V6: Protein phosphorylation during cell cycle
Protein phosphorylation and dephosphorylation are highly controlled biochemical
processes that respond to various intracellular and extracellular stimuli.
They belong to post-translational modifications (PTMs).

Note: phosphorylation of histone tails also belongs to this class of PTMs.

Phosphorylation status modulates protein activity by

- influencing the tertiary and quaternary structure of a protein,

- controlling its subcellular distribution (e.g cytoplasm < nucleus for Per/Cry), and
- regulating its interactions with other proteins.

Regulatory protein phosphorylation is a transient modification
that is often of low occupancy or “stoichiometry”

Low occupancy means that only a fraction of the copies of a particular protein may
be phosphorylated on a given site at any particular time, or it occurs on regulatory
proteins of low abundance, such as protein kinases and transcription factors.
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Cell Cycle and the Phosphoproteome

CELLCYCLE

Quantitative Phosphoproteomics Reveals Widespread
Full Phosphorylation Site Occupancy During Mitosis

Jesper V. Olsen,'?* Michiel Vermeulen,'* Anna Santamaria,** Chanchal Kumar,'5*
Martin L. Miller,?® Lars J. Jensen,? Florian Gnad,' Jiirgen Cox,' Thomas S. Jensen,’
Erich A. Nigg,* Saren Brunak,2? Matthias Mann'21

(Published 12 January 2010; Veolume 3 Issue 104 ra3}

wyaw. SCIENCESIGNALING.org 12 January 2010 Vol 3 lssue 104 ra3

Aim: Analyze all proteins that are modified by phosphorylation during different
stages of the cell cycle of human HelLa cells.

lon-exchange chromatography + HPLC + MS + sequencing led to the
identification of 6695 phosphorylated proteins (,the phospho-proteome®).
From this, 6027 quantitative cell cycle profiles were obtained.

A total of 24,714 phosphorylation events were identified.
20,443 of them were assigned to a specific residue with high confidence.

Finding: about 70% of all proteins get phosphorylated.
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Review: protein quantification by SILAC
ARTICLE Proteins

doi:10.1038/nature10098

Global quantification of mammalian gene @ SILAG light
expression control

Bjorn Schwanhiusser!, Dorothea Busse!, Na Li!, Gunnar Dittmar’, Johannes Schuchhardt?, Jana Wolf', Wei Chen’
& Matthias Selbach’

SIL.AC: ,,s.tablle isotope labelling by @ gji’z)heavy

amino acids in cell culture® means that

cells are cultivated in a medium l

containing heavy stable-isotope .%Céég

versions of essential amino acids. 00%.3

Protein turnover

When non-labelled (i.e. light) cells are Pre-existing l Newly is quantified by
transferred to heavy SILAC growth prote{m L ratic Z’r'gttgiii'zec mass

medium, newly synthesized proteins L spectrometry and
incorporate the heavy label while pre- g \ 1 g next-generation
existing proteins remain in the light é’ | sequencing,
form. — respectively.
Schwanhauser et al. Nature 473, 337 (2011)
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H/L ratios of individual proteins

Mass spectra of peptides for
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This example illustrates the principles of SILAC
and mass spectroscopy signals (peaks).

m/z. mass over charge ratio of a peptide fragment

In the Olson et al. study, the authors used H and
L forms to label different stages of the cell cycle.

Schwanhauser et al. Nature 473, 337 (2011)
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n N\ Quantitative proteomic analysis

Center: asynchronously
growing cell population as
internal standard to allow
normalization between
experiments.

SS 2019 - lecture 6

HelLa S3 cells were SILAC-labeled with
3 different isotopic forms (light — medium — heavy)
of arginine and lysine.

3 individual populations of heavy and light SILAC
cells were synchronized with a thymidine block
(analog of thymine, blocks entry into S phase).

Cells were then collected at 6 different time points
across the cell cycle after release from the
thymidine arrest.

Out of this, 2 samples were collected after a further
cell cycle arrest with nocodazole and release.
(Nocodazole interferes with polymerization of
microtubules.)

Cellular Programs Olsen Science
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FACS profiles of individual HeLa populations

_ %cCells

Gy 5 Go/ M
1. Asynchronous 64 27 9
2 Thymidine block 50 46 <
3. Thymidine block + release 22 h 36 60 <
4, Thymidineblock + release 5% h 23 70 7
S Thymidine block + release 7% h 15 70 15
6. Nocodazole block +release 12 h 1 11 28
7.Nocodazole block +release 3 h 82 12 6

Cell number
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Cells were fixed and collected
by centrifugation.

Then the DNA content of the
cells was determined with
propidium iodide.

The DNA content is the basis for
classifying the state along the
cell cycle.

- Samples 1 — 5 are not pure
states, but mixtures.
Nocodazole block is quite
efficient in synchronizing cells
(samples 6 and 7).

Olsen Science
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%
&
@\@@ Immunoblot analysis of known cell
o5 cycle marker proteins in the different
‘ cell populations (a-tubulin is a control).
CyclinD1 The abundance of 20% of the
CyclinE proteome changed by at least 4-fold
throughout the cell cycle (difference
Cyclin A between lowest and highest
abundance).
CyclinB1
. Because a fourfold change best
Geminin accounted for the dynamics of already
a-Tubulin described cell cycle components,
this ratio was used as a threshold for
subsequent analysis.
Cellular Programs Olsen Science
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Experiment 1: mixture of

Monitor protein abundance by MS

L = G1 phase @
M = Async RISE = — —
H =S phase
Exp.1 S phase [j?‘!‘?,hse”
90 g 2.5 _é
Yy 80 § 2 E
s s § ASYNC
£ 70 E N 2 524.7709 926.2814 528.7774
T 60y Zgs ENELSAGLSK &
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osgi — bbbl e Representative MS data showing how the abundance of
/ . . . . .
v the proteins was monitored in 3 experiments to obtain
B2 s6, information from the 6 stages of the cell cycle.
ared
Gy The data show the MS analysis of a tryptic SILAC peptide
} 524.2684 triplet derived from the cell cycle marker protein Geminin.
3 - Relative peptide abundance changes were normalized to
E 5202506 the medium SILAC peptide derived from the asynchro-
* ey nously grown cells in all three experiments.
e S The inset of Exp. 1 shows the combined six-time profile of
- Geminin over the cell cycle.
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Proteins

Bioinformatics Workflow (1)

Unclustered proteomics data
Time points

— o
e .,
& =1
Select a protein jwithfold | <
experssion ratios G
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for & time points S -
=
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<
-
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Bioinformatics Workflow (2)

1.0

0.5

Logs[Fold changeratio ]
0.0
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Timne points

<For each protein j transform expression fold ratios to [O,D

-0.5

Log,[Fold changeratio]
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L] L]
1 2 3 4 5 6
Time points

0.0
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Bioinformatics Workflow (3)

:. For each protein a peak time
. index was calculated by
weighted mean of its maximal
expression at time point {; w.r.t
| ‘ its adjacent time points

! t.,and t;,,.

Log,[Fold change ratio ]

0.0

Time points
Assign peak time(tpeakiji by weighted mean of maximal expression
ratio and cluster all proteins according to increasing peak time

J

Clustered proteomics data

— The proteins were then
clustered according to their
increasing peak time indices.

Olsen Science
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Bioinformatics Workflow (4)

Further functional bioinformatics
analysis for circular enrichment of
Gene OntologywGO) categories.

\

Clustered proteomics data
Time points

Assign angular peak
measure{6 peakijito each
protein j based onits peak
time(tpeakijj) and arrange

increasing order of 6 peakj)

Inf2

Proteins

Olsen Science
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Dynamics of the proteome during the cell cycle

&
2

s o oV o ~ Proteins whose abundance changed at least

S fourfold during the cell cycle were clustered in

canet ovein st @ll cell cycle stages by calculating a time peak

o index by weighted mean of the ratio of
maximal abundance.

(i

For each cell cycle stage, there are clear
patterns of up- and down-regulation.
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Comparison of mMRNA and protein dynamics

~ Protein &~~ mRNA
~ Protein & AmMRNA

AProtein &-. mRNA
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Comparison of mMRNA and protein dynamics during the cell cycle.

Measured protein dynamics were correlated to published mRNA data.

Proteins were grouped on the y axis in 4 categories from top to bottom:

- unchanging mRNA and protein
- changing mRNA and unchanging protein
- unchanging mRNA and changing protein

- and changing mRNA and changing protein.

High

A = Regulated
~-= Non-Regulated

Low

1 H‘t‘t‘ﬂr‘t mrrt

The x axis shows clustered gene ontology (GO) biological process terms enriched
in at least one of the above 4 categories.

High and
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Absolute phosphorylation site stochiometry

Now we want to derive the phosphorylation state of individual protein residues during
the cell cycle. We need to substract out the changes of protein abundance.
-> we want to know (1) and (2) below

NPHOS

L —
NlIlVonP = d
is the total copy number of a given phosphopeptide in the light SILAC state, and N}Yo™F

is the total copy number the corresponding unphosphorylated peptide in the light SILAC state

(1) Proportion of phosphorylated to unphosphorylated peptide in Light SILAC state:

PHOS
N

NPHOS
H —
(2) Proportion of phosphorylated to unphosphorylated peptide in Heavy SILAC state: W =b
H

N}';”OS is the total copy number of a given phosphopeptide in the heavy SILAC state, and

N{}'""P is the total copy number the corresponding unphosphorylated peptide in the heavy

SILAC state

NZHOS N NgonP ) NEHOS N NIL\mnP
(3)  We expectthat PROTEIN - PROTEIN
Ny Ny,

N[ROTEIN js the total copy number of the phosphoprotein in the light SILAC state, and

N,’,)ROTE’N is the total copy number the phosphoprotein in the heavy SILAC state

Olsen Science

SS 2019 - lecture 6 Cellular Programs Signaling 3 (2010)
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Available experimental data

To determine phosphorylation sites that show dynamic profiles due to changes in phosphory-
lation state rather than due to changes in protein abundance, we consider the measured
phosphopeptide H/L ratios.

| I
Il. |I II

From the experiment we have:

- the SILAC ratio x for phosphopeptide

- the SILAC ratio y for non-phosphopeptide (the unphosphorylated version of the
phosphopeptide),

- and protein ratio z (the total amount of the protein, i.e. the sum of its phosphorylated and
nonphosphorylated forms).

SS 2019 - lecture 6 Cellular Programs Olsen Science
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Absolute phosphorylation site stochiometry

From the MS data we know:
NPHOS
H

————— X
NII,)HOS

(4) Relative phosphopeptide ratio =

N}I}IonP

NIIJVO"P y
NII_’IROTEIN

E—— Z
NfROTEIN

(5) Relative unphosphorylated peptide ratio =

(6) Relative total phosphoprotein ratio =

If we know x, y and z then we can solve equations 1 and 2 by substituting in equations 3:

NPHOS

zZ=Yy
I
(1) Occupancy rate in Light SILAC state: W =g= p—
L
(2) Occupancy rate in Heavy SILAC state: = =
N}I\IlonP y-(x-2z)

We expect that NLI‘JHOS+ Nlll\loan NSHOS+ NII_;’O“P = 100% =1

and can therefore calculate the phosphorylation site occupancy in the Light and Heavy SILAC state as:

(3) Light SILAC occupancy: a/(1+a) and Heavy SILAC occupancy: b/{1+b)

SS 2019 - lecture 6 Cellular Programs

Olsen Science
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Example: Dynamic phosphorylation of CDK1

CDK1 phosphaorylation site kinetics Dynamic profile of two CDK1
phosphopeptides during the cell

100 = — cycle.
g pTRYGVWYEK pT14 & p¥15 (inhibitory sites)
- VWYpTHEWTLWYR pT161 @ctivation loop)
o . :
€10 A The activating site Thr161 (red)
E peaks in mitosis, whereas
g phosphorylation of the inhibitory
5 \ sites Thr14 and Tyr15 (blue) is
' decreased in mitosis
0.1
G G,/S Early S LlatesS G, il
Celleycle stage

Olsen Science
Signaling 3 (2010)
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Total phosphosite occupancy in different stages of cell cycle

100

30 —= Async
. — Mitosi
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Cumulative phosphosite fraction (%6)

Fifty percent of all mitotic phosphorylation sites have occupancy of 75% or more.

Olsen Science
Signaling 3 (2010)
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Differential phosphorylation

Gene ontology (GO) analysis of protein and phosphoproteins subcellular
localization. All proteins identified by MS were clustered according to their GO
annotation for sub-cellular localization (Blue bars). The same clustering was done for
all phosphoproteins (Red bars).

y-axis : percentage of the

045 - indicated sub-cellular fractions
040 - P =045 from the total.
BProteome
0.35 - B Phosphoproteome
030 1 Compared to the proteome
p=0.04

distribution, phosphorylated
proteins are over-represented
in the nucleus and under-
represented amongst
mitochondrial and secreted
proteins.

0.25 -

0.20 =

0.15 -

Fraction of subcellular localization

0.10 -

20
0.05 - 0 =001
0.00 - ' r — . r
A\

g 9 > NN .
& & N Olsen Science
Probability of significant difference by Two-sided Fisher exact test: Significance p < 1e-03 S'g naling 3 (201 0)
SS 2019 - lecture 6 Cellular Programs
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Dvnamics of the Phosphoproteome
A Helaphosphopeptide clusters

¢ oot e Dynamics of the phosphoproteome
during the cell cycle.

Clustering of regulated phosphorylation
M phase sites in all cell cycle stages.
More than half of all identified
regulated phosphorylation sites
peak in mitosis.

Early S

00 ()

late S

Olsen Science
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Who phosphorylates? -> NetPhorest algorithm

COMPUTATIONAL BIOLOGY

Linear Motif Atlas for Phosphorylation-Dependent
Signaling

Martin Lee Miller,’* Lars Juhl Jensen,?** Francesca Diella,® Claus Jargensen,*

Michele Tinti,” Lei Li,® Marilyn Hsiung,* Sirlester A. Parker,” Jennifer Bordeaux,’

Thomas Sicheritz-Ponten,’ Marina Olhovsky,* Adrian Pasculescu,* Jes Alexander,?
Stefan anapp,9 Nikolaj Blom,' Peer Bork,%>'® Shawn Li,® Gianni Cesareni,’ Tony Pawson,*
Benjamin E. Turk,” Michael B. Yaffe,?' Saren Brunak,?' Rune Linding4’8’1”

(Published 2 September 2008}

Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory net-
works underlying cellular responses to environmental cues. However, matching these sites to the ki-
nases that phosphorylate them and the phosphorylation-dependent binding domains that may
subsequently bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs
that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2),
phosphotyrosine binding (PTB), BRCA1 C-terminal (BRCT), WW, and 14-3-3]. The atlas reveals new
aspectsofsignalingsystems,includingthe observationthattyrosinekinases mutatedincancerhavelower
specificitythantheirnon-oncogenic relatives. Theresource ismaintained by an automated pipeline,which
usesphylogenetic trees to structure the currently available in vivo and in vitro data to derive probabilistic
sequence models of linear motifs. The atlas is available as acommunity resource (http://netphorest.info).

Miller Science
Signaling 1 (2008)
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NetPhorest algorithm

Analyze in vivo protein-phosphorylation Analyze in vitro assays that
sites that are linked to at least one kinase interrogate kinase specificity by
[Phospho.ELM] or phospho-binding degenerate peptide libraries
domain [DOMINQ].
A
Organization In vivo phosphorylation sites Phylogenetic trees In vitro assays
—— : S Fixed residue
In ViVO &. AN et /- S jPGACSTVl LMFYWHb.ﬂ:QNDEprY
B Invitro - |E| :% 3
‘B
B
Compilati on Extraction of positive and negative examples for each domain or family of related domains
Positive » » »
Negative — pre— —
Excluded : : :

Cc

map both in vivo and in vitro data onto phylogenetic trees of the kinase and
phospho-binding domains, which capture how similar the domains are to one
another and thereby how likely they are to have similar substrate specificities.

SS 2019 - lecture 6 Cellular Programs Miller Science
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NetPhorest algorithm: applications

Motif atlas

CK2 family

Design of R EITIN oI YT es Detection of
consensus antibodies purification biases

4

XXXpSDED
XXXpSEED

XXXpSDDE <§>
XXXpTDED

Modeling of
signaling networks

Miller Science
Signaling 1 (2008)

SS 2019 - lecture 6 Cellular Programs
24



Cell Cycle-regulated kinase substrates

Heat map of cell cycle—regulated kinase substrates  The NetPhorest algorithm was used to
M G1 G1’(S SEarly Olate GQ . . . .
GSKa_group predict kinase-substrate relationships of all
CDEA

IAPKAPK_gmup serine and threonine phosphorylated
INKDIoup, :
proteins.

rou

p2& goup

(COES A Qroup
ATM_ATR_group

roup
NEK'i%.Zf&fMSfﬁ_qroup
Al PE_gmoup
MSN_group
b

_group
LKEA

The heat map shows over- (yellow) and

underrepresentation (blue) of predicted

kinase substrates during different stages

DK oroup of the cell cycle compared to a background

E%E é@gggmp of phosphorylation sites that did not change
with the cell cycle.

EIF2AK2
e

rou
GRK_clrouJB g

CI-(1 rDUf
NAEIT gmoup
PK[Z_C;MUp

Canﬂl-(llcc.f-‘s _ gQmoup
PEA n:lup
Pim goup
B?OSBR amup
DMK
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PKE

redicted CDK2 and CDK3 substrates were
most highly phosphorylated in M phase.

é%ﬁ%‘ﬁgﬁg % b2 oo ATM_ATR substrates are high in S phase.
Cie-Broun
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Proteomic phenotyping of phosphorylation site stochiometry

A Regulated M phase Regulated Sphase
[S e el o ggfib ofe ofe i e @o{b .
T T a5 ICL L L Phenotypic

— —

phosphoproteome
comparison organized

Ribosome biogenesis — Metabolic pocesses

. I M un2 Rsponse

RMNA elongation = . .
by GO biological process
_ | Cytokinasis . .
T Actincytoskeletal for mitotic (left) and S
a bi hesi .
E )lm:‘l:‘:;}r;gideﬂs = DNAreplicatbn phase (”ght) Ce”S.
g = biosynthasis Chmmosome condensation
8 . |
g Il i Proteins involved in
g Moz kart@mnsport :
> RNA expart metabolic processes have
g - | onsprcassi high-occupancy
amage response . .
s ot e gomeasing Stress response phosphorylation sites
O

during mitosis, but low-
occupancy sites during S
phase

J\

Celloycke

Protein ubiquitination

__M phase

rAitosis

Regulation of metabolic
processas

o

I\

- Ribosome biogenesis

-

color scale: yellow, high overrepresentation; dark blue, high underrepresentation.
The phospho proteins were divided into five quantiles on the basis of their maximum
phosphorylation-site occupancy and analyzed for GO category (biological process and cellular

compartment) enrichment by hypergeometric testing.
SS 2019 - lecture 6 Cellular Programs Olsen Science
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Regulated M phase
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GO cellular compartment analysis
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Summary

Phosphorylation of protein residues is an important mechanism to regulate protein
structure, protein activity, protein localization, and protein interactions.

About 70% of all cellular proteins are phosphorylated to some extent.
Phosphorylation is a dynamic state variable during the cell cycle.

Phosphorylation levels are controlled by the ca. 518 different human kinases as
well as by phosphatases.

-> these are important potential drug targets (problem is achieving specificity)

Paper #5:

https://www.biorxiv.org/content/10.1101/397448v1

BR Topacio, E Zatulovskiy, S Cristea, S Xie, CS Tambo, SM Rubin, J Sage, M
Kdivomagi, JM Skotheim

Cyclin D-Cdk4,6 drives cell cycle progression via the retinoblastoma protein’s C-

terminal helix, Now published in Molecular Cell doi:
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