. H3K27me3) histone
marks.

Poised enhancer: closed enhancer having H3K4me1 along with H3K27me3 and devoid of
H3K27ac marks.
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35% of epigenetic marks are linked to expression levels
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Pluripotent TF binding linked to chromatin dynamics

Enrichment of OCT4, SOX2, and NANOG

* H3K4me3 within various classes of dynamic genomic
H3Kéme1

* H3K27me3 regions that change upon differentiation of
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anjea-d °t6oj-

OCT4

Values are computed relative to all regions
exhibiting the particular epigenetic state
change in other cell types.

regions enriched for OCT4 binding

sites frequently become HMRs in all three Epigenetic dynamics are categorized into 3

differentiated cell types, whereas NANOG and major classes:

ftgéz}nsﬁi.sfe more prone to change to an HMR  _ repression (loss of H3K4me3 or H3K4me1
In general, many regions associated with open and acquisition of H3K27me3 or DNAme),
chromatin that are bound by NANOG are more - maintenance of open chromatin marks
likely to retain this state in dEN compared to dME

and dEC. (H3K4me3, H3K4me1, and H3K27ac), and

Regions enriched for H3K27ac in hESCs that
maintain this state in dEN or dEC are likely to be
bound by SOX2 and NANOG.

- activation of previously repressed states.
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DNA methylation levels during hematopoiesis

Hematopoietic stem cell differentiation
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(right) The distribution of DNA methylation
levels was similar across all stem and
progenitor cell types.

Differentiated cell types are shifted to
slightly lower values.
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(Left) single-cell whole
genome bisulfite
sequencing for 17
hematopoietic cell types
(multiple types of HSCs).
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Local variation of DNA methylation levels
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Myeloid-Lymphoid Lineage Choice

Hematopoietic stem cell differentiation
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MiRNAs

microRNAs (miRNA) are single-stranded RNA molecules
of 21-23 nucleotides in length.

mMiRNAs have a crucial role in regulating gene expression.

Remember: miRNAs are encoded by DNA but not
translated into protein (non-coding RNA).

www.wikipedia.org
SS 2019- lecture 11 Cellular Programs
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Overview of the miRNA network

Pre-miRNA

c @ miRNA gene
IANININY, /'\

Pri-miRNA E

pri-miRNA is then cropped to form a

pre-miRNA hairpin of ~60—100 nucleotides

in length by a multi-protein complex that
includes the protein DROSHA.
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RNA polymerase Il (Pol Il)
produces a 500-3,000
nucleotide transcript, called
the primary microRNA
(pri-miRNA).

AA, poly A tail;
m7G, 7-methylguanosine cap;
OREF, open reading frame.

Ryan et al. Nature Rev. Cancer (2010) 10, 389
20



Overview of the miRNA network
™ This double-stranded pre-

/
@ miRNA gene . o .
ININVINY /W MiRNA hairpin structure is
exported from the nucleus by
Pri-miRNA RAN GTPase and exportin 5
(XPQOS5).

Pre-miRNA ﬁ RECE “ : : :
ki ANNg Finally, the pre-miRNA is

vature mra  Cl€AVEd by the protein DICER1
to produce two miRNA strands:
- a mature miRNA sequence,
approximately 20 nt in length,

- and its short-lived
complementary sequence,
which is denoted miR.

Translational repression

|m7G|_] ORF

Target mRNA cleavage
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Overview of the miRNA network

Mature miRNA

The thermodynamic
stability of the miRNA
duplex termini and the
identity of the
nucleotides in the 3’
overhang determines
which of the single
Translational repression ~ Strand MIRNA is
incorporated into the
Target mRNA cleavage RNA-inducing silencing
complex (RISC).

The RISC complex is then targeted by the miRNA to
the target 3’ untranslated region of a mRNA
sequence to facilitate repression and cleavage.

The main function of miRNAs is to down-regulate
gene expression of their target mRNAs.

SS 2019- lecture 11 Cellular Programs Ryan et al. Nature Rev. Cancer (2010) 10, 389
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MiRNAs

Mature miRNA molecules are partially complementary to
one or more mMRNA molecules.

Fig. shows the solution NMR-structure of
let-7 miRNA:lin-41 mRNA complex from C. elegans
Cevec et al. Nucl. Acids Res. (2008) 36: 2330.

MiRNAs typically have incomplete base pairing to a target
and inhibit the translation of many different mRNAs with
similar sequences.

www.wikipedia.org
SS 2019- lecture 11 Cellular Programs
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discovery of let7
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such as cancer.

Pasquinelli et al. Nature (2000) 408, 86
www.wikipedia.org
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MiRNAs recognize targets by Watson-Crick base pairing

ORF

mRNA 3" UTR

NN
3y LO-NNNNNNNNNE

6 4 2
miRNA ' . |

Animal miRNAs recognize partially complementary binding sites which are
generally located in 3’ UTRs of mRNA.

Complementarity to the 5’ end of the miRNA — the “seed” sequence containing

nucleotides 2-7 — is a major determinant in target recognition and is sufficient to
trigger silencing.

Huntzinger, lIzaurralde, Nat. Rev. Genet.
12, 99 (2011)
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Tissue signature enrichment levels

Paper #9 contains something about microRNAs, pluripotency and cancerogenesis:

MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by
coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways

SL Lin, DC Chang, SY Ying, D Leu, DTS Wu

Cancer Res. 70, 9473-9482 (2010)

http://cancerres.aacrjournals.org/content/70/22/9473.long
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