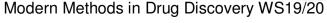
Complex Diseases, Success and Failure

Finding the "right" target \rightarrow valid targets


which constrains are limiting factors?

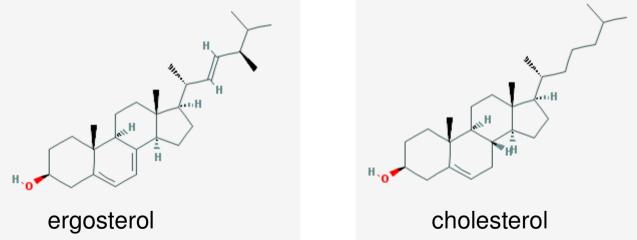
Dosage, bioavailability, actual drug concentration in the respective compartment (cell, organelles)

Are we competing against a natural substrate, e.g. ATP ? (concentration in the cell: ca. 4 mMol)

Biological barriers: e.g. bacterial cell walls

Picture source: N.L.Brown et al. Nature Rev. Biology (2015) DOI:10.1038/nrmicro3480

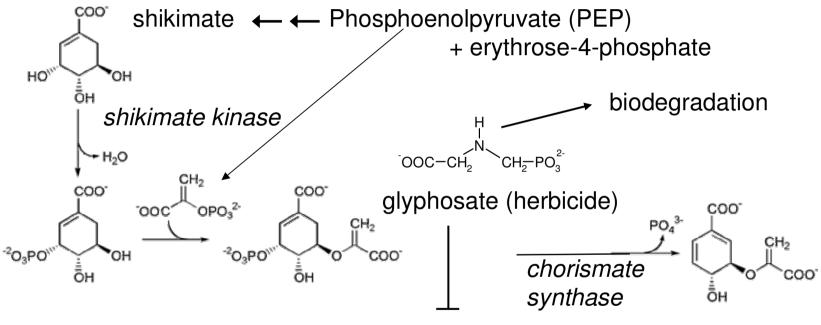
Gram-negative bacteria Lipopolysaccharide Porin annan annan ann Outer RAAAAAAAAAAAAAA membrane Periplasmic Lipoprotein Peptidoglycar space Periplasmic space Cel membrane


11th lecture

Antifungals

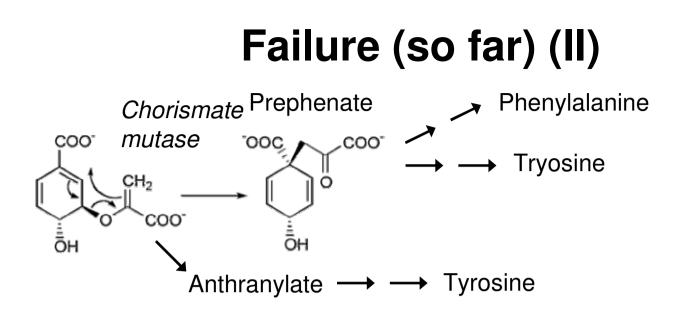
Success

Ketoconazole, Fluconazole, Itraconazole, Clotrimazole, ...


Mechanism of action: Inhibition of $14-\alpha$ -demethylase (CYP51) that is part of the biosynthesis pathway of ergosterol, which is an essential component of the fungal cell membrane (in mammals: cholesterol).

Cons: Inhibition of Cytochromes causes hepatotoxicity (Ketoconazole). Other conazoles are more specific. Development of resistances (overexpression of efflux proteins).

Failure (so far) (l)


Antibacterial agents targeting enzymes of the Shikimate pathway (responsible for the synthesis of the amino acids Phe, Tyr, and Trp).

5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) chorismate

Pro: Those enzymes are only found in plants, fungi, algae, and bacteria but not in mammals. Thus interference can be ruled out.

11th lecture

Pathogens such as *Oxoplasma gondii*, *Plasmodium falciparum*, and *Cryptosporidium parvum* contain the Shikimate pathway and the seven enzymes involved.

Lit. C.W.Roberts et al. *J.Infect.Dis.* **185** (2002) Suppl.1:S25-36.

Con: Obviously the neccessary inhibitor concentration in the respective compartment could not be achieved. For comparison:

The cellular level of phosphoenolpyruvate (PEP) is ca. 4 mMol

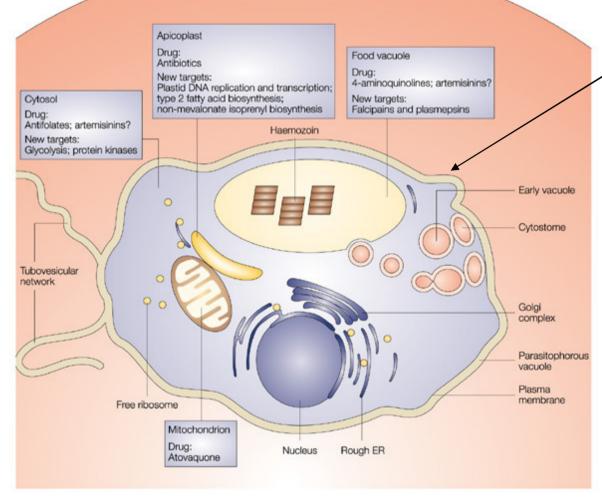
Complex Diseases

malaria is the tropical disease no.1

300-500 millionen infections per year causing 1-3 million fatalities

clinical symptoms:

Strong fever, anemia, acidosis, multiple failure of organs



Due to the life cycle of the pathogen *Plasmodium flaciparum,* and the transmission by the *anopheles* fly, there are several starting points for control and therapy.

Lit. D.A.Fidock et al. Nature Rev. Drug Disc. 3 (2004) 509

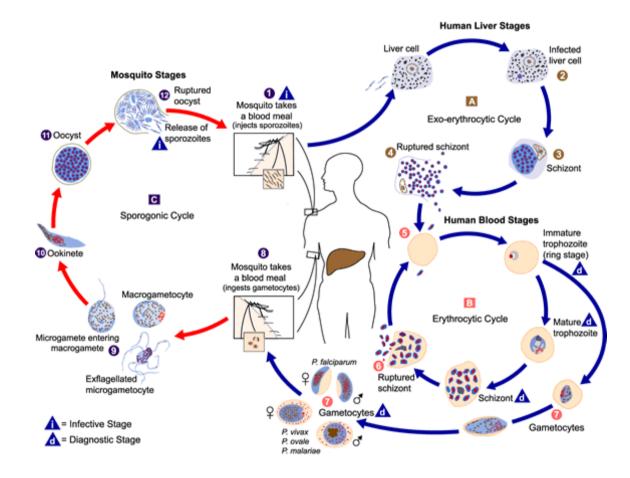
malaria pathogens cause degradation

Plasmodium falciparum trophozoite

Further pathogens in human:

P. vivax

of hemoglobin

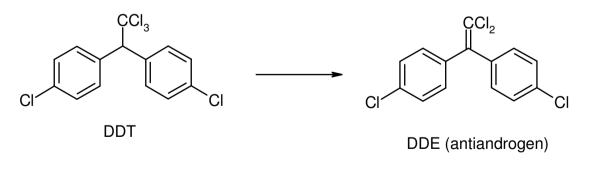

P. malariae

P. ovale

and about 56 more species of *Plasmodium*

Nature Reviews | Drug Discovery Modern Methods in Drug Discovery WS19/20

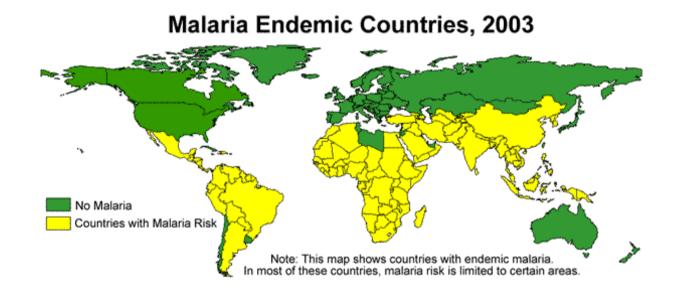
Lifecylce of the malaria pathogens


source: http://www.dpd.cdc.gov/.../body_Malaria_page1.htm

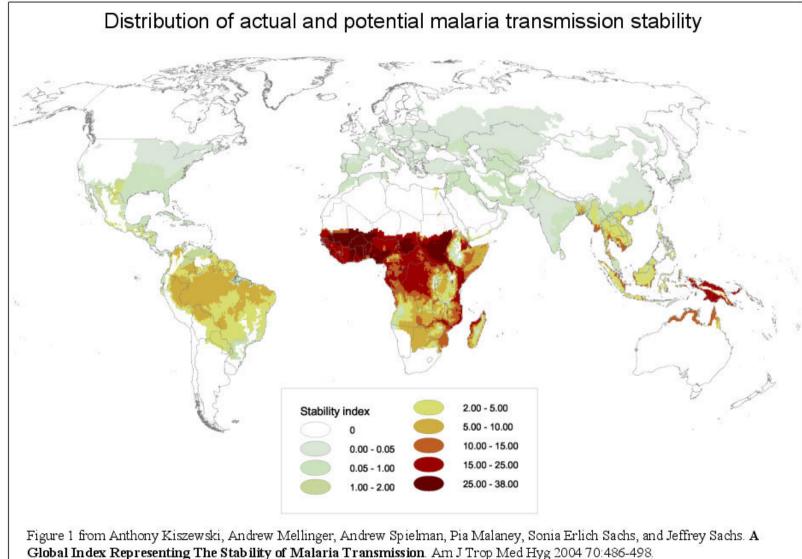
Approaches to controlling (I)

1960-1980 exhaustive use of insecticides against the Anopheles fly with very good results by the use of DDT (dichloro-diphenyl-trichloroethane) Disadvantages:

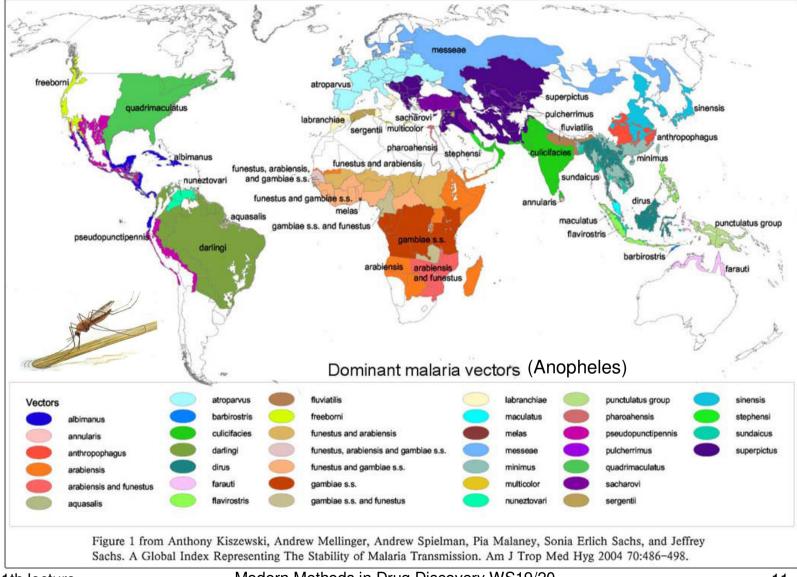
• Accumulation of DDT in the adipose tissue [Fettgewebe] of all creatures (mammals, birds, fish)


- DDT is biologically (almost) undegradable
- Metabolismus leads to a neurotransmitter-like substance (acts as contact insecticide !)

Increasing resistance to DDT has been observed


11th lecture

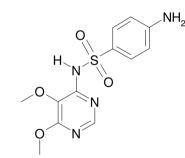
Distribution of Malaria (I)



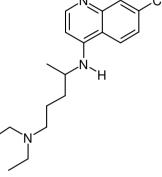
Areas with risk of malaria

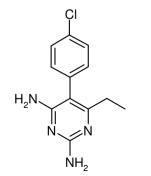
Distribution of malaria (II)

Distribution of the Anopheles fly

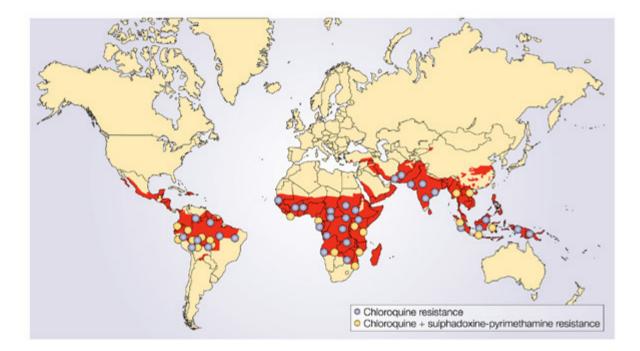


Approaches to controlling (II)


chloroquine: since the late 1940's worldwide application at very low costs (0.2 US\$ per dose)

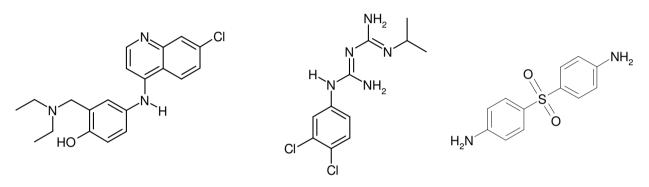

mode of action (still partly unclear): binds to HEM groups inhibition of the glutathion-S-transferase

sulfadoxine antibacterial



pyrimethamine blocks the dihydrofolate reductase respectively the dihydropterate synthetase

Resistance of the Anopheles fly

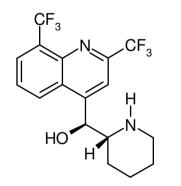


Nature Reviews | Drug Discovery

red: areas with malaria

Approaches to contolling (III)

Alternatives to chloroquine and sulfadoxine/pyrimethamine amodiaquine respectively chlorproguanil/dapsone

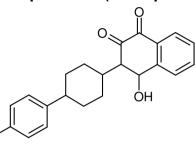

Disadvantage: expected build up of resistances due to identical targets

Approaches to contolling (IV)

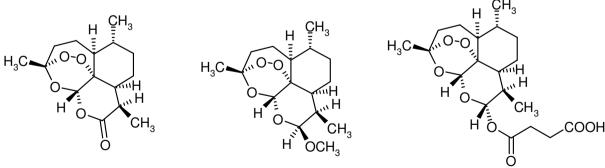
Profile for new drugs and chemoprophylaxis

- efficient, cheap
- effective against the more rare, but lethal *Plasmodium vivax*
- Avoiding of restistances by the use of combinations drugs (several targets at the same time)

Example for chemoprophylaxis: mefloquine (Lariam®)



Mode of action due to interaction with phospholipids (cell membrane, fatty acid synthesis)


Only very few adverse effects

Approaches to controlling (V)

Example for combination drugs: atovaquone (antiparasitic) together with an antibiotic

Drugs derived from natural compounds: artemisinin \rightarrow artemether and artesunate (form cytotoxic radicals in the presence of HEM iron)

Disdavantage: metabolisms and thus short half life

New malaria targets (I)

Table 2 Target	s for antimalarial che	motherapy			
Target location	Pathway/mechanism	Target molecule	Examples of Existing therapies	therapies New compounds	References
Cytosol	Folate metabolism Glycolysis Protein synthesis Glutathione metabolism Signal transduction Unknown	Dihydrofolate reductase Dihydropteroate synthase Thymidylate synthase Lactate dehydrogenase Peptide deformylase Heat-shock protein 90 Gilutathione reductase Protein kinases Ca ²⁺ -ATPase	Pyrimethamine, proguanil Sulphadoxine, dapsone Artemisinins	Chlorproguanil 5-fluoroorotate Gossypol derivatives Actinonin Geldanamycin Enzyme inhibitors Oxindole derivatives	82,83 84 85 86 87 88 89 90
Parasite membrane	Phospholipid synthesis Membrane transport	Choline transporter Unique channels Hexose transporter	Quinolines	G25 Dinucleoside dimers Hexose derivatives	71 91 92
Food vacuole	Haem polymerization Haemoglobin hydrolysis Free-radical generation	Haemozoin Plasmepsins Falcipains Unknown	Chloroquine Artemisinins	New quinolines Protease inhibitors Protease inhibitors New peroxides	93,94 95,96 97,98 99,100
Mitochondrion	Electron transport	Cytochrome c oxidoreductase	Atovaquone		101
Apicoplast	Protein synthesis DNA synthesis Transcription Type II fatty acid bio- synthesis Isoprenoid synthesis Protein farnesylation	Apicoplast ribosome DNA gyrase RNA polymerase FabH FabI/PfENR DOXP reductoisomerase Farnesyl transferase	Tetracyclines, clindamycin Quinolones Rifampin	Thiolactomycin Triclosan Fosmidomycin Peptidomimetics	102 29 32,33,103 30 25,104
Extracellular	Erythrocyte invasion	Subtilisin serine proteases		Protease inhibitors	97,105

DOXP, 1-deoxy-p-zylulose 5-phosphate; PfENR, Plasmodium falciparum enoyl-ACP reductase.

Lit. D.A.Fidock et al. Nature Rev. Drug Disc. 3 (2004) 509

New malaria targets (II)

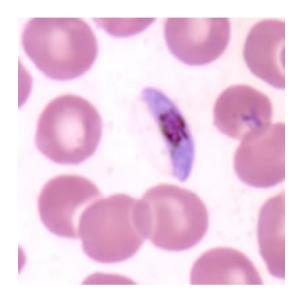
- → Target identification on the gene level homolog enzymes of known diseases
- \rightarrow Improvment of drugs that are already in use against other (infective) diseases:

dihydrofolate reductase	\rightarrow cancer	
cysteine protease	\rightarrow osteoporosis	
protein farnesyl transferase	\rightarrow cancer	
protein synthesis	\rightarrow other parasites	

vaccines: proteins that are expressed on the cell surface \rightarrow sequencing of the *Plasmodium falciparum* genome

(New) malaria drugs and targets (as of 2018)

Target Drug Fe(II)protoporphyrin IX mefloquine Fe(II)protoporphyrin IX primaquine Ferredoxin-NADPH reductase tafenoquine (approved) Dehydroorotate dehydrogenase atovaquone Dehydroorotate dehydrogenase DSM265 (phase II) Posphatidylinositol-4 kinase MMV390048 (phase II) Glutathione S-transferase artesunate Glutathione S-transferase artefenomel (phase II) Mitochondrial Enlogation Factor G M7517 (phase I) Ca²⁺ transporting P-ATPase 4 cipargamin (phase II)


New malaria targets (III)

Sequencing of *Plasmodium falciparum*

25 Mb on 14 chromosomes, ca. 5000 genes6 Kb genome of the mitochondrium35 Kb circular DNA of the Apicoplast

Similar dimensions are also to be expected for *P. yoelii* and *P. vivax*.

http://www.ncbi.nlm.hih.gov/Malaria/

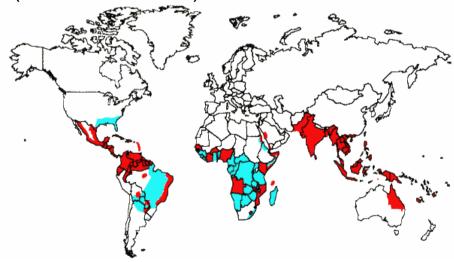
http://plasmodb.org (annotated Plasmodium genome)

Metabolic paths of *P. falciparum*:

http://sites.huji.ac.il/malaria/ (contains EC numbers)

Lit. S.L.Hoffman et al. *Nature* **415** (2002) 702

11th lecture


Neglected Tropical Diseases (I)

Infections with pathogens prevalent in developping regions around the tropical belt of Africa, Asia, and America.

ascariasis, trichuriasis, necatoriasis, ancyclostomiasis infection by soil transmitted helmintics (worms)

Schistosomiasis (snail fever, bilharzia)

- Trachoma and onchoceriasis (river blindness)
- Leishmanias
- Chagas disease
- Leprosy
- African Trypanosomnias (sleeping sickness)

The impact of this diseases in numbers is similar to that of malaria and tuberculosis 11th lecture Modern Methods in Drug Discovery WS19/20

Neglected Tropical Diseases (II)

The World Health Organisation lists further diseases, such as

Cysticerosis (infection by the pork tapeworm)

Dengue / dengue haemorrhagic fever (virus transmitted by mosquitos)

Rabis [Tollwut] (viral)

Yaws (bacterial) a similar treponemal disease is syphillis

Snake bites

Tropical diseases with outbrakes in other areas due to transmission by mosquitos:

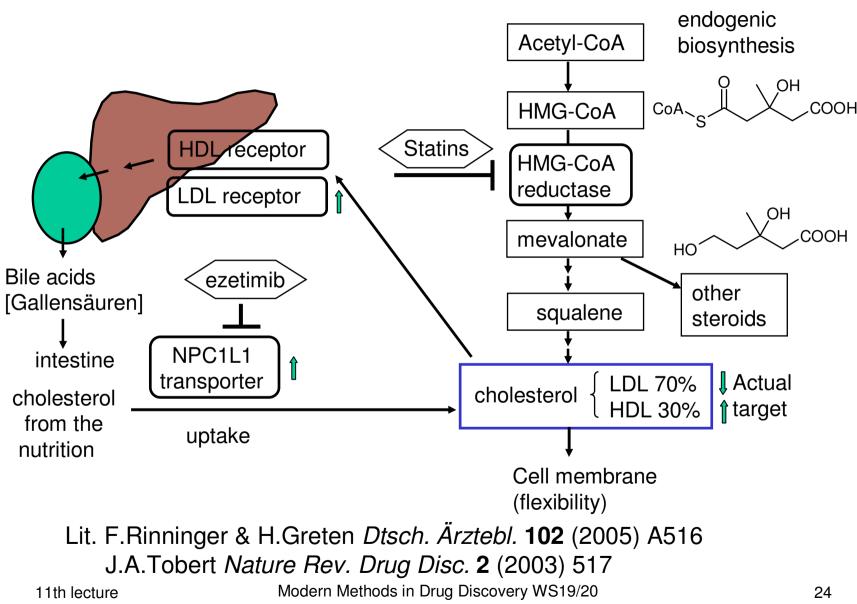
West Nile virus

Ross River fever

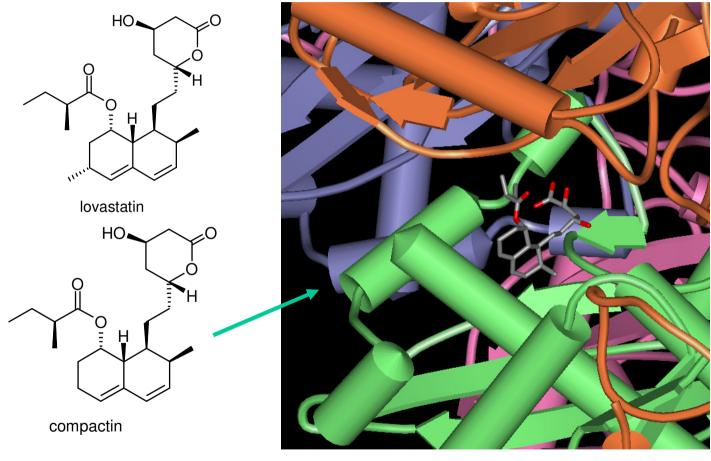
Complex diseases

obesity [Fettleibigkeit]

typical symptoms:


- excess weight
- increased levels of chlolesterol
 → arteriosclerosis
- hypertension

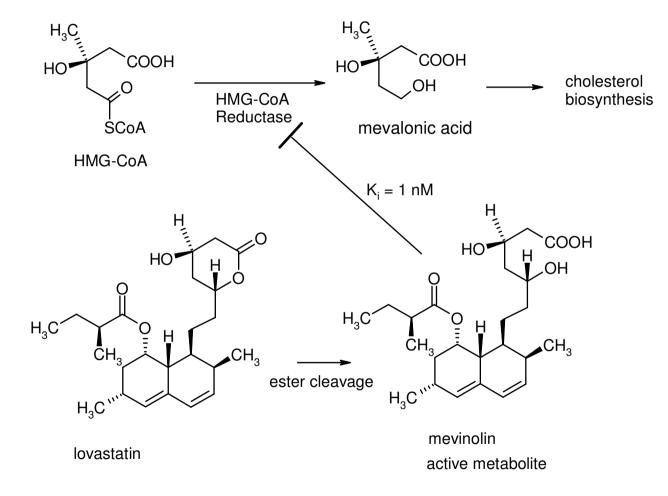
increased cardiovascular risc


The connection to obesity was established by the genetic lack of cholesterol receptors (hypercholesterolaemia) and especially cholesterol-rich nutrition in animal studies.

Regulation of the cholesterol pool

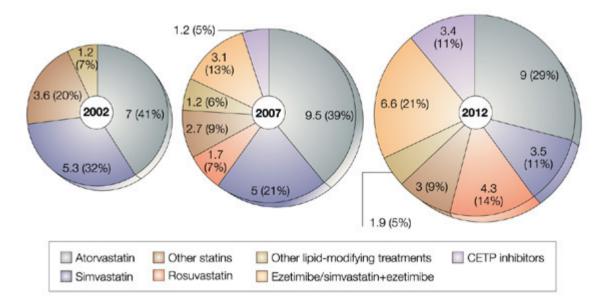
Inhibition of HMG-CoA reductase (I)

compactin (from *Penicillium citrinum*) and mevinolin (=lovastatin) (from *Aspergillus terreus*) were first found as inhibitors.



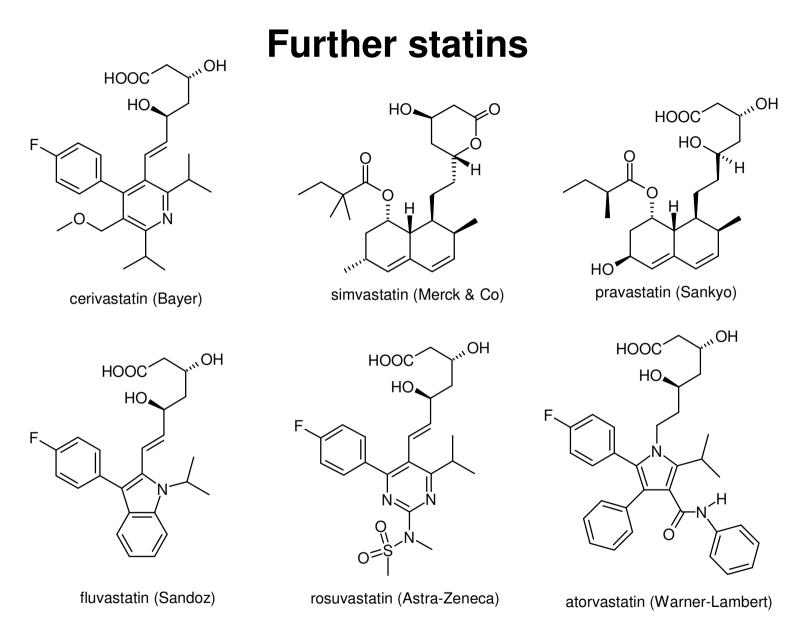
Lit. J.A.Tobert Nature Rev. Drug Disc. 2 (2003) 517

11th lecture

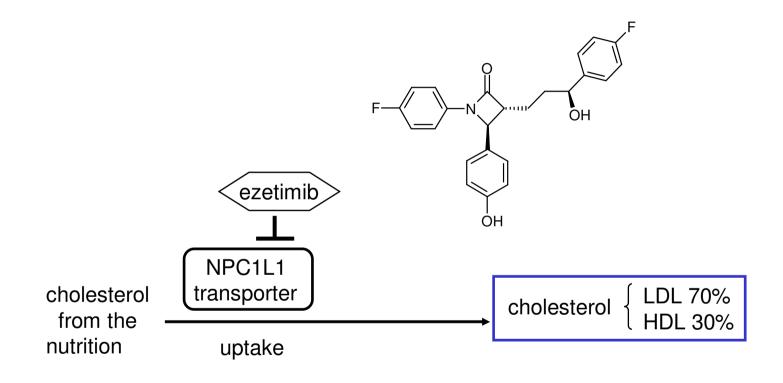

Inhibition of HMG-CoA reductase (II)

The actually effective substance is the metabolite

Sales potential of Statins

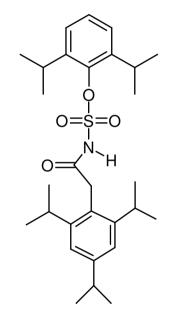

Market volume of cholesterol reducing agents

Nature Reviews | Drug Discovery

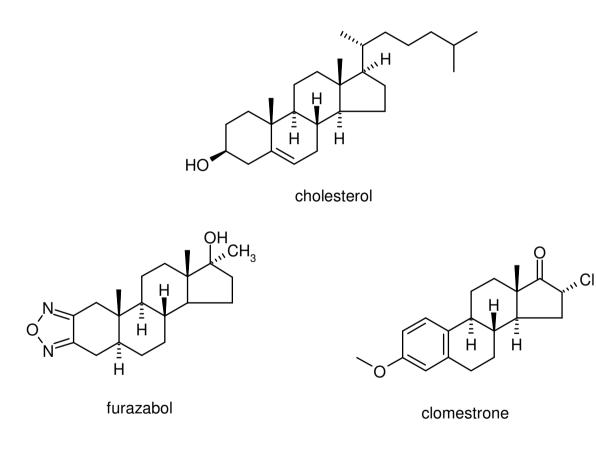

Turnover in billion US\$ for USA, France, Germany, Italy, Spain, England and Japan, (market volume in %) CEPT= cholesteryl ester transferase protein

Lit. J.Quirk et al. Nature Rev. Drug Disc. 2 (2003) 769

Further lipid lowering agents (I)

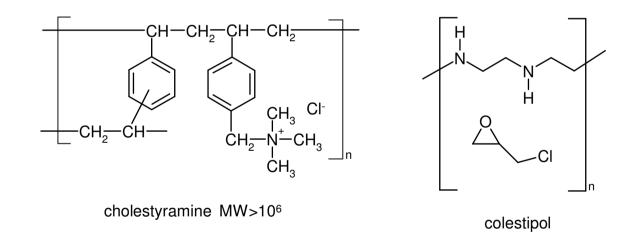

ezetimib inhibits the cholesterol transporter

Lit. Van Heek Brit.J.Pharmacol. **129** (2000) 1748.


Further lipid lowering agents (II)

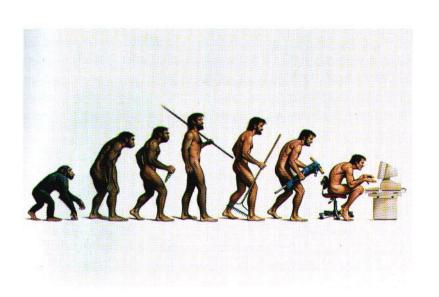
avasimibe inhibits the acetyl-coenzyme-A-cholesterolacetyltransferase (ACAT-inhibitor)

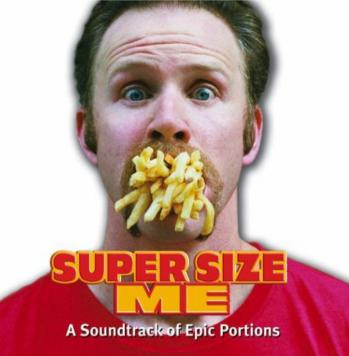
Further lipid lowering agents (III)


competitive cholesterol analogs

Further lipid lowering agents (IV)

Bile acid sequestrants

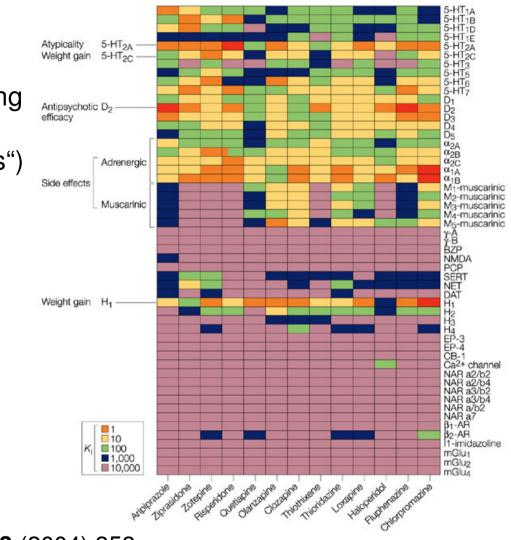

Polymers that are not absorbed from the intestine



absorb cholesterol and bile acid and therefore prevent uptake of cholesterol

Opinion drugs vs. life style modification

"obesity is a form of depression in which the eating is an antidepressant"

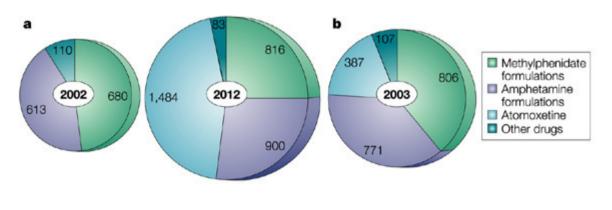


Fat storage is most efficient to preserve energy

Anorexic drugs (I)

Due to their complex affinity profile regarding a whole series of receptors ("dirty drugs") psychoactive drugs also modify the eating behaviour

Lit. B.L.Roth et al. *Nature Rev. Drug Disc.* **3** (2004) 353.


Nature Reviews | Drug Discovery

11th lecture

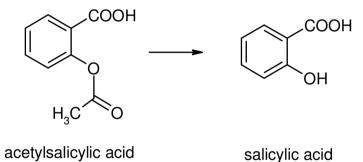
Anorexic drugs (II)

Prominent examples of psychoactive drugs with mit appetite suppressant (side-) effect:

methylphenidate (Ritalin®) ADHD atomexetine (Strattera®) [Aufmerksamkeitsdefizitsyndrome] fluoxetin (Prozac®)

Nature Reviews | Drug Discovery

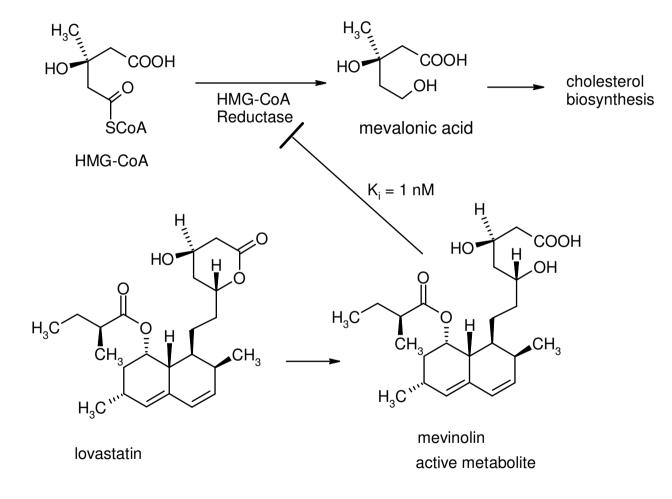
Market volume of ADHD pharmaca in million US \$


Lit. M.Garland, P.Kirkpatrick Nature Rev. Drug Disc. 3 (2004) 385.

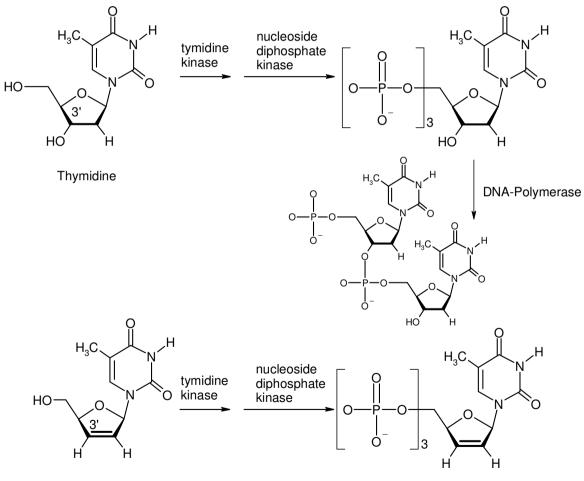
11th lecture

Prodrugs

Actually effective substance is the main metabolite of the drug

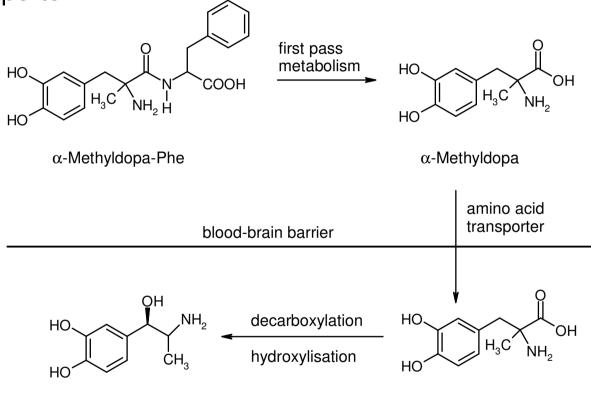

Example: ester cleavage

Irreversible inhibitor of cycloxygenase (COX)


Statins as HMG-CoA Reductase Inhibitors

The prodrug is a lactone whereas its metabolite is effective

Antiviral Nucleoside Analogs


Nucleosides missing the 3'-OH group cause disruption of the synthesis of a new DNA strain

Multi level prodrugs

Active uptake of α -Methyldopa-Phe by the dipeptide transporter

 α -Methylnoreprinephrine

α -Methylnoreprinephrine is an α_2 agonist (false neurotransmitter) Modern Methods in Drug Discovery WS19/20 11th lecture

Drug / Non-Drug Separation (1)

Is it possible to predict the potential suitability of a compound from typical properties of drugs ?

approaches:

Reckognition of typical properties in data bases that (almost) exclusively contain drugs

For example:

World Drug Index (WDI)

Comprehensive Medicinal Chemistry (CMC)

MACCS-II Drug Report (MDDR)

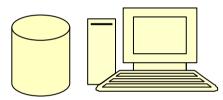
Drug / Non-Drug Separation (2)

Previous data base analyses:

1997 Christopher Lipinski's rule of 5 (Pfizer)

Orally administered drugs typically have

molecular weight < 500 ClogP < 5 less than 5 hydrogen-bond donors (O-H, N-H) less than 10 hydrogen-bond acceptors (N, O, S)


2000 Tudor Oprea (AstraZeneca)

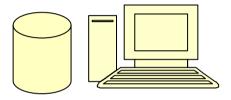
Typical drugs (70% of all) have

less than 3 hydrogen-bond donors between 2 and 9 hydrogen-bond acceptors between 2 and 9 rotatable bonds between 1 and 4 rings

Lipinski's rule of 5 refers to oral bioavailability but not neccessarily drug-likeness !

Drug / Non-Drug Separation (3)

1999 Ghose, Viswanadhan & Wendoloski

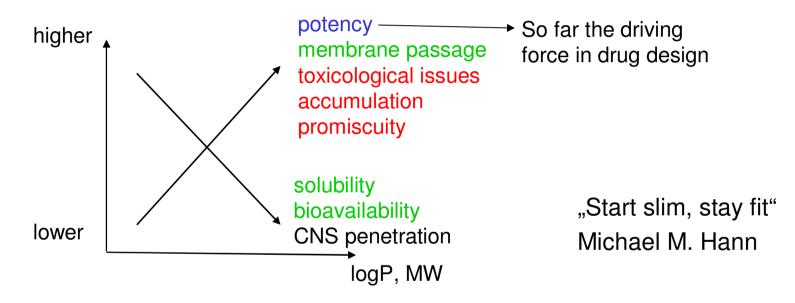

Analysis of the Comprehensive Medicinal Chemistry database:

80% of all drugs have

160 < molecular weight < 480

 $-0.4 < \log P < 5.6$ 20 < number of atoms < 70

40 < molar refractivity < 130

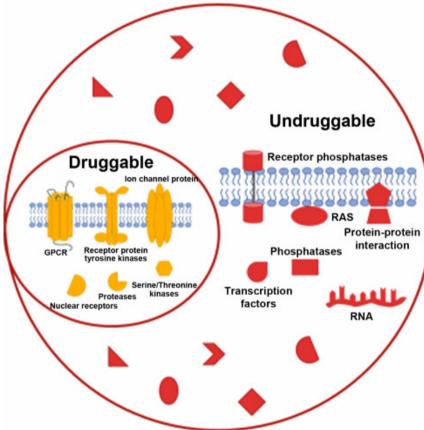

The preferred range covering 50% of all drugs shows

230 < molecular weight < 3901.3 < logP < 4.130 < number of atoms < 5570 < molar refractivity < 110

Lit: A. Ghose et al. *J.Comb.Chem.* **1** (1999) 55-68.

Drug / Non-Drug Separation (4)

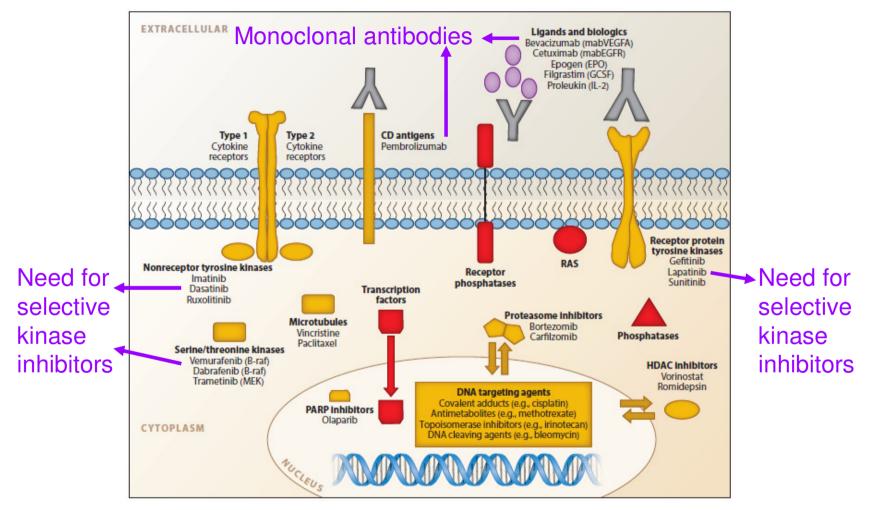
Even tighter restrictions required to avoid adverse effects? Molecular weight < 400 and ClogP < 4 (GSK 4/400 rule)


Find smallest crucial parts of molecules \rightarrow fragments

Lit: M.M. Hann "Molecular Obesity, Potency and Other Addictions in Drug Discovery" *Med.Chem.Commun.* **2** (2011) 349-355.

Difficult and Undruggable Targets (1)

If there is no distinct binding pocket for typical small molecules, such targets are hard to inhibit:

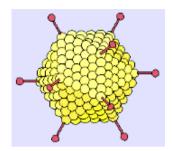

Transcription Factors Receptor Phosphatases (soluble) Phosphatases (K)RAS RNA Protein-Protein-Interaction

Lit: J.Wang et al. Chin. J. Chem. 37 (2019) 501.

Difficult and Undruggable Targets (2)

Many of those targets are, however, crucial in cancer therapy

Lit: J.S.Lazo & E.R.Sharlow Annu. Rev. Pharmacol. Toxicol. Chem. 56 (2016) 23.


11th lecture

Lifestyle vs. Disease

The great challenges

- Virostatics
- Antibiotics (Zn-β-lactamases, malaria)
- Anticancer drugs
- Antidementia/Alzheimer
- Diabetes type 2
- civilization diseases (obesity, ADHD)?

