V10: Epigenetics of stem cells

During development, epigenetic information is acquired in a progressive manner.

These changes regulate the transcriptional programme during lineage
commitment.

Dynamic regulation of the epigenome underlies cellular plasticity and provides
a heritable response to environmental and developmental cues.

The different layers of epigenetic information are closely interconnected.

Epigenetic deregulation is directly linked to a wide spectrum of diseases
ranging from developmental disorders associated with aberrant genetic imprinting
to various cancers that have defects in protein complexes involved in histone or
DNA modifications.

The fact that epigenetic modifications are, in principle, reversible renders
epigenetic regulation amenable to pharmacological intervention.

Atlasi & Stunnenberg, Nature Rev
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Review (V9): Cytosine methylation

Observation: 3-6 % of all cytosines are methylated in human DNA.

This methylation occurs (almost) exclusively when cytosine is followed by a
guanine base -> CpG dinucleotide.

SAM 5-methyl-cytosine
(SAH-CH,) SAH
NH, 3 NH, SAM: S-adenosyl-methionine

Cytosme H\ﬁ\ HSC\K\ SAH: S-adenosyl-homocysteine
/g /& NH;

OH OH

Cytosines in CpG islands are usually not methylated.

Esteller, Nat. Rev. Gen. 8, 286 (2007)
www.wikipedia.org
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Review (V9): Post-translational modifications of histone tails
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This, in turn, affects gene
expression.

Strahl BD and Allis CD, 2000. Nature 403:41-45
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Review (V9): Different states of pluripotency

E4.5 epiblast cells: represent ground-state pluripotency
Implantation: stage of pregnancy at which the blastocyst adheres to the wall of the uterus.

After implantation (E5.5): epiblast cells undergo a strong wave of epigenetic
reprogramming. They are now ,primed®.
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Review (V9): Dynamics of epigenetic modifications

Pre- Post- Post-
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Genet 18, 643-658 (2017)
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Review (V9):
Events during enhancer activation / decommissioning

Enhancer activation Enhancer decommissioning

Compact
chromatin
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5mC: 5-methyl-cytosine

5hmC: 5-hyd roxy-methyl-cytosine ) Nature Reviews | Genetics
Atlasi & Stunnenberg, Nature Rev

Genet 18, 643-658 (2017)
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Different pluripotent states

The different states that have been captured in vitro provide a gradient of
pluripotency that resembles different stages of embryonic development:

naive ESCs cultured in serum-supplemented medium or in 2i medium resemble
the pre-implantation epiblast

- 2i medium = serum-free medium supplemented with two inhibitors of MAP/ERK
kinase (MEK)) and glycogen synthase kinase 3 (GSK3):

- (1) PD0325901 inhibits the autocrine stimulation of the mitogen-activated
protein kinase (ERK1/2) pathway by fibroblast growth factor-4 (FGF4), which
has been shown to be elemental for ES cell differentiation.

- (2) GSK3 inhibition impairs the endogenous repressor activity of Tcf3, a
transcriptional repressor of the core pluripotency network

primed epiblast-derived stem cells (EpiSCs) resemble the post-implantation
embryo.
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Differentiation of embryonic stem cells

Human embryonic stem cells (hESCs) can be differentiated into a variety of precursor
cell types.
This provides an in vitro model system to study early human developmental decisions.

There exist protocols for differentiation of hESCs to various cell states, including
- trophoblast-like cells (TBL),

- mesendoderm (ME), and

- neural progenitor cells (NPCs).

TBL, ME, NPC represent developmental events that mirror critical developmental
decisions in the embryo:

- the decision to become embryonic or extraembryonic (TBL),

- the decision to become mesendoderm or ectoderm (ME), and

- the decision to become surface ectoderm or neuroectoderm (NPC), respectively.

Xie et al., Cell 153,
1134-1148 (2013) 8
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Differentiation of embryonic stem cells

To dissect the early transcriptional and epigenetic events during hESC
specification, Gifford et al. used directed differentiation of hESCs to produce
early representative populations from the 3 germ layers, namely ectoderm,
mesoderm, and endoderm.

This was followed by fluorescence-activated cell sorting (FACS) to enrich for the
desired differentiated populations.

These 3 cell types, in addition to undifferentiated hESCs (HUES64), were then
subjected to

- ChlP-seq for six histone marks (H3K4me1, H3K4me3, H3K27me3, H3K27ac,
H3K36me3, and H3K9me3),

- whole-genome bisulfite sequencing (to determine DNA methylation status), and
- RNA sequencing (RNAseq).

ChlIP-seq was also performed for the TFs OCT4, SOX2, and NANOG in the
undifferentiated hESCs (-> binding sites of these TFs).

WS 2017/18 — lecture 10 Cellular Programs Gifford et al., Cell 153,
1149-1163 (2013) 9



Directed differentiation

Pluripotent cells can
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Nature Reviews | Genetics

Gifford et al., Cell 153,
1149-1163 (2013) 10
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Fluorescence-activated cell
sorting (FACS) is a
specialized type of flow
cytometry. It provides a
method for sorting a
heterogeneous mixture of
biological cells into two or
more containers, one cell
at a time, based upon the
specific light scattering and
fluorescent characteristics
of each cell.

By SariSabban - Sabban, Sari (2011)
https://commons.wikimedia.org/w/index.
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nucleus

ChiIP-seq

Shear DNA strands
by sonicating

Add bead-attached antibodies
to immunoprecipitate
target protein
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Generation of hESCs and hESC-derived cell types

10x

DNA

NANOG POUSF
NANOG POUSF

HUESG64 (undifferentiated)

Low (4x) and high (40x) magnification
overlaid immunofluorescent images of
the undifferentiated human embryonic
stem cell (hESC) line HUES64 stained
with OCT4 (POU5F1) and NANOG
antibodies.

E.g. formation of ectoderm is induced
by inhibition of TGFb, Wingless/
integrase1 (WNT), and bone
morphogenetic protein (BMP)
signaling
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Ectoderm

A83-01, PNU 74654,
Dorsomorphin

SOX2 PAX6 DNA

Mesoderm

GATA2 DNA

ACTIVIN A, BMP4,
FGF2, VEGF

l

Endoderm

ACTIVIN A, WNT3A

SOX17 FOXA2 DNA

Established directed differentiation conditions were
used to generate representative populations of the
3 embryonic germ layers: hESC-derived ectoderm,
hESC-derived mesoderm, and hESC-derived
endoderm.

Cells were fixed and stained after 5 days of
differentiation with the indicated antibodies. DNA
was stained with Hoechst 33342 in all images.

Gifford et al., Cell 153,
1149-1163 (2013) 13
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Differential gene expression in 3 cell lineages
e e Z-score log, expression values during 5 days of in vitro

E differentiation. 268 out of 541 profiled genes changed by

more than 0.5.
T — U - mean of population;

*POUSF1
ZFP42
DNMT3B

EOMES
T
*GSC

orx2

Z-score e ok o : standard deviation of population.

: Selected lineage-specific genes are shown for each category
et that was identified based on hierarchical clustering.

Genes such as EOMES, T, FOXA2, and GSC are upregulated at 24 hr of
mesoderm and endoderm induction, but not ectoderm differentiation.

GSC expression decreases within 48 hr of differentiation in the mesoderm-like
population;whereas the expression level is maintained in the endoderm
opulation. EQMES and FOXA2 expression is also maintained in the

derm populatian accompanied by upregulation of GATA6, SOX17, and
HHEX.

After transient upregulation.of mesendodermal markers, activation of
mesodermal markers such as GATA2, HAND2, SOX9, and TAL1 is detected
specifically in the mesoderm conditions.

None of these markers are detected during early ectoderm differentiation,
which instead upregulates neural markers such as PAX6, SOX10, and EN1
Gifford et al., Cell 153,

1149-1163 (2013) 14

z-score log, count
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TFs in Core Pluripotency Network

Oct4, encoded by Pou5f1, is a POU domain-containing TF
that is essential to ES cells and early embryonic development.

Oct4 binds to Sox2, another TF.

Genome-wide mapping of OCT4 and SOX2 sites
in human ES cells shows that they co-target multiple genes.

Oct4 and Sox2, along with c-Myc and KIf4, appear to be sufficient for
reprogramming fibroblasts to induced pluripotent stem cells (iPS),
which are functionally similar to ES cells (— Yamanaka factors).

Shinya Yamanaka
noble price for medicine 2012

WS 2017/18 — lecture 10 Cellular Programs Chen et al., Cell 133,
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Other TFs in Core Pluripotency Network

These 4 TFs can exert a dominant role in reconstructing
the transcriptional regulatory network of ES cells.

A third well-studied TF in ES cells is Nanog.
Nanog can sustain pluripotency in ES cells.

In addition to this, some further transcriptional regulators such as Esrrb and Zfx
are required to maintain ES cells in the state of pluripotency. .

WS 2017/18 — lecture 10 Cellular Programs Chen et al., Cell 133,
1106-1117 (2008) 16



Gene expression of known pluripotency markers
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Yamanaka factors (for cell reprogramming): Oct4 (Pou5f1), Sox2, cMyc, and Kilf4

In the endoderm population, POU5F1 (OCT4), NANOG, and, to some extent,
SOX2 expression is maintained.

In ectoderm, SOX2 expression is maintained at high levels.
In mesoderm, SOX2 expression is downregulated.

WS 2017/18 — lecture 10

Cellular Programs

Gifford et al., Cell 153,

1149-1163 (2013) 17



Gene expression in 3 cell lineages

3 hESC
16 = dEC
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profiling of FACS-isolated ectoderm (dEC), mesoderm (dME), and endoderm (dEN).

Expression levels for MYOD1 (right) are included as a control.
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1149-1163 (2013) 18



Transcriptional relationship between lineages
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Hierarchical clustering of global gene
expression profiles for HUES64 and
dEC, dME, and dEN.

Venn diagram illustrating unique and
overlapping genes with expression.

dME population expresses the largest
number of unique genes (n = 448), such as
RUNX1 and HAND2.

The dME population is the most
distantly related cell type.

dEN and dEC are more similar to each

dEC and dME have the least transcripts in
other than to dME or hESCs

common (n = 37), whereas dEC and dEN
have most transcripts in common (n = 171),

WS 2017/18 — lecture 10 Cellular Programs Gifford et al., Cell 153,
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Epigenetic marks control cellular memory

However, the expression levels of transcription factors are NOT everything!

For example, the maintenance of cellular memory also depends on epigenetic
marks such as DNA methylation and chromatin modifications

DNA methylation at promoters has been shown to silence gene expression (weak
correlation, ca. 0.15) and thus has been proposed to be necessary for lineage-
specific expression of developmental regulatory genes, genomic imprinting, and X
chromosome inactivation.

Indeed, the DNA methyltransferase DNMT1 or DNMT3a/3b double-knockout
mice exhibit severe defects in embryogenesis and die before midgestation,
supporting an essential role for DNA methylation in embryonic development

Xie et al., Cell 153,
1134-1148 (2013) 20
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Chromatin states
Analyze previously identified informative chromatin states

H3K4me3+H3K27me3 (bivalent/poised promoter);
,Poised” genes: RNA-Polymerase Il is located at their promoters in the
absence of ongoing transcription, the genes are loaded to be transcribed soon

- H3K4me3+H3K27ac (active promoter); gene is actively transcribed

- H3K4mea3 (initiating promoter);

- H3K27me3+H3K4me1 (poised developmental enhancer);

- H3K4me1 (poised enhancer);

- H3K27ac+H3K4me1 (active enhancer); and

- H3K27me3 (Polycomb repressed); and

- H3K9me3 (heterochromatin).

The WGBS data was segmented into three levels of DNA methylation:
- highly methylated regions (HMRs: > 60%),

- intermediately methylated regions (IMRs: 11%— 60%), and

- unmethylated regions (UMRs: 0%—-10%).

WS 2017/18 — lecture 10 Cellular Programs Gifford et al., Cell 153,
1149-1163 (2013) 21



Epigenetic Data for hESC
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Data for the undifferentiated hESC line HUES64 at 3 loci: NANOG, GSC, and H19
WholeGenomeBisulfiteSequencing (% methylation), ChlP-seq (read count normalized to 10
million reads), and RNA-seq (FPKM = fragments per kilobase of exon per million fragments
mapped). CpG islands are indicated in green.
Same data was also collected for dEC, dME, and dEN cells (ca. 12 million cells each)
Bivalent promoter: carries activating (e.g. H3K4me3) and repressive (e.g. H3K27me3) histone

marks

Poised enhancer: closed enhancer having H3K4me1 along with H3K27me3 and devoid of

H3K27ac marks
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35% of epigenetic marks are linked to expression levels
o |

H3K27me3 & H3K4me' | |
H3K27ac
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Classification in Expression median (log,FPKM) H3K4me3 & H3K27ac)
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netic states:
Note that many (ca. 65%)

The combination epigenetic remodeling
of events are not directly
and linked to transcriptional
exhibits the changes based on the
highest CpG expression of the nearest
content. gene.
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NANOG

Pluripotent TF binding linked to chromatin dynamics
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regions enriched for OCT4 binding
sites frequently become HMRs in all three
differentiated cell types, whereas NANOG and
SOX2 sites are more prone to change to an HMR
state in dME.
In general, many regions associated with open
chromatin that are bound by NANOG are more
likely to retain this state in dEN compared to dME
and dEC.
We also found that regions enriched for H3K27ac
in hESCs that maintain this state in dEN or dEC
are likely to be bound by SOX2 and NANOG.
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Enrichment of OCT4, SOX2, and NANOG
within various classes of dynamic genomic

regions that change upon differentiation of
hESC.

Values are computed relative to all regions
exhibiting the particular epigenetic state
change in other cell types.

Epigenetic dynamics are categorized into 3
major classes:

- repression (loss of H3K4me3 or H3K4me1
and acquisition of H3K27me3 or DNAme),

- maintenance of open chromatin marks
(H3K4me3, H3K4me1, and H3K27ac), and
- activation of previously repressed states.

Gifford et al., Cell 153,
1149-1163 (2013) 24



GO categories in regions gaining H3K27ac
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DNA methylation levels during hematopoiesis

Hematopoietic stem cell differentiation
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(right) The distribution of DNA methylation
levels was similar across all stem and
progenitor cell types.

Differentiated cell types are shifted to
slightly lower values.
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(Left) single-cell whole
genome bisulfite
sequencing for 17
hematopoietic cell types
(multiple types of HSCs).
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Farlik M et al. Cell Stem Cell
(2016) 19:808-822
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Myeloid-Lymphoid Lineage Choice

Hematopoietic stem cell differentiation
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Strongest effects for GATA1 and TALA1.
Farlik M et al. Cell Stem Cell
(2016) 19:808-822
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Lower meth. in lymphoid progenitors
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Lower meth. in myeloid pregenitors
Promoter DNA methylation difference (p.p.)

lecture 10

656 genes were differentially expressed
between myeloid and lymphoid
progenitors.

Only few genes (left, bottom) showed
concordant methylation and expression
changes.

Farlik M et al. Cell Stem Cell
(2016) 19:808-822
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Tissue signature enrichment levels

DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC)
inhibitors are in clinical trials.
A few molecules have already been approved as drugs.

Paper #8 (Fawaz, Salem, Hera): Moignard et al.

Decoding the regulatory network of early blood development from single-cell gene expression measurements
Nature Biotechnology 33, 269-276 (2015)

doi:10.1038/nbt.3154

Paper #9 (Fazaneh, Aditi, Jing Yu): Monika E. Hegi, et al.

MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma
New England Journal of Medicine 352, 997-1003 (2005)

doi: 10.1056/NEJM0a043331

Paper #10 (Samira, Aryan, Jeenu): Goke J, et al.

Combinatorial Binding in Human and Mouse Embryonic Stem Cells Identifies Conserved Enhancers Active in
Early Embryonic Development.

PLoS Comput Biol 7(12): 1002304 (2011)

https://doi.org/10.1371/journal.pcbi.1002304
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