V5: Protein phosphorylation during cell cycle
Protein phosphorylation and dephosphorylation are highly controlled biochemical
processes that respond to various intracellular and extracellular stimuli.
They belong to post-translational modifications (PTMs).

Note: phosphorylation of histone tails also belongs to this class of PTMs.

Phosphorylation status modulates protein activity by

- influencing the tertiary and quaternary structure of a protein,

- controlling its subcellular distribution (e.g cytoplasm < nucleus for Per/Cry), and
- regulating its interactions with other proteins.

Regulatory protein phosphorylation is a transient modification
that is often of low occupancy or “stoichiometry”

Low occupancy means that only a fraction of the copies of a particular protein may
be phosphorylated on a given site at any particular time, or it occurs on regulatory
proteins of low abundance, such as protein kinases and transcription factors.
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Cell Cycle and the Phosphoproteome

CELL CYCLE
Quantitative Phosphoproteomics Reveals Widespread
Full Phosphorylation Site Occupancy During Mitosis

Jesper V. Olsen,'2* Michiel Vermeulen,'?* Anna Santamaria,** Chanchal Kumar,'->*
Martin L. Miller,2® Lars J. Jensen,? Florian Gnad,' Jiirgen Cox,' Thomas S. Jensen,’
Erich A. Nigg,* Saren Brunak,®>’ Matthias Mann'-2t

{Publizhed 12 January 2010; Volume 3 lssue 104 rad}

vt SCIENCESIGNALING.org 12 January 2010 Vol 3 Issue 104 a3

Aim: Analyze all proteins that are modified by phosphorylation during different
stages of the cell cycle of human HelLa cells.

lon-exchange chromatography + HPLC + MS + sequencing led to the
identification of 6695 phosphorylated proteins (,the phospho-proteome®).
From this, 6027 quantitative cell cycle profiles were obtained.

A total of 24,714 phosphorylation events were identified.
20,443 of them were assigned to a specific residue with high confidence.

Finding: about 70% of all proteins get phosphorylated.
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Review: protein quantification by SILAC
ARTICLE Proteins

doi:10.1038/nature10098

Global quantification of mammalian gene @ SILAG light
expression control

Bjorn Schwanhiusser', Dorothea Busse!, Na Li', Gunnar Dittmar', Johannes Schuchhardt?, Jana Wolf', Wei Chen'
& Matthias Selbach’
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Schwanhauser et al. Nature 473, 337 (2011)
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H/L ratios of individual proteins

Mass spectra of peptides for
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and mass spectroscopy signals (peaks).
m/z: mass over charge ratio of a peptide fragment

In the Olson et al. study, the authors used H and

L forms to label different stages of the cell cycle.
Schwanhauser et al. Nature 473, 337 (2011)
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" A\ Quantitative proteomic analysis

Center: asynchronously
growing cell population as
internal standard to allow
normalization between
experiments.
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HelLa S3 cells were SILAC-labeled with
3 different isotopic forms (light — medium — heavy)
of arginine and lysine.

3 individual populations of heavy and light SILAC
cells were synchronized with a thymidine block
(analog of thymine, blocks entry into S phase).

Cells were then collected at 6 different time points
across the cell cycle after release from the
thymidine arrest.

Out of this, 2 samples were collected after a further
cell cycle arrest with nocodazole and release.
(Nocodazole interferes with polymerization of
microtubules.)

Cellular Programs Olsen Science
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FACS profiles of individual HeLa populations

% Cells
(3 5 G5/ Wl
1. Asvnchronous £ 27 9
2 Thymidine block 50 46 4
3 Thymidine block + release 2% h 36 60 4
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Cell nurmber
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Cells were fixed and collected
by centrifugation.

Then the DNA content of the
cells was determined with
propidium iodide.

The DNA content is the basis for
classifying the state along the
cell cycle.

— Samples 1 — 5 are not pure
states, but mixtures.
Nocodazole block is quite
efficient in synchronizing cells
(samples 6 and 7).

Olsen Science
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Quantification of cell cycle markers
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<
\@ég’ Immunoblot analysis of known cell
X%Q cycle marker proteins in the different
cell populations (a-tubulin is a control).
Grelin et The abundance of 20% of the
CyclinE proteome changed by at least 4-fold
throughout the cell cycle (difference
CyclinA between lowest and highest
abundance).
CyclinB1
Because a fourfold change best
Geminin accounted for the dynamics of already
a-Tubulin described cell cycle components,
this ratio was used as a threshold for
subsequent analysis.
Cellular Programs Olsen Science

Signaling 3 (2010) !



Monitor protein abundance by MS
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Proteins

Bioinformatics Workflow (1)

Unclustered proteomics data
Tirne points
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Bioinformatics Workflow (2)

10

Logs[Feld change ratic |
nn

1 2 3 4 5 3
Tirme paints

(For each protein | transform expression fold rafios to [O,D

05

Logleold changeratio |

o
= ‘

T T T L] T
1 2 3 4 5 13
Tirme points

0.0

WS 2020/21 - lecture 5 Cellular Programs

Olsen Science
Signaling 3 (2010)

10



Bioinformatics Workflow (3)
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Azsign peak timeitpask) by weighted mean of maximal expression
ratio and cluster all proteins according to increasing peak time
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Clustered proteomics data
Time points

Cellular Programs

For each protein a peak time
index was calculated by
weighted mean of its maximal
expression at time point t; w.r.t
its adjacent time points

t, and t,,.

The proteins were then
clustered according to their
increasing peak time indices.

Olsen Science
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Bioinformatics Workflow (4)

Further functional bicinformatics
analysis for circular enrichment of
Gene OntologwGO) cateqorias,

Clustered protecmics data
Tirne points
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Proteins
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Dynamics of the proteome during the cell cycle
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Proteins whose abundance changed at least

fourfold during the cell cycle were clustered in
canstovein61) - @ll cell cycle stages by calculating a time peak
COkKA . . .

index by weighted mean of the ratio of

maximal abundance.

FTTGT (Securing

For each cell cycle stage, there are clear
patterns of up- and down-regulation.
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Comparison of mRNA and protein dynamics

~ Protein &~ mRNA

I High
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Cell cycle processes

Comparison of mMRNA and protein dynamics during the cell cycle.
Measured protein dynamics were correlated to published mRNA data.

Proteins were grouped on the y axis in 4 categories from top to bottom:
- unchanging mMRNA and protein

- changing mRNA and unchanging protein
- unchanging mMRNA and changing protein
- and changing mRNA and changing protein.

The x axis shows clustered gene ontology (GO) biological process terms enriched
in at least one of the above 4 categories.

High and represent statistical over- or underrepresentation, respectively.
WS 2020/21 - lecture 5 Cellular Programs Olsen Science
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Absolute phosphorylation site stochiometry

Now we want to derive the phosphorylation state of individual protein residues during
the cell cycle. We need to substract out the changes of protein abundance.
-> we want to know (1) and (2) below

NE’HDS
(1) Proportion of phosphorylated to unphosphorylated peptide in Light SILAC state: W = d
L

NFHOS is the total copy number of a given phosphopeptide in the light SILAC state, and NP

is the total copy number the corresponding unphosphorylated peptide in the light SILAC state

NEHOS
(2) Proportion of phosphorylated to unphosphorylated peptide in Heavy SILAC state: W =b
H

Nf19% is the total copy number of a given phosphopeptide in the heavy SILAC state, and

Nﬁf”“P is the total copy number the corresponding unphosphorylated peptide in the heavy

SILAC state

NPHOS . yNonP ] NPHOS . NonP
(3)  We expect that PROTEIN - PROTEIN
Ny Ny,

N[ROTEIN s the total copy number of the phosphoprotein in the light SILAC state, and

N/ ROTEIN s the total copy number the phosphoprotein in the heavy SILAC state

Olsen Science
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Available experimental data

| |
Il. |I |I II II |I

To determine phosphorylation sites that show dynamic profiles due to changes in phosphory-
lation state rather than due to changes in protein abundance, we consider the measured
phosphopeptide H/L ratios.

From the experiment we have:

- the SILAC ratio x for phosphopeptide

- the SILAC ratio y for non-phosphopeptide (the unphosphorylated version of the
phosphopeptide),

- and protein ratio z (the total amount of the protein, i.e. the sum of its phosphorylated and
nonphosphorylated forms).

WS 2020/21 - lecture 5 Cellular Programs Olsen Science
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Absolute phosphorylation site stochiometry

From the MS data we know:
NPHOS

H —
(4)  Relative phosphopeptide ratio = NPHOS — X
L
NNonP

(5) Relative unphosphorylated peptide ratio = _ijf.ronp =Y
L
NPROTE’IN

H
(6) Relative total phosphoprotein ratio = W =2

If we know x, y and z then we can solve equations 1 and 2 by substituting in equations 3:

NPHOS’

Z=y
I,
(1) Occupancy rate in Light SILAC state: W =d= P
NII;HOS x-(z=y)
(2) Occupancy rate in Heavy SILAC state: ==frm—p — =
er}mnp Y- (x-2z)

We expect that NEHGS-l— N{}}ronp= N;HOS-I— Né\.ionP = 100% = 1

and can therefore calculate the phosphorylation site occupancy in the Light and Heavy SILAC state as:

(3) Light SILAC occupancy: a/(1+a) and Heavy SILAC occupancy: b/{1+b)

WS 2020/21 - lecture 5 Cellular Programs Olsen Science
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Example: Dynamic phosphorylation of CDK1

CDK1 phosphorylation site kinetics
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Dynamic profile of two CDK1
phosphopeptides during the cell
cycle.

The activating site Thrl61 (red)
peaks in mitosis, whereas
phosphorylation of the inhibitory
sites Thrl4 and Tyrl5 (blue) is
decreased in mitosis

Olsen Science

Signaling 3 (2010)
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Total phosphosite occupancy in different stages of cell cycle
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Fifty percent of all mitotic phosphorylation sites have occupancy of 75% or more.

Olsen Science
Signaling 3 (2010)
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Fraction of subcellular localization

Differential phosphorylation

Gene ontology (GO) analysis of protein and phosphoproteins subcellular
localization. All proteins identified by MS were clustered according to their GO
annotation for sub-cellular localization (Blue bars). The same clustering was done for
all phosphoproteins (Red bars).
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Probability of significant difference by Two-sided Fisher exact test: Significance p < 1e-03
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y-axis : percentage of the
indicated sub-cellular fractions
from the total.

Compared to the proteome
distribution, phosphorylated
proteins are over-represented
in the nucleus and under-
represented amongst
mitochondrial and secreted
proteins.

Olsen Science
Signaling 3 (2010)
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Dvnamics of the Phosphoproteome
A Helaphosphopeptide clusters

¢ ool 3 Dynamics of the phosphoproteome
during the cell cycle.

Clustering of regulated phosphorylation
sites in all cell cycle stages.

M phase
More than half of all identified
requlated phosphorylation sites
peak in mitosis.
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COMPUTATIONAL BIOLOGY

Linear Motif Atlas for Phosphorylation-Dependent
Signaling

Martin Lee Miller,"?* Lars Juhl Jensen,?** Francesca Diella,® Claus Jergensen,*

Michele Tinti,? Lei Li,® Marilyn Hsiung,* Sirlester A. Parker,” Jennifer Bordeaux,’

Thomas Sicheritz-Ponten,’ Marina Olhovsky,* Adrian Pasculescu,* Jes Alexander,?
Stefan Knapp,? Nikolaj Blom,' Peer Bork,?'® Shawn Li,® Gianni Cesareni,” Tony Pawson,*
Benjamin E. Turk,” Michael B. Yaffe,?' Saren Brunak,"?' Rune Linding*®''

{Published 2 September 2008}

Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory net-
works underlying cellular responses to environmental cues. However, matching these sites to the ki-
nases that phosphorylate them and the phosphorylation-dependent binding domains that may
subsequently bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs
that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2),
phosphotyrosine binding (PTB), BERCA1 C-terminal (BRCT), WW, and 14-3-3]. The atlas reveals new
aspectsofsignalingsystems,includingthe observation thattyrosine kinases mutated incancerhave lower
specificitythantheirnon-oncogenic relatives. Theresource ismaintained by an automated pipeline, which
usesphylogenetic trees to structure the currently available in vivo and in vitro data to derive probabilistic
sequence models of linear motifs. The atlas is available as acommunity resource (http://netphorest.info).

Miller Science
Signaling 1 (2008)
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Analyze in vivo protein-phosphorylation
sites that are linked to at least one kinase
[Phospho.ELM] or phospho-binding

domain [DOMINO].
A

NetPhorest algorithm

Analyze in vitro assays that
interrogate kinase specificity by
degenerate peptide libraries

Organization

In vivo

B Invitro

In vivo phosphorylation sites Phylogenetic trees

B

= EESTLELLL

Fi

In vitro assays

Fixed residue

PGACSTVILMFYWHKRQNDETY
w

]‘:

Compilation
Positive
Negative

Excluded

Extraction of positive and negative examples for each domain or family of related domains

C
map both in vivo and in vitro data onto phylogenetic trees of the kinase and

phospho-binding domains, which capture how similar the domains are to one
another and thereby how likely they are to have similar substrate specificities.
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NetPhorest algorithm: applications

Motif atlas

CH2 family

Detection of
purification biases

Design of
consensus antibodies

XXXpSDED
XXXpSEED

XXXpSDDE %
XXXpTDED

4

Modeling of
signaling networks

Radi0 (:)

Miller Science
Signaling 1 (2008)
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Cell Cycle-regulated kinase substrates

Heat map of cell cycle—regulated kinase substrates  The NetPhorest algorithm was used to

e predict kinase-substrate relationships of all
serine and threonine phosphorylated
proteins.

A PEAPE_gmup
RCE_gmoup
JME_grou

The heat map shows over- (yellow) and
underrepresentation (blue) of predicted
kinase substrates during different stages

of the cell cycle compared to a background
of phosphorylation sites that did not change
with the cell cycle.

redicted CDK2 and CDK3 substrates were
most highly phosphorylated in M phase.
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EH;E”JEEQTGE o omn ATM_ATR substrates are high in S phase.

WS 2020/21 - lecture 5 Cellular Programs Olsen Science
Signaling 3 (2010) 25



Proteomic phenotyping of phosphorylation site stochiometry

A Regulated M phase Regulated Sphase
. 13 13 13 e " 5 . . e H
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color scale: yellow, high overrepresentation; dark blue, high underrepresentation.
The phospho proteins were divided into five quantiles on the basis of their maximum
phosphorylation-site occupancy and analyzed for GO category (biological process and cellular

compartment) enrichment by hypergeometric testing.
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GO cellular compartment analysis

Regulated M phase Regulated Sphase
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Proteomic
phenotype
analysis of GO
cellular
compartment
level.
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Summary

Phosphorylation of protein residues is an important mechanism to regulate protein
structure, protein activity, protein localization, and protein interactions.

About 70% of all cellular proteins are phosphorylated to some extent.
Phosphorylation is a dynamic state variable during the cell cycle.

Phosphorylation levels are controlled by the ca. 518 different human kinases as
well as by phosphatases.

-> these are important potential drug targets (problem is achieving specificity)

Paper 5/ Assignment 3

Mihkel Ord, Kaidi Moll, Alissa Agerova, Rait Kivi, llona Faustova, Rainis Venta,

Ervin Valk & Mart Loog, Nature Structural & Biology Biology 26, 649—658 (2019)
Multisite phosphorylation code of CDK
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https://www.nature.com/articles/s41594-019-0256-4

