V10: Cancerogenesis (II)

- Oncogenic signaling pathways

Sanchez-Vega et al, *Cell* **173**, 321-337.e10 (2018)

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer.

- Cancer driver genes

Martinez-Jimenz et al, *Nature Rev Cancer* **20**, 555-572 (2020)

Cancers are diseases characterized by abnormal and uncontrolled cellular growth caused primarily by genetic mutations.

These mutations, called 'drivers' after their ability to drive tumorigenesis, confer on cells in a somatic tissue certain selective advantages with respect to neighboring cells.

They occur in a set of genes (called 'cancer driver genes').

Mutant forms of driver genes affect the homeostatic development of a set of key cellular functions.

Oncogenic Signaling Pathways in TCGA

Alteration map of 10 signaling pathways across 9,125 samples from 33 cancer types

57% of tumors have at least one potentially actionable alteration in these pathways

Sanchez-Vega et al, *Cell* **173**, 321-337.e10 (2018)

10 major signalling pathways

Pathway members and interactions in the 10 selected pathways. The downstream effects of these pathways are listed.

Genes are altered at different frequencies (see coloring legend) by oncogenic activations (red) and tumor suppressor inactivations (blue).

The types of somatic alteration considered for each gene (copy-number alterations, mutations, fusions or epigenetic silencing) are specified using a set of four vertical dots on the left of each gene symbol.

Sanchez-Vega et al, *Cell* **173**, 321-337.e10 (2018)

10 major signalling pathways

Sanchez-Vega et al, *Cell* **173**, 321-337.e10 (2018)

Pathway alteration frequencies

1

5 5

Fraction of altered samples per pathway and tumor subtype.

Pathways are ordered by decreasing median frequency of alterations.

Increasing color intensities reflect higher percentages.

Highest mutation frequency in RTK-RAS pathway: 46% of samples contained alterations.

Alterations in the WNT pathway were most variable.

RTK-Ras pathway alterations

Altered genes and their functional relationships in the RTK-RAS pathway. Shades of red indicate frequencies of activating events (activating mutations or fusions, amplifications) and shades of blue indicate frequencies of inactivating events (inactivating mutations or fusions, homozygous losses).

Alterations in members of the RTK-RAS pathway

Color side bars show the fraction of samples affected by each type of somatic alteration (or a combination of them) for each pathway gene.

Top color bars show the proportion of different types of alterations for each cancer subtype.

Oncogenes are amplified; tumor suppressors are deleted. 7

Compendium of cancer driver genes

Cells in somatic tissues accumulate mutations.

Somatic mutations in certain genes provide the cell in which they occur with a selective advantage and are thus positively selected.

Following a Darwinian process, over time, a clonal expansion occurs and the cells carrying mutations in these genes become dominant within the population.

Number of cancer driver genes per tumor type

Prevalence of driver genes

Cancer-specific, highly prevalent		Maximum	
	Burkitt lymphoma	prevalence	
MYC		0.60	
PTCH1	Skin basal cell carcinom	a 0.56	
GNAQ	Uveal melanoma	0.50	
GTF2I	Thymic carcinoma	0.49	
CCND3	Burkitt lymphoma	0.47	
GNA11	Uveal melanoma	0.45	
H3F3A	High-grade glioma	0.43	
FBXO11	Uveal melanoma	0.40	
VHL Renal cle	ear cell carcinoma	0.39	
EZH2	Lymphoma	0.36	
Cancer-wide drivers			

KRAS	0.92
TP53	0.80
LRP1B	0.66
PTEN	0.50
PIK3CA_ I_I_I_I	0.44
KMT2D	0.43
RB1	0.42
KMT2C	0.30
NRAS	0.27
ARID1A	0.25

Martinez-Jimenz et al, *Nature Rev Cancer* **20**, 555-572 (2020) The oncogene protein tyrosine phosphatase non-receptor type 11 (*PTPN11*) shows excessive missense mutations across multiple myelomas and other tumor types, which significantly cluster within the SH2 domain of its protein product.

Inhibitory contacts between this domain and the phosphatase domain are abrogated on phosphorylation by a receptor tyrosine kinase in the wild type or by mutations in the domain.

The activated PTPN11 then dephosphorylates inhibitors of several signaling pathways, such as the MAPK or AKT pathways.

WS 2020/21 - lecture 9

Cellular Programs

Martinez-Jimenz et al, *Nature Rev Cancer* **20**, 555-572 (2020) Nuclear factor erythroid 2-related factor 2 (*NFE2L2*), another classic oncogene, encodes a transcription factor that is key in the control of the redox state of the cell and its response to stress.

Across lung squamous cell carcinomas, two narrow clusters of missense mutations appear at its N-terminal portion.

These mutations affect sequences recognized by the cognate E3-ubiquitin ligase Kelch-like ECH-associated protein 1 (KEAP1), and cause the abnormal stabilization of NFE2L2, as do *KEAP1* mutations affecting the domain that recognizes the NFE2L2 degrons. This, in turn, results in the constitutive activation of NFE2L2-regulated genes.

Martinez-Jimenz et al, *Nature Rev Cancer* **20**, 555-572 (2020) For tumor suppressors such as *RB1*, the mutational features are radically different across bladder adenocarcinomas.

There are more nonsense mutations and mutations affecting splicing than missense mutations.

Most nonsense mutations trigger nonsense-mediated decay of the *RB1* mRNA.

This causes depletion of the protein and abrogates its functions in the regulation of cell cycle progression and the cell division cycle, the response to cellular stress, differentiation, cellular senescence, programmed cell death and maintenance of chromatin structure.

Martinez-Jimenz et al, *Nature Rev Cancer* **20**, 555-572 (2020) *PTEN*, another tumor suppressor, shows an excess of both nonsense and missense mutations across glioblastomas.

Like nonsense mutations in *RB1*, nonsense mutations in *PTEN* trigger nonsense-mediated decay. This reduces the production of a functional *PTEN* protein product, while missense mutations hinder either its enzymatic activity or its recruitment to the membrane, or increase its susceptibility to ubiquitylation for proteasome-mediated degradation.

These outcomes, in turn, interfere with its role in the regulation of a host of cellular functions, such as cell cycle progression, apoptosis and protein synthesis.

Some driver genes are affected by different tumorigenic mechanisms across tumor types.

E.g. in glioblastomas, missense mutations of *EGFR* tend to cluster in the extracellular domains of its protein product.

These act as **gain-of-function alterations**, likely through the stabilization of the open conformation of the receptor, which stimulates its autophosphorylation in the absence of a ligand.

By contrast, across lung adenocarcinomas, missense mutations tend to cluster in the tyrosine kinase domain of the protein product of *EGFR*.

This altering its 'on–off' equilibrium and increases its activity at the expense of reduced affinity for ATP.

Dots represent all domains with significant enrichment of mutations in a number of different driver genes across a number of different tumor types.

Selected domains with very significant enrichment are colored and denoted with the domain acronym, while the rest appear in light grey.

Mutations in driver genes

b | Genes with significant enrichment of mutations in domains of their protein products colored in part **a** across tumor types.

Outlook

Historic look backward: How did we get where we are today?

Outlook on the consolidation of cancer genomics and future trends in cancer genomics research.

ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas.

Paper #8

The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies Lindsay Angus et al. *Nature Genetics* 51, 1450–1458 (2019)

Paper presentation Jan 26, 2021

tissue biopsies from 442 patients with metastatic breast cancer:

- compared to primary breast cancer, tumor mutational burden doubles,
- the relative contributions of mutational signatures shift and
- the mutation frequency of six known **driver genes** increases in metastatic breast cancer.
- Significant associations with pretreatment are also observed.