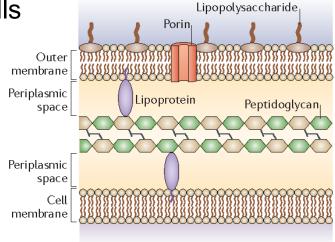
# Complex Diseases, Success and Failure

Finding the "right" target  $\rightarrow$  valid targets

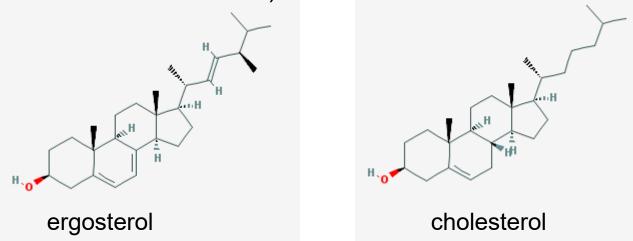

which constrains are limiting factors?

Dosage, bioavailability, actual drug concentration in the respective compartment (cell, organelles)

Are we competing against a natural substrate, e.g. ATP ? (concentration in the cell: ca. 4 mMol)

Biological barriers: e.g. bacterial cell walls

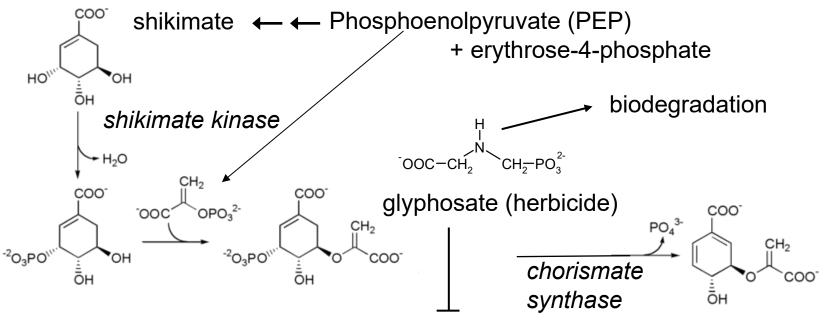
Picture source: N.L.Brown et al. Nature Rev. Biology (2015) DOI:10.1038/nrmicro3480 Gram-negative bacteria




#### Antifungals

# Success

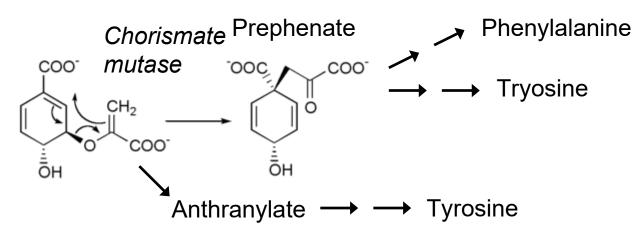
Ketoconazole, Fluconazole, Itraconazole, Clotrimazole, ...


Mechanism of action: Inhibition of  $14-\alpha$ -demethylase (CYP51) that is part of the biosynthesis pathway of ergosterol, which is an essential component of the fungal cell membrane (in mammals: cholesterol).



Cons: Inhibition of Cytochromes causes hepatotoxicity (e.g. ketoconazole). Other conazoles are more specific. Development of resistances (overexpression of efflux proteins).

# Failure (so far) (I)


Antibacterial agents targeting enzymes of the Shikimate pathway (responsible for the synthesis of the amino acids Phe, Tyr, and Trp).



*5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)* chorismate

Pro: Those enzymes are only found in plants, fungi, algae, and bacteria but not in mammals. Thus interference can be ruled out.

# Failure (so far) (II)



Pathogens such as Oxoplasma gondii, Plasmodium falciparum,

and *Cryptosporidium parvum* contain the Shikimate pathway and the seven enzymes involved.

Lit. C.W.Roberts et al. J.Infect.Dis. 185 (2002) Suppl.1:S25-36.

Con: Obviously the neccessary inhibitor concentration in the respective compartment could not be achieved. For comparison:

The cellular level of phosphoenolpyruvate (PEP) is ca. 4 mMol

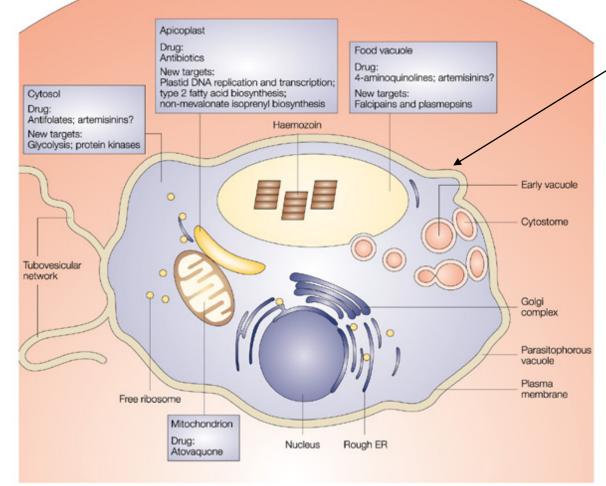
# **Complex Diseases**

malaria is the tropical disease no.1

300-500 millionen infections per year causing 1-3 million fatalities

clinical symptoms:

Strong fever, anemia, acidosis, multiple failure of organs




Due to the life cycle of the pathogen *Plasmodium flaciparum,* and the transmission by the *anopheles* fly, there are several starting points for control and therapy.

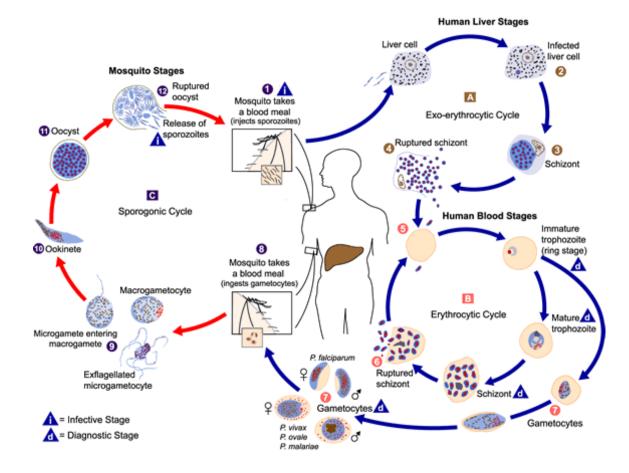
Lit. D.A.Fidock et al. Nature Rev. Drug Disc. 3 (2004) 509

### malaria pathogens cause degradation of hemoglobin





Plasmodium falciparum trophozoite


Further pathogens in human:

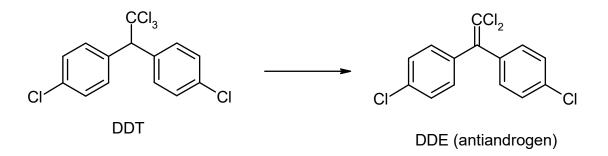
- P. vivax
- P. malariae
- P. ovale

and about 56 more species of Plasmodium

Nature Reviews | Drug Discovery

### Lifecylce of the malaria pathogens

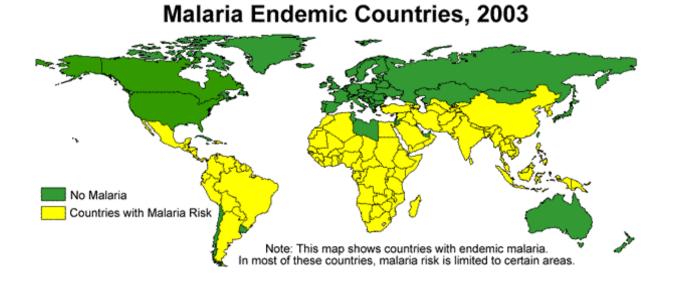



source: http://www.dpd.cdc.gov/.../body\_Malaria\_page1.htm

## Approaches to controlling (I)

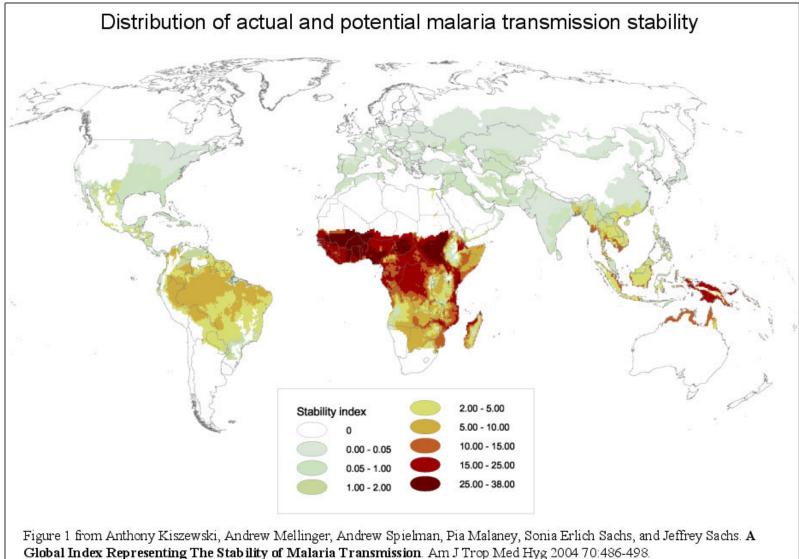
1960-1980 exhaustive use of insecticides against the Anopheles fly with very good results by the use of DDT (dichloro-diphenyl-trichloroethane) Disadvantages:

• Accumulation of DDT in the adipose tissue [Fettgewebe] of all creatures (mammals, birds, fish)

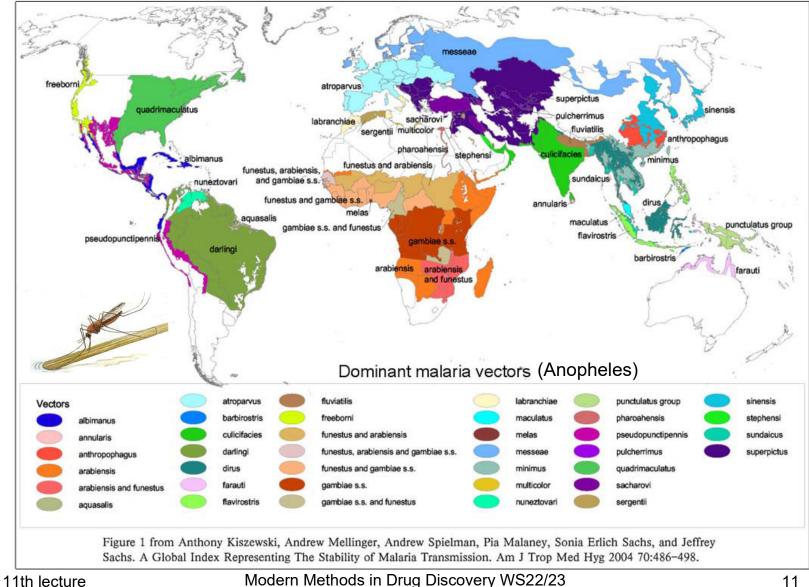

- DDT is biologically (almost) undegradable
- Metabolismus leads to a neurotransmitter-like substance (acts as contact insecticide !)



Increasing resistance to DDT has been observed


Modern Methods in Drug Discovery WS22/23

### **Distribution of Malaria (I)**

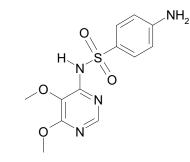



#### Areas with risk of malaria

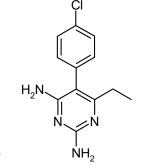
# **Distribution of malaria (II)**



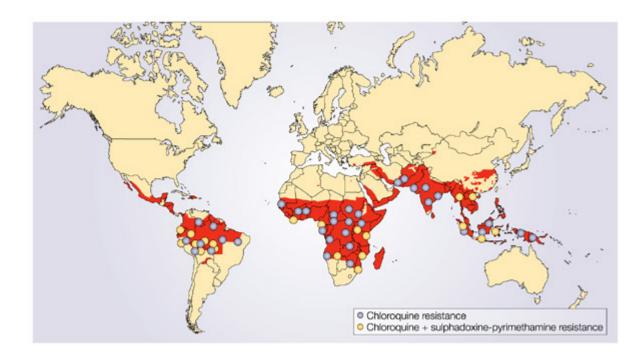
### **Distribution of the Anopheles fly**




# **Approaches to controlling (II)**


chloroquine: since the late 1940's worldwide application at very low costs (0.2 US\$ per dose)

mode of action (still partly unclear): binds to HEM groups inhibition of the glutathion-S-transferase

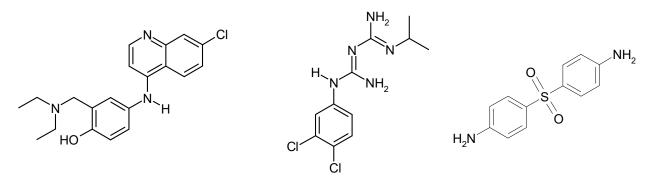

sulfadoxine antibacterial



pyrimethamine blocks the dihydrofolate reductase respectively the dihydropterate synthetase



### **Resistance of the Anopheles fly**



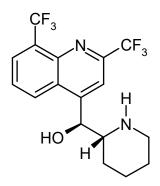

Nature Reviews | Drug Discovery

#### red: areas with malaria

# **Approaches to contolling (III)**

Alternatives to chloroquine and sulfadoxine/pyrimethamine amodiaquine respectively chlorproguanil/dapsone




Disadvantage: expected build up of resistances due to identical targets

# **Approaches to contolling (IV)**

Profile for new drugs and chemoprophylaxis

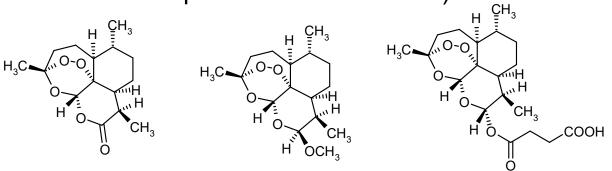
- efficient, cheap
- effective against the more rare, but lethal *Plasmodium vivax*
- Avoiding of restistances by the use of combinations drugs (several targets at the same time)

Example for chemoprophylaxis: mefloquine (Lariam®)




Mode of action due to interaction with phospholipids (cell membrane, fatty acid synthesis)

Only very few adverse effects


# Approaches to controlling (V)

Example for combination drugs: atovaquone (antiparasitic) together with an antibiotic



Drugs derived from natural compounds:

artemisinin  $\rightarrow$  artemether and artesunate (form cytotoxic radicals in the presence of HEM iron)



Disdavantage: rapid metabolization and thus short half life

Modern Methods in Drug Discovery WS22/23

### New malaria targets (I)

| Table 2   Target     | s for antimalarial che                                                                                                                       | motherapy                                                                                                                                                                                                                     |                                                                   |                                                                                                                                     |                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Target location      | Pathway/mechanism                                                                                                                            | Target molecule                                                                                                                                                                                                               | Examples of<br>Existing therapies                                 | therapies<br>New compounds                                                                                                          | References                                      |
| Cytosol              | Folate metabolism<br>Glycolysis<br>Protein synthesis<br>Glutathione metabolism<br>Signal transduction<br>Unknown                             | Dihydrofolate reductase<br>Dihydropteroate synthase<br>Thymidylate synthase<br>Lactate dehydrogenase<br>Peptide deformylase<br>Heat-shock protein 90<br>Gilutathione reductase<br>Protein kinases<br>Ca <sup>2+</sup> -ATPase | Pyrimethamine, proguanil<br>Sulphadoxine, dapsone<br>Artemisinins | Chlorproguanil<br>5-fluoroorotate<br>Gossypol derivatives<br>Actinonin<br>Geldanamycin<br>Enzyme inhibitors<br>Oxindole derivatives | 82,83<br>84<br>85<br>86<br>87<br>88<br>89<br>90 |
| Parasite<br>membrane | Phospholipid synthesis<br>Membrane transport                                                                                                 | Choline transporter<br>Unique channels<br>Hexose transporter                                                                                                                                                                  | Quinolines                                                        | G25<br>Dinucleoside dimers<br>Hexose derivatives                                                                                    | 71<br>91<br>92                                  |
| Food vacuole         | Haem polymerization<br>Haemoglobin hydrolysis<br>Free-radical generation                                                                     | Haemozoin<br>Plasmepsins<br>Falcipains<br>Unknown                                                                                                                                                                             | Chloroquine<br>Artemisinins                                       | New quinolines<br>Protease inhibitors<br>Protease inhibitors<br>New peroxides                                                       | 93,94<br>95,96<br>97,98<br>99,100               |
| Mitochondrion        | Electron transport                                                                                                                           | Cytochrome c oxidoreductase                                                                                                                                                                                                   | Atovaquone                                                        |                                                                                                                                     | 101                                             |
| Apicoplast           | Protein synthesis<br>DNA synthesis<br>Transcription<br>Type II fatty acid bio-<br>synthesis<br>Isoprenoid synthesis<br>Protein farnesylation | Apicoplast ribosome<br>DNA gyrase<br>RNA polymerase<br>FabH<br>FabI/PfENR<br>DOXP reductoisomerase<br>Farnesyl transferase                                                                                                    | Tetracyclines, clindamycin<br>Quinolones<br>Rifampin              | Thiolactomycin<br>Triclosan<br>Fosmidomycin<br>Peptidomimetics                                                                      | 102<br>29<br>32,33,103<br>30<br>25,104          |
| Extracellular        | Erythrocyte invasion                                                                                                                         | Subtilisin serine proteases                                                                                                                                                                                                   |                                                                   | Protease inhibitors                                                                                                                 | 97,105                                          |

DOXP, 1-deoxy-p-zylulose 5-phosphate; PfENR, Plasmodium falciparum enoyl-ACP reductase.

#### Lit. D.A.Fidock et al. Nature Rev. Drug Disc. 3 (2004) 509

### New malaria targets (II)

- $\rightarrow$  Target identification on the gene level homolog enzymes of known diseases
- $\rightarrow$  Improvment of drugs that are already in use against other (infective) diseases:

| dihydrofolate reductase      | $\rightarrow$ cancer          |
|------------------------------|-------------------------------|
| cysteine protease            | $\rightarrow$ osteoporosis    |
| protein farnesyl transferase | $\rightarrow$ cancer          |
| protein synthesis            | $\rightarrow$ other parasites |

vaccines: proteins that are expressed on the cell surface  $\rightarrow$  sequencing of the *Plasmodium falciparum* genome

The first malaria vaccine Mosquirix (recombinant protein viruslike particle) has been endorsed by the WHO in October 2021.

# (New) malaria drugs and targets (as of 2018)

#### Target

Fe(II)protoporphyrin IX

Fe(II)protoporphyrin IX

Ferredoxin-NADPH reductase

Dehydroorotate dehydrogenase

Dehydroorotate dehydrogenase

Posphatidylinositol-4 kinase

**Glutathione S-transferase** 

**Glutathione S-transferase** 

Mitochondrial Enlogation Factor G

Ca<sup>2+</sup> transporting P-ATPase 4

#### Drug

mefloquine

primaquine

tafenoquine (approved)

atovaquone

DSM265 (phase II)

MMV390048 (phase II)

artesunate

artefenomel (phase II)

M7517 (phase I)

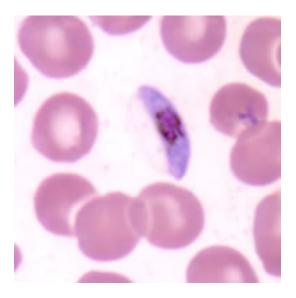
cipargamin (phase II)

### New malaria targets (III)

Sequencing of Plasmodium falciparum

25 Mb on 14 chromosomes, ca. 5000 genes6 Kb genome of the mitochondrium35 Kb circular DNA of the Apicoplast

Similar dimensions are also to be expected for *P. yoelii* and *P. vivax*.


http://www.ncbi.nlm.hih.gov/Malaria/

http://plasmodb.org (annotated Plasmodium genome)

Metabolic paths of *P. falciparum*:

http://sites.huji.ac.il/malaria/ (contains EC numbers)

Lit. S.L.Hoffman et al. *Nature* **415** (2002) 702

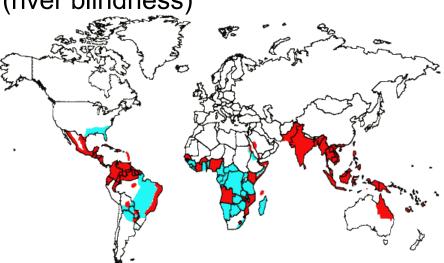


# **Neglected Tropical Diseases (I)**

Infections with pathogens prevalent in developping regions around the tropical belt of Africa, Asia, and America.

ascariasis, trichuriasis, necatoriasis, ancyclostomiasis infection by soil transmitted helmintics (worms)

Schistosomiasis (snail fever, bilharzia)


Trachoma and onchoceriasis (river blindness)

Leishmanias

Chagas disease

Leprosy

African Trypanosomnias (sleeping sickness)



The impact of this diseases in numbers is similar to that of malaria and tuberculosis 11th lecture Modern Methods in Drug Discovery WS22/23

# **Neglected Tropical Diseases (II)**

The World Health Organisation lists further diseases, such as

Cysticerosis (infection by the pork tapeworm)

Dengue / dengue haemorrhagic fever (virus transmitted by mosquitos)

- Rabis [Tollwut] (viral)
- Yaws (bacterial) a similar treponemal disease is syphillis

Snake bites

Tropical diseases with outbrakes in other areas due to transmission by mosquitos:

West Nile virus

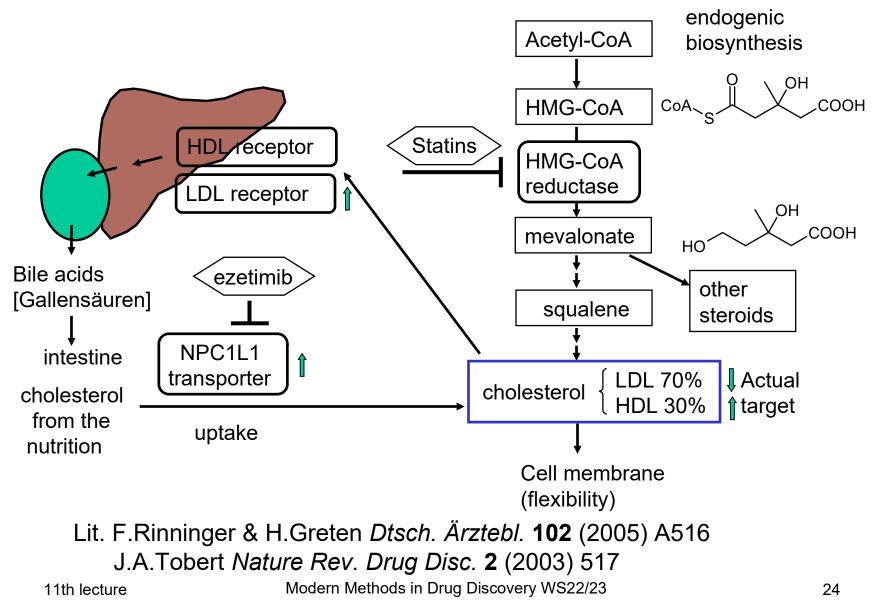
**Ross River fever** 

11th lecture

## **Complex diseases**

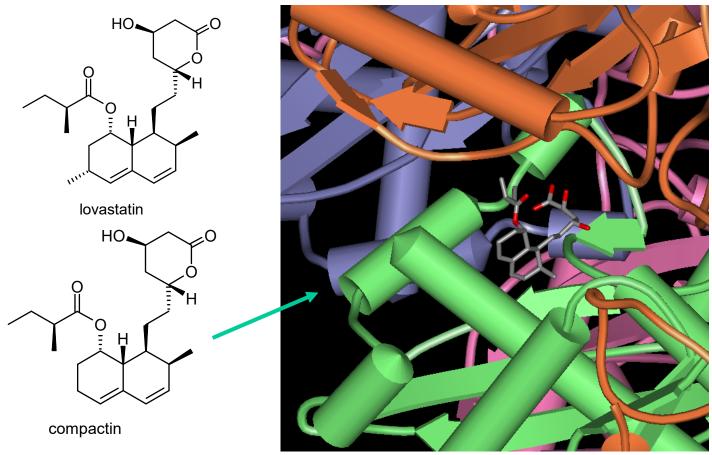
obesity [Fettleibigkeit]

typical symptoms:


- excess weight
- increased levels of chlolesterol
  → arteriosclerosis
- hypertension



increased cardiovascular risc

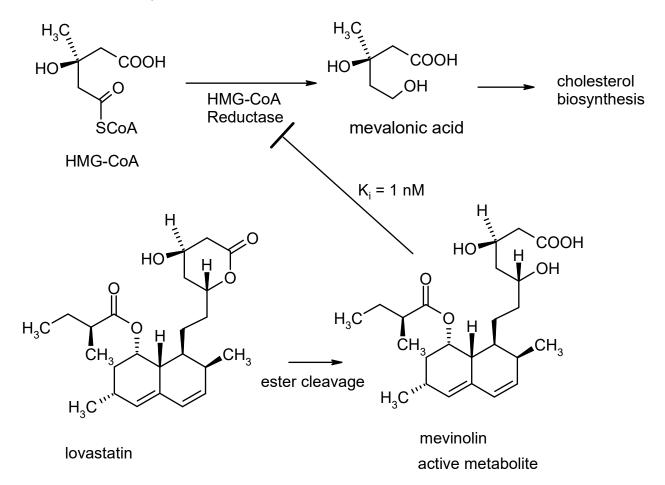

The connection to obesity has been established by the genetic lack of cholesterol receptors (hypercholesterolaemia) and especially cholesterol-rich nutrition in animal studies.

### **Regulation of the cholesterol pool**



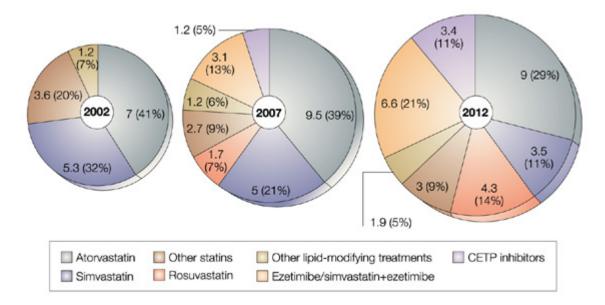
# Inhibition of HMG-CoA reductase (I)

compactin (from *Penicillium citrinum*) and mevinolin (=lovastatin) (from *Aspergillus terreus*) were first found as inhibitors.




Lit. J.A.Tobert Nature Rev. Drug Disc. 2 (2003) 517

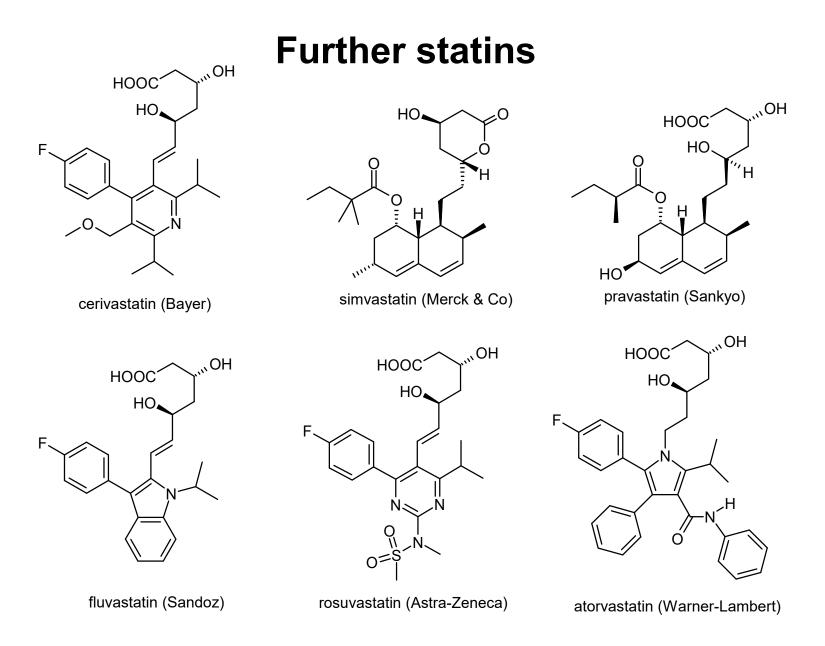
Modern Methods in Drug Discovery WS22/23


## Inhibition of HMG-CoA reductase (II)

The actually effective substance is the metabolite



## **Sales potential of Statins**


Market volume of cholesterol reducing agents



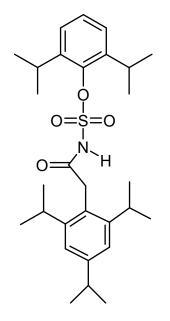
Nature Reviews | Drug Discovery


Turnover in billion US\$ for USA, France, Germany, Italy, Spain, England and Japan, (market volume in %) CEPT= cholesteryl ester transferase protein

Lit. J.Quirk et al. Nature Rev. Drug Disc. 2 (2003) 769



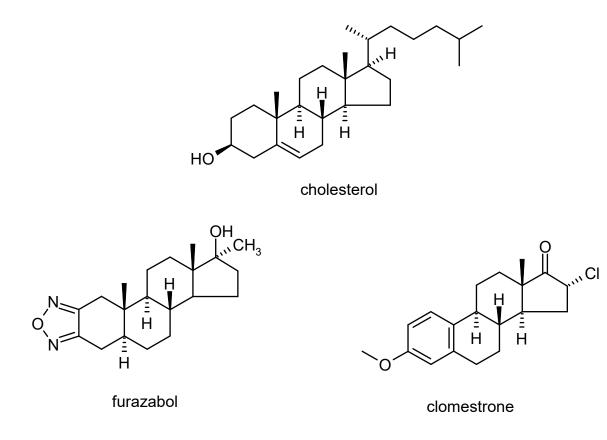
# Further lipid lowering agents (I)


ezetimib inhibits the cholesterol transporter



Lit. Van Heek Brit.J.Pharmacol. 129 (2000) 1748.

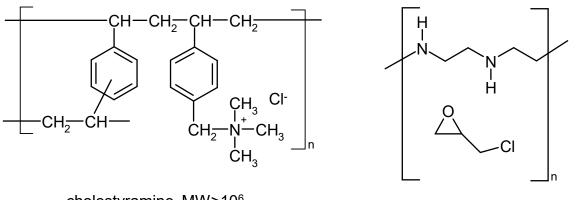
## Further lipid lowering agents (II)


avasimibe inhibits the acetyl-coenzyme-A-cholesterolacetyltransferase (ACAT-inhibitor)



Clinical development was discontinued in 2003, however research for repurposing it as antitumor and antibacterial drug is ongoing.

## **Further lipid lowering agents (III)**


competitive cholesterol analogs

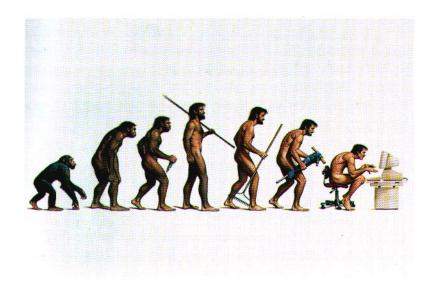


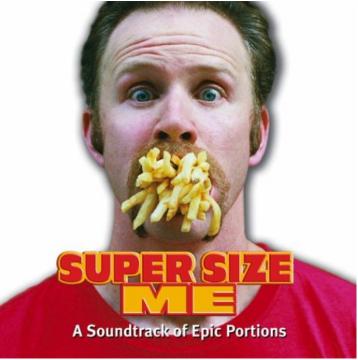
## **Further lipid lowering agents (IV)**

Bile acid sequestrants

Polymers that are not absorbed from the intestine



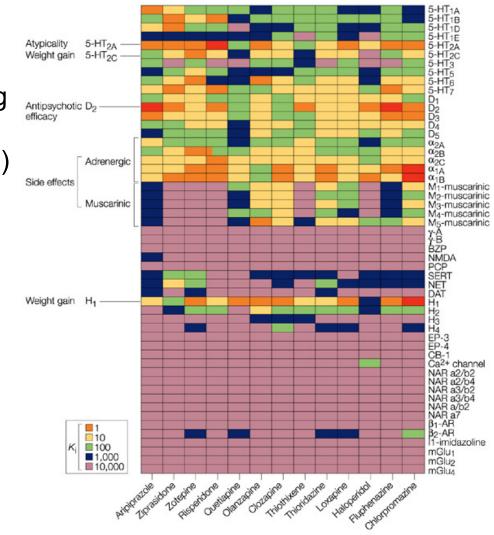

cholestyramine MW>106


colestipol

# absorb cholesterol and bile acid and therefore prevent uptake of cholesterol

### **Opinion drugs vs. life style modification**

"obesity is a form of depression in which the eating is an antidepressant"





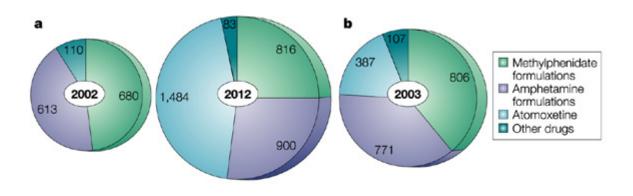

Fat storage is most efficient to preserve energy

### Anorexic drugs (I)

Due to their complex affinity profile regarding a whole series of receptors ("dirty drugs") psychoactive drugs also modify the eating behaviour



Nature Rev. Drug Disc. 3 (2004) 353.


Nature Reviews | Drug Discovery

Lit. B.L.Roth et al.

# Anorexic drugs (II)

Prominent examples of psychoactive drugs with mit appetite suppressant (side-) effect:

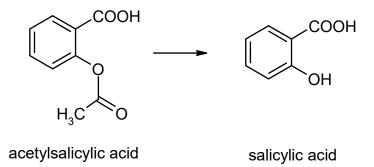
methylphenidate (Ritalin®) ADHD atomexetine (Strattera®) [Aufmerksamkeitsdefizitsyndrome] fluoxetin (Prozac®)



Nature Reviews | Drug Discovery

Market volume of ADHD pharmaca in million US \$

Lit. M.Garland, P.Kirkpatrick Nature Rev. Drug Disc. 3 (2004) 385.

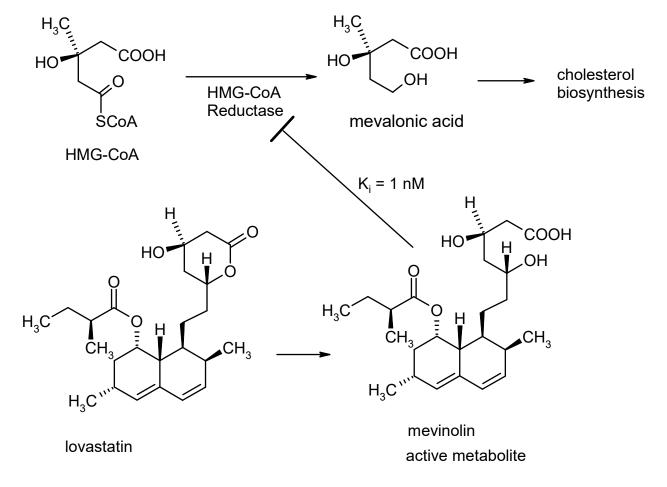

11th lecture

Modern Methods in Drug Discovery WS22/23

### Prodrugs

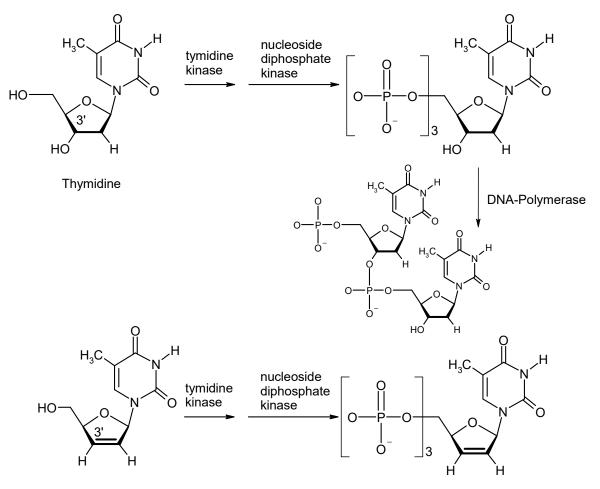
Actually effective substance is the main metabolite of the drug

Example: ester cleavage




Irreversible inhibitor of cycloxygenase (COX)

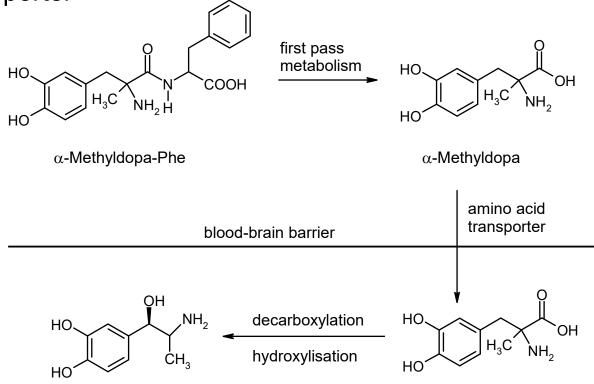
Esters are better aborbed than carbonic acids (which are negatively charged at pH 7)


## Statins as HMG-CoA Reductase Inhibitors

The prodrug is a lactone (cyclic ester) whereas its metabolite is the actual inhibitor.



### **Antiviral Nucleoside Analogs**


Nucleosides missing the 3'-OH group cause disruption of the synthesis of a new DNA strain

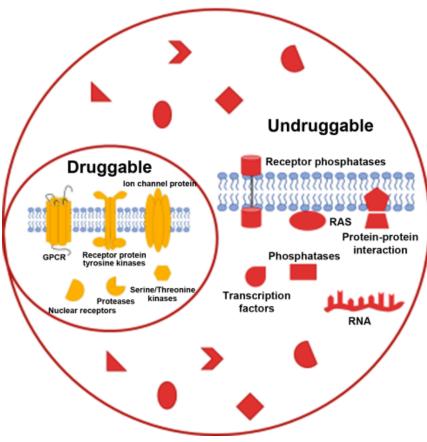


D4T Modern Methods in Drug Discovery WS22/23

# Multi level prodrugs

Active uptake of  $\alpha$ -Methyldopa-Phe by the dipeptide transporter

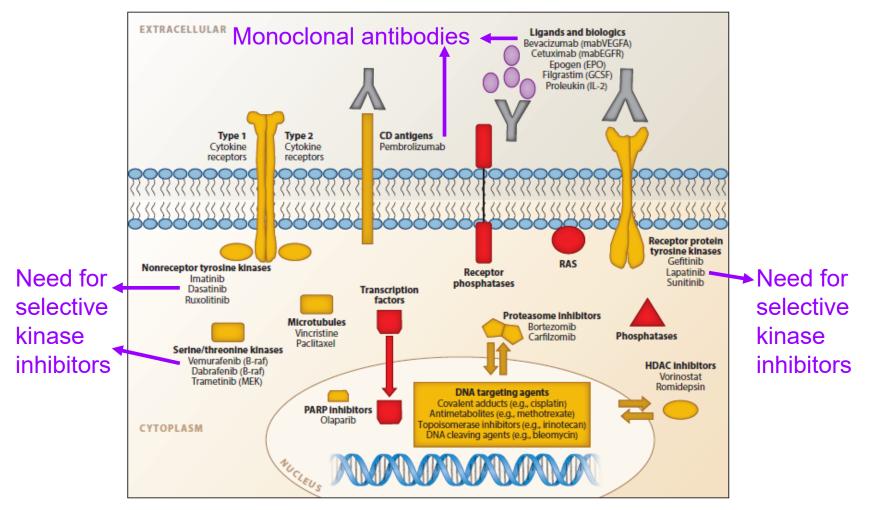



 $\alpha$ -Methylnoreprinephrine

α-Methylnoreprinephrine is an α<sub>2</sub> agonist (false neurotransmitter) 11th lecture Modern Methods in Drug Discovery WS22/23

# **Difficult and Undruggable Targets (I)**

If there is no distinct binding pocket for typical small molecules, such targets are hard to inhibit:


Transcription Factors Receptor Phosphatases (soluble) Phosphatases (K)RAS RNA Protein-Protein-Interaction

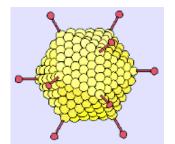


Lit: J.Wang et al. Chin. J. Chem. 37 (2019) 501.

# Difficult and Undruggable Targets (II)

Many of those targets are, however, crucial in cancer therapy




Lit: J.S.Lazo & E.R.Sharlow Annu.Rev.Pharmacol.Toxicol. Chem. 56 (2016) 23.

#### Lifestyle vs. Disease

The great challenges

- Virostatics
- Antibiotics (Zn-β-lactamases, malaria)
- Anticancer drugs
- Neurodegenerative diseases (Antidementia, Alzheimer)
- Diabetes type 2
- civilization diseases (obesity, ADHD)?







#### Lifestyle vs. Disease (II)

The top selling drugs during recent times (selection):

adalimumab\* apixaban pregabalin lenalidomide nivolumab\* pembrolizumab\* etancercept\* trastuzumab\* bevacizumab\* rituximab\* sofosbuvir fluticasone rosuvastatin

(arthritis) factor Xa-inhibitor (anti-coagulant) calcium channels (epilepsy) antitumor/apoptisis (oncology, various cancers) (cancer immunotherapy) (rheumatoid arthritis) (breast cancer) (colon cancer) (autoimmune diseases, cancer) antiviral nucleoside anti-inflammatory/corticosteroid HMG-CoA reductase

\* monoclonal antibody 11th lecture Source: wikipedia (2019) Modern Methods in Drug Discovery WS22/23

## Lifestyle vs. Disease (III)

Most "blockbuster" drugs were not predicted by analysts of the marketing departements:

tamoxifen captopril cimetidine indication

breast cancer hypertension



fluoxetine (Prozac<sup>™</sup>) depression atorvastatin (Lipitor<sup>™</sup>) hyperlipidae

im Magen] depression

gastric ulcers [Geschwulstbildung

hyperlipidaemia, obesity

Lit: J.Knowles & G.Gromo Nat.Rev.Drug.Discov. 2 (2003) 63.

Picture source: www.investorschronicle.co.uk

## Lifestyle vs. Disease (IV)

Innovative new drugs that have emerged (source until 2006: Hugo Kubinyi)

| 2020<br>2010<br>2006<br>2003<br>2002<br>2001 | Tozinameran<br>Dabigatran<br>Deferasirox<br>Roflumilast<br>Ezetimib<br>Imatinib | mRNA vaccine (COVID-19)<br>anticoagulant (thrombosis)<br>iron chelator (thalassemia)<br>PDE-4 inhibitor (asthma)<br>cholesterol uptake inhibitor<br>leucemia (tyrosine kinase inhibitor) |
|----------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2001                                         | Fondaparinux                                                                    | thrombosis (antagonist)                                                                                                                                                                  |
| 1999                                         | Zanamivir                                                                       | influenza (viral neuraminase inhibitor)                                                                                                                                                  |
| 1999                                         | Amprenavir                                                                      | HIV (protease inhibitor)                                                                                                                                                                 |
| 1999                                         | Celecoxib                                                                       | arthritis (COX-2 inhibitor)                                                                                                                                                              |
| 1998                                         | Sildenafil                                                                      | erectile dysfunction (PDE-5 inhibitor)                                                                                                                                                   |
| 1998                                         | Orlistat                                                                        | obesity (pancreas pipase inhibitor)                                                                                                                                                      |
| 1997                                         | Sibutramine                                                                     | obesity (GPCR inhibitor)                                                                                                                                                                 |
| 1997                                         | Finasteride                                                                     | prostata (steroidreductase inhibitor)                                                                                                                                                    |
| 1997                                         | Nelfinavir                                                                      | HIV (protease inhibitor)                                                                                                                                                                 |
| 1996                                         | Indinavir                                                                       | HIV (protease inhibitor)                                                                                                                                                                 |
| <b>1996</b><br>11th lecture                  | Nevirapin<br>Mode                                                               | HIV (reverse transcriptase inhibitor)<br>rn Methods in Drug Discovery WS22/23                                                                                                            |

45

### Lifestyle vs. Disease (V)

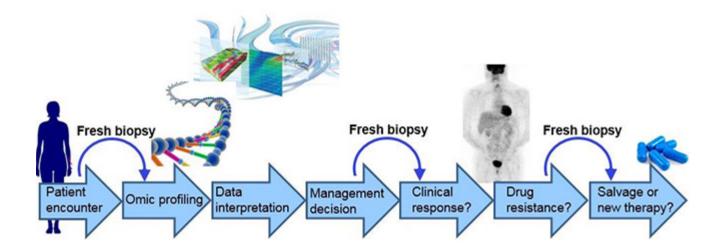
Innovative new drugs from 1982-1996: (source: Hugo Kubinyi)

| 1996        | Meloxicam     |
|-------------|---------------|
| 1995        | Dorzolamine   |
| 1995        | Losartan      |
| 1994        | Famciclovir   |
| 1993        | Risperidon    |
| 1991        | Sumatriptan   |
| 1990        | Ondansetron   |
| 1988        | Omeprazole    |
| 1987        | Lovastatin    |
| 1986        | Artemisinin   |
| 1985        | Fluoxetine    |
| 1985        | Mefloquine    |
| 1984        | Enalapril     |
| 1983        | Cyclosporin A |
| 1982        | Ranitidine    |
| 1th lecture | Modern        |

arthritis (COX-2 inhibitor) glaucoma (carboanhydrase inhibitor) hypertension (GPCR antagonist) herpes (DNA polymerase inhibitor) psychose (D<sub>2</sub> / 5HT<sub>2</sub> antagonist) migraine (5HT, rezeptor antagonist) antiemetic (5HT<sub>3</sub> antagonist) gastric ulcers (proton pump inhibitor) cholesterol (biosynthesis inhibitor) anti-malarial (natural compound) depression (5HT inhibitor) anti-malarial hypertension (ACE inhibitor) immunosupressant gastric ulcers (H<sub>2</sub> antagonist) Modern Methods in Drug Discovery WS22/23

## Lifestyle vs. Disease (VI)

How are innovative drugs defined?


- improved mode of action (selectivity)
- improved ADMET profile
- Improved administration (e.g. oral instead of intravenous)
- pro-drugs
- new targets

#### personalized medicine

Variable metabolic content and predisposition (Genotyping)

Avoiding rare, complicated adverse effects (in part already used in the clinic)

Will the necessary financial effort of screening and of clinical studies limit the genetic pool to inhibitants of wealthy nations ?



picture source: www.dana-farber.org

#### Resume

The available knowledge on the human genome and the present SNPs in it allow two approaches:

1. Finding new targets (either on the genome, the mRNA, or the protein level)

2. pharmacogenomic methods will lead to personalized medicine (which drug and at what dosage), esp. for long term application of certain drugs (hypertension, analgesics, anti-psychotics) and those that possess a narrow therapeutic band width (cardiotonics, antineoplastics)