Therapeutic Categories

Grouping drugs under the aspect of their pharmacological and therapeutic application results in about 200 categories:

ACE Inhibitor
Adrenocortical Suppressant
Adrenocorticotropic Hormones
Aldose Reductase Inhibitors
Aldosterone Antagonists
α-adrenergic Agonists
α-adrenergic Blockers
α-Glucosidase Inhibitors
Anabolic Steroids

Analgesic, Dental
Analgesic, Narcotic
Analgesic, Non-narcotic
Androgens
Anesthetics, Inhaled
Anesthetics, Intravenous
Anesthetics, Local
Angiotensin II Antagonists
Anorexics

…c.f. the Merck Index

In most cases it is not obvious to conclude the treated disease from a therapeutic class. (At least for non-medical persons)
Typical diseases

The search for pharmaceutical drugs used to be rather straightforward until recent times:

A wealth of information about the disease, its causes, and the clinical symptoms were readily available. Thus the starting point for the pharmacological therapy was known.

Example: inhibition of an enzyme

Thus the target was fixed. Frequently, experience with existing medications was available. Therefore a *valid target* or at least a *drugable target* was present.

→ The *target* undergoes a change of its activity caused by the drug
Flow of information in a drug discovery pipeline

Valid target
Fractional content of marketed drugs according to their biochemical targets.

Enzymatic targets

Distribution within the class of enzymes
contribution to the human genome and marketed drugs about 500 enzymes have been used as targets 100,000 estimated potential targets in the genome
GPCRs and other targets

- Ion channel
- G-protein complex
- Adenyl cyclase
- ATP → cAMP
- Protein kinase A
- Transcription factors
- Gene expression regulation
- Nucleus

Inactive enzymes → active enzymes
How do drugs interact with targets?

proteome

- enzymes: substrate analogs, competitive ligands, reversible and irreversible inhibitors
- receptors: antagonists and agonists
- ion channels: openers and blockers (inhibitors)
- transporters: (re-)uptake inhibitors
- DNA / nuclear receptors: intercalate, binding to specific DNA-motives, groves, etc.

genome

→ Possible targets can be found in a multitude of cell compartments and at different loci.

Problems: Drug delivery and drug transport / distribution
Drugs: mode of action (I)

Normal enzymatic turn-over

allosteric binding

Induced fit

reaction

conformational change

lock and key principle
Drugs: mode of action (II)

Competitive inhibitor:
higher affinity than natural substrate, directly acting

Allosteric inhibitor/effector:
prevents binding by modifying the conformation

Irreversible binding:
chemical reaction leads to inactivation of the enzyme

e.g. acetyl-salicylic acid acetylates Ser530 of Cyclooxygenase

Anti-metabolite:
Competitive alternate ("wrong") substrate
e.g. methotrexate instead of dihydrofolate, antiviral nucleoside analoges
Drugs: mode of action (III)

Ion channels: Mode of action by ligand binding, indirectly through receptors, or voltage gated
Drugs: mode of action (IV)

agonist: ligand that causes an intrinsic effect (response of the receptor)

partial agonist: weakly working agonist with high binding affinity, thus also working as antagonist
Drugs: mode of action (V)

antagonist: ligand that prevents binding of the agonist, either directly (competitive binding) or indirectly (allosteric, prevents adoption of the reactive conformation)

inverse agonist: ligand stabilizing the inactive conformation

functional antagonist: prevents receptor response by a different mode of action
Why do drugs have funny names?

Examples for such faults in naming products exist!

![Image of a car and product]

Nasonex®
(Mometasone Furoate Monohydrate Aqueous Nasal Spray)
Naming of drugs (I)

The **trade name** of a drug is usually chosen very carefully. Associative and speech-psychological aspects are considered.

Example within the german language:

The more x and y are appearing in the name, the more toxic.

Acetylsalicylsäure → Aspirin®

Problems will occur, if a product should get the same name throughout all countries. Examples:

Twix® (earlier: Raider)
Naming of drugs (II)

Furthermore, legal aspects have to be considered: existing words and words that imply a direct connection or target a specific consumer group cannot be protected.

Example: „Schülerschokolade“ is not possible in Germany

Thus a lot of inspiration is required to find a pleasant sounding name. Frequently syllables and foreign words (Latin, Greek, Spanish) are used that bear associations.

c.f. names for cars

® this name is approved and protected.

™ the producer indicates his intention to have this name protected.
Naming of drugs (III)

For the naming of the actual chemical substances there are also some (loose and empirical) guidelines.

Such names are adopted as „International Nonproprietary Name“ (INN) or „United States Adopted Name“ (USAN) at the latest upon patent application.

Most of the time, the therapeutic class can be identified solely by the name. (similar names for substances with similar function.)

Prefixes and suffixes reflect chemical modification of the root compound.

Examples: ibufenac, clofenac, diclofenac, oxidanac
Naming of drugs (IV)

The World Health Organization (WHO) publishes updates regarding the use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances.

Example: all drugs carrying the suffix (=stem) –coxib are selective cycloxygenase inhibitors:

- celecoxib
- cimicoxib
- deracoxib
- etoricoxib
- firocoxib
- lumiracoxib
- mavacoxib
- parecoxib
- robenacoxib
- rofecoxib
- tilmacoxib
- valdecoxib

In such cases the drug target is obvious.

http://www.2l.no/2L23details.htm
Compound Databases

existing substance libraries

ACD >100,000 chemicals
World Drug Index 58,000 compounds
USAN <10,000 in clinical trial
virtual library ≈100,000 compounds

PubChem >3,000,000 compounds NCBI
ChEMBL >1,213,000 compounds EMBL
ZINC >73,126,243 compounds UCSF

Investment per new chemical entity: >500,000 $
New chemical entities per year: ca. 15
towards the drug (I)

symptoms disease model available medications

Increasing knowledge

applicable hypothesis of mechanism therapeutic target

enzyme model cell model animal model transgenic animals sequenced genomes

effort & expenses
Evolution of Disease Symptoms with Time

1800	1900	2000
Disease causing agents | enviromental influence | genetic disposition
lack of hygiene | carcinogens | life style susceptibility
germs, bacteria viruses | |

bioethic component

accepted legal definition of diseases

legal regulation for drug marketing (e.g. FDA)
The preclinical phase

- Therapeutic Target
- Lead Discovery
- Lead Optimization
- Clinical Candidate
- Commercial Drug

drug design
The drug discovery pipeline

Trend in approving new drugs

Drugs approved by the FDA within the last 25 years

towards the drug (II)

Example: arterial hypertension

Arterial hypertension [Arterielle Hypertonie] is a frequently observed condition (about 10 - 25% of all adults are affected). Persistent hypertension can lead to damage of blood vessels, the eyes, and the kidneys. → symptoms

<table>
<thead>
<tr>
<th>category</th>
<th>systolic</th>
<th>diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimum</td>
<td><120</td>
<td>and</td>
</tr>
<tr>
<td>normal</td>
<td><130</td>
<td></td>
</tr>
<tr>
<td>normal-high</td>
<td>130 - 139</td>
<td>or</td>
</tr>
<tr>
<td>mild HD</td>
<td>140 - 159</td>
<td>or</td>
</tr>
<tr>
<td>moderate HD</td>
<td>160 - 179</td>
<td>or</td>
</tr>
<tr>
<td>strong HD</td>
<td>>180</td>
<td>or</td>
</tr>
</tbody>
</table>

Regulation of the blood pressure (simplified)

- **Peripheral resistance**
- **Arterial blood pressure**
- **Blood volume**
- **Heart (pumping) capacity**

- **Sympathetic** \uparrow
- **Parasympathetic** \downarrow

- Salt deposits Na^+, K^+, Ca^{2+}

Hormones control the blood volume and heart capacity, influencing peripheral resistance.
diuretica and saluertica

Ions in the blood and in other salt deposits bind water. By elimination of these ions the volume of the blood can be reduced.

This effect is caused by diuretica and saluertica:

Examples: hydrochlorothiazide, furosemide

Therapeutic administration of thiazides since 1960

Disadvantages / side effects:

deficiency of potassium
increased level of uric acid [Harnsäure]
increased level of fatty acids in the serum
not suitable with diabetes
α and β-blocker

Act relaxing via the peripheral nervous system and reduce the pumping capacity of the heart.

Examples: prasozin, tetrazosin, doxazosin, propanolol, atenolol, labetalol, pindolol

Simultaneously, the hormonal control is affected, whereby the peripheral resistance is diminished.

Therapeutic administration since 1970

Disadvantages and side effects:

withdrawl symptoms
reduced capacity of the heart [Herzinsuffizienz]
increased levels of fatty acids in the serum
effects on the central nervous system
vasodilators and calcium antagonists

Act relaxing on the smooth muscles of the arterias and thereby reduce the resistance.

Bind to the $h\text{AT}_2$-receptor or inhibit the calcium pump

Examples: hydralazine, minoxidil, diazoxide, verapamil, diltiazem, nifedipine

Therapeutic administration since 1980

Disadvantages and side effects:
Predominately on the function of the heart
Angiotensin Converting Enzyme Inhibitors

The endogenic oligopeptide Angiotensin II is one of the strongest vasoconstrictors. By inhibiting the angiotensin converting enzyme (ACE) the synthesis of Angiotensin II is disabled.

Examples: captopril, fosinopril, quinapril

Therapeutic administration since 1990

disadvantages:

fetotoxic (pregnancy)

Picture source: M. Gurrath

Angiotensin-II antagonists

competitive binding of non-peptidic compounds to the \(h\text{AT}_1 \)-receptor (GPCR), which is the binding site of Angiotensin II.

Examples: losartan, valsartan, irbesartan, candesartan, telmisartan
Furthermore in clinical testing: olmesartan, forsartan

therapeutic administration since 1995

disadvantages:
same as for ACE-inhibitors

Evolution of targets over time

<table>
<thead>
<tr>
<th>targets</th>
<th>therapeutic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>kidney</td>
<td>diuretica, saluretica</td>
</tr>
<tr>
<td>nervous system</td>
<td>α and β-blocker</td>
</tr>
<tr>
<td>hAT_2-receptor</td>
<td>vasodilators</td>
</tr>
<tr>
<td>ACE</td>
<td>ACE-inhibitors</td>
</tr>
<tr>
<td>hAT_1-receptor</td>
<td>Angiotensin II antagonists</td>
</tr>
</tbody>
</table>

increasing specificity
Methods for Determining Atomic Structures

X-ray and electron microscopy

Diffraction and Scattering of electromagnetic waves, respectively electrons

Pro: resolution Con: „artificial“ conditions

NMR (nuclear magnetic resonance)

Absorption of electromagnetic waves

Pro: „natural“ conditions Con: only for small proteins
Obtaining X-Ray structures (I)

Conventional X-Ray scattering

Uneven distribution of wave lengths: characteristic intensity peaks

Synchrotron scattering

Continuous distribution of wave lengths
Obtaining X-Ray structures (II)

The arrangement of atoms in the crystal gives rise to a diffraction pattern

Mathematical transformation &

Idea how the actual structure looks like

Electron density map
Accurracy of X-Ray structures (I)

The resolution given in .pdb files tells us the smallest wavelength (in Å) the crystal was able to diffract.

→ We “see” objects of that size

![3.0 Å](image1.png) ![2.7 Å](image2.png)

Backbone and putative positions of side chains

Distinguishing large and small side chains
Accuracy of X-Ray structures (II)

The atomic coordinates are fitted into the electron density grid using a force field.

Different rotamers of the side chains can be assigned.

Atomic coordinates can be assigned unambiguously.
NMR Structures (I)

The distance between atoms can be derived from the intensities of the cross-peaks in the 2D-NMR spectrum. Like in X-ray scattering an idea how the actual structure looks like is required.

→ constraint force field optimization of the atomic coordinates
NMR Structures (II)

Due to the dynamic behavior in solution and limited time resolution of the NMR, an „averaged“ structure is obtained.

Such .pdb files usually contain 10 individual solutions and the resulting averaged structure.